Quiz Solution

1. First, note that

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2}, \quad-\infty<x<\infty
$$

Since
$F_{U}(u)=P(U \leq u)=P(|Y| \leq u)=P(-u \leq Y \leq u)=P(Y \leq u)-P(Y \leq-u)=F_{Y}(u)-F_{Y}(-u)$
we have that

$$
\begin{aligned}
f_{U}(u) & =\frac{d}{d u} F_{U}(u)=\frac{d}{d u}\left[F_{Y}(u)-F_{Y}(-u)\right]=f_{Y}(u)+f_{Y}(-u) \\
& =\frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2}+\frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2}=\sqrt{\frac{2}{\pi}} e^{-u^{2} / 2}, \quad u>0
\end{aligned}
$$

2. Since $M_{Y_{1}}(t)=\left(1 / 3+2 / 3 e^{t}\right)^{3}=\left((1-2 / 3)+2 / 3 e^{t}\right)^{3}$ is the mgf of $Y_{1} \sim \operatorname{Binomial}(3,2 / 3)$, and $M_{Y_{2}}(t)=\exp \left(2 e^{t}-2\right)=\exp \left(2\left(e^{t}-1\right)\right)$ is the $m g f$ of $Y_{2} \sim \operatorname{Poisson}(2)$, and Y_{1} and Y_{2} are independent, it follows that

$$
E\left(Y_{1} Y_{2}\right)=E\left(Y_{1}\right) E\left(Y_{2}\right)=(n p) \lambda=(3 \cdot(2 / 3)) 2=4
$$

