Section 4.3: Derivatives and the shapes of graphs (continued)

[Collect notes for section 4.3.]

A common alternative to the First Derivative Test, especially handy when it’s hard to evaluate the derivative of f, is the “test-point method”:

Suppose that c is a critical number of a continuous function f, and suppose that we have two test-points dL and dR with dL < c < dR such that c is the only critical point of f in the interval [dL, dR].

(a) If f (dL) and f(dR) are ( f(c), then f  has a local maximum at c.

(b) If f (dL) and f(dR) are ( f(c), then f  has a local minimum at c.

(c) If f (dL) < f(c) < f(dR) or f (dL) > f(c) > f(dR), then f  has no local maximum or local minimum at c.

Example: Let f(x) = |x2 – 1|, with c = 0.  Taking dL = –2  and dR = 2 we have f(dL) = 3 = f(dR) and f(c) = 1, so f has a local minimum at 0.


What do you think about the preceding example? …

..?..

..?..

..?..

..?..

It’s bogus!  

We forgot to check that c is the only critical point in the interval [dL, dR].

In fact, we didn’t check that 0 is a critical point at all.

Write f(x) = |x2 – 1| as the composite function g(h(x)), where g(x) = |x| and h(x) = x2 – 1.  

By the chain rule, f ((x) = g((h(x)) h((x), so f could have a critical point at x whenever g has a critical point at h(x) or h has a critical point at x.

Since h is differentiable, the only critical points of h are places where h((x) = 0; and since h((x) = 2x, this can only happen when x = 0.

On the other hand, g(x) = |x| has a critical point at x = 0, so f(x) = g(h(x)) can have a critical point when h(x) = 0, i.e., when x = ( 1.

So in fact 0 might NOT be the only critical point in [–2,2], since there are candidate critical points at (1.

To apply the test-point method, we don’t need to figure out which of the suspected critical points are true critical points.  We just have to use test-points dL, dR that are so close to c that no suspected critical points can intervene.

Evaluating f at the test-points –2, –1, 0, 1, and 2, we can check that f has a local minimum at –1, a local maximum at 0, and a local minimum at 1.

Here’s the plot of f (which you might remember from the midterm):
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So as it turns out, there are indeed critical points at (1.

Recall that the Increasing Test says that for any function f known to be continuous on [a,b] and differentiable on (a,b), if f ( is positive on interval (a,b), then f is increasing on [a,b].

Is the converse true?

..?..

..?..

No; e.g., consider f(x) = x3 on [–1,1]: it is increasing on the interval, but its derivative is not positive throughout the interval.

The geometric meaning of the second derivative

Definition: Suppose f is continuous on [a,b] and differentiable on (a,b) (Stewart doesn’t impose this restriction but I think he should!).  

If for all c in some interval I  the graph of the function f  on the interval I  lies completely above the tangent to the curve at c (except at the point (c, f(c)), where they must intersect) we say f  is concave upward on I.

Likewise, if for every c in I  the graph of f  on the interval I  lies completely below the tangent to the curve at c (except at (c, f(c)) we say f  is concave downward on I.

We say (c, f(c)) is an inflection point if f changes from concave upward to concave downward or vice versa as x passes through c.  (I.e., if there exist a( < c and b( > c such that  f is concave up on [a(,c] and concave down on [c,b(], or concave down on [a(,c] and concave up on [c,b(], we say (c,f(c)) is an inflection point for the function f.)

(Note that Stewart considers the function y = x to be neither concave up nor concave down, nor does it have any inflection points.)

Does the graph of y = 1/x have a point of inflection?

..?..

..?..

No (even though it changes concavity as you pass from x<0 to x>0), because there is no point on the curve with x=0.

Concavity Test: 

(a) If f (((x) > 0 for all x in I,  f  is concave up on I.  

(Is the converse true?

..?..

..?..

No: f(x) = x4 is concave up on [–1,1], but f (((x) is not positive for all x in [–1,1].)

(b) If f (((x) < 0 for all x in I,  f is concave down on I.

Second Derivative Test: Suppose f (( is continuous near c (i.e., there exists r > 0 such that f (( is continuous on 

(c–r, c+r).

(a) If f ((c) = 0 and f (((c) > 0, f  has a local minimum at c.

(b) If f ((c) = 0 and f (((c) < 0, f  has a local maximum at c.

Example: f(x) = (x2–1)2 = x4 – 2x2 + 1.  

f ((x) = 4x3 – 4x, which vanishes at +1,0, –1.

f (((x) = 12x2 – 4.

f (((+1) = 8 > 0, f (((0) = –4 < 0, f (((–1) = 8 > 0.

So f(x) has local minima at x=(1 and a local maximum at x=0.

(See lecture notes for 11.15 for a solution to this problem that uses the First Derivative Test instead.)
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Example: f(x) = x4.  f ((x) = 4x3, which vanishes at 0.

f (((x) = 12x2.  f (((0) = 0, which is neither positive nor negative.  Hence no conclusion can be drawn via the Second Derivative Test.  (Recall that for this example, the First Derivative Test does apply: f ((x) < 0 for –1 < x < 0 and f ((x) > 0 for 0 < x < 1, so f(x) has a local minimum at x=0.)

Example: Find the local maximum and minimum values of f(x) = x + sqrt(1–x) using both the First and Second Derivative Tests.

Identify the domain: {x | x ( 1}.

Critical points: f ((x) = 1 – (1/2) (1–x)–1/2.

This is undefined when x = 1, and it vanishes when (1–x)–1/2 = 2, i.e., sqrt(1–x) = 1/2, i.e., x = 3/4.

We can ignore x = 1, since it’s an endpoint and we’re looking for local maxima and minima.

That just leaves x = 3/4.

First Derivative Test: For x < 3/4, we have

1–x > 1/4,

(1–x)1/2 > 1/2,

(1–x)–1/2 < 2, 

(1/2) (1–x)–1/2 < 1, and

f ((x) = 1 – (1/2) (1–x)–1/2 > 0,

while for x > 3/4 (but less than 1), we have

1–x < 1/4,

(1–x)1/2 < 1/2,

(1–x)–1/2 > 2, 

(1/2) (1–x)–1/2 > 1, and

f ((x) = 1 – (1/2) (1–x)–1/2 < 0,

so f has a local maximum at x = 3/4.

Second Derivative Test: Since f ((x) = 1 – (1/2) (1–x)–1/2 which vanishes at x = 3/4 and since f (((x) = – (1/4) (1–x)–3/2 which is negative at x = 3/4, the function has a local maximum at x = 3/4.

Note that we can also solve this problem using the test-point method: Since we showed above that f(x) has no critical points between 0 and 3/4 or between 3/4 and 1, we could determine the behavior of f (x) in the vicinity of x = 3/4 just by comparing f (x) at the points 0, 3/4, and 1/2:

f(0) = 0 + sqrt(1–0) = 1

f(3/4) = 3/4 + sqrt(1–3/4) = 3/4 + 1/2 = 1.25

f(1/2) = 1/2 + sqrt(1–1/2) = 1/2 + .707… = 1.207…

Since f(3/4) is greater than both f(0) and f(1/2), the test-point method tells us that f has a local maximum at 3/4.

Which method do you guys prefer?

Here’s the graph:
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