
Math 192r, Problem Set #12: Solutions

1. We consider directed animals on the modified square lattice that has
an extra edge joining (i, j) to (i + 1, j + 1) for all i, j. A subset S of
the first quadrant is a directed animal on this lattice if for every point
(i, j) in S there is a path from (0, 0) to (i, j) in S via steps of the form
(+1, 0), (0,+1), (+1,+1). Let an be the number of directed animals on
this lattice having n elements, so that a1 = 1, a2 = 3, a3 = 10, etc.
Mimic the method discussed in class for the ordinary square lattice to
derive a formula for the generating function

∑∞
n=1 an, and use this to

obtain a formula for an itself as well as a formula for limn→∞ a
1/n
n .

We can define pyramids and half-pyramids as before. The only differ-
ence is that it is now possible for a dimer to be above another dimer
with exactly the same horizontal position (in the earlier situation, the
two dimers would have to be offset by 1 position relative to one an-
other). So the generating functions for pyramids and half-pyramids
now satisfy the relations

P (x) = Q(x) + P (x)Q(x)

and
Q(x) = x+ 2xQ(x) + x[Q(x)].

(The factor of 2, not present in the case of the ordinary square lattice,
arises because when we place a half-pyramid above a dimer to obtain a
half-pyramid, there are now two different ways to position it.) Solving
these two equations simultaneously we get

Q(x) =
1− 2x−

√
1− 4x

2x
= x+ 2x2 + 5x3 + 14x4 + ...

and

P (x) =

1√
1−4x
− 1

2
= x+ 3x2 + 10x3 + 35x4 + ....

We conclude that the number of such animals is an =
(

2n
n

)
/2, so that

limn→∞ a
1/n
n = 4 (by an easy application of Stirling’s formula).

This problem is adapted from the article Lattice animals and heaps of
dimers by Mireille Bousquet-Mélou and Andrew Rechnitzer, to appear
in the journal Discrete Mathematics.
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2. (a) The mapping from the ring of formal power series to itself that
sends f(x) to 1 + x2[f(x)]3 has a unique fixed point. Conjecture
a formula for the coefficients of this formal power series. (Hint:
Try to express the ratio of the coefficients of x2n and x2n−2 as a
rational function of n.)

Suppose f1 and f2 are both solutions; say the first place at which
they disagree is at the coefficient of xn. Then [f1(x)]3 and [f2(x)]3

agree up to the coefficient of xn−1, so that 1 + x2[f1(x)]3 and
1 + x2[f2(x)]3 agree up to the coefficient of xn+1. But since these
expressions equal f1(x) and f2(x) respectively, we find that f1 and
f2 agree in their coefficient of xn, contradicting out choice of n.

It follows as it did in the lecture that a fixed point exists (since, as
a base case, we can get the constant term to stabilize by setting
it equal to 1).

The fixed point is moreover an attractor: the same reasoning used
above shows that if f is the fixed point and g is any formal power
series that agrees with f up to the coefficient of xn−1, then 1 +
x2[g(x)]3 agrees with f up to the coefficient of xn (and indeed
farther). So we may take g(x) = 1 as our initial estimate and
repeatedly apply the operation

taylor(x^2*%^3+1,x,21)

obtaining after ten steps a truncated power series that is stable
under the operation, whose non-zero coefficients are 1, 1, 3, 12,
55, 273, 1428, 7752, 43263, 246675, and 1430715. (It is easy to see
that the coefficient must vanish whenever the exponent is odd.)

If we take the ratio of each non-vanishing coefficient to the one
before, we get the ratios 1, 3, 4, 55/12, 273/55, 68/13, 38/7,
759/136, 325/57, and 29/5. Multiplying these by 2 × 3, 4 × 5,
6 × 7, ..., 20 × 21 respectively, we get 6, 60, 168, 330, 546, 816,
1140, 1518, 1950, 2436, whose kth term is 3(3k−2)(3k−1). Hence
we conjecture that the coefficient of x2n is

n∏
k=1

3(3k − 2)(3k − 1)

(2k)(2k + 1)
,

which can also be written as
∏n
k=1

(3k)(3k−1)(3k−2)
(k)(2k+1)(2k)

, which reduces

to (3n)!/n!(2n+ 1)!, or
(

3n
n

)
/(2n+ 1).
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(b) There exist Laurent series

g(x) = x−1 − 1

2
− 3

8
x− 1

2
x2 − . . .

and

g(−x) = −x−1 − 1

2
+

3

8
x− 1

2
x2 + . . .

that are also fixed under that mapping. Find the first dozen non-
vanishing coefficients of g and conjecture a formula for the coeffi-
cient of xn.

Any g that is fixed under the mapping that sends f(x) to 1 +
x2[f(x)]3 must satisfy g(x) = 1 + x2[g(x)]3, which is equivalent to
x2[g(x)]3 = g(x)− 1, which is equivalent to

g(x) =
1

x2g(x)
− 1

x2[g(x)]2
,

so that g(x) must also be fixed under the mapping that sends f(x)
to

1

x2f(x)
− 1

x2[f(x)]2
.

This operation on formal Laurent series isn’t quite what is wanted,
but it comes close; if one iterates this operation, one observes that
the lowest-order coefficient that isn’t stable under iteration oscil-
lates between two values. This suggests that we instead consider
the operation that sends a formal Laurent series f to the formal
Laurent series

1

2

(
f(x) +

1

x2f(x)
− 1

x2[f(x)]2

)
.

Note that f(x) = x−1 is a fixed point of this operation modulo
higher powers of x. To study the behavior of iterates of this op-
eration, it is helpful to rewrite f as x−1F where F is an actual
power series, and to rewrite the operation as one that sends F to

1

2
(F + 1/F − x/F 2).

Suppose F and G are power series with constant term 1 that
first disagree at the coefficient of xn; say G(x) = F (x)(1 + cxn +
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O(xn+1)), with c 6= 0. Then 1/G(x) = (1/F (x))(1 − cxn +
O(xn+1)), and since the constant term of 1/F is 1, 1/G− 1/F =
−cxn + O(xn+1). Likewise, we have 1/G2 − 1/F 2 = −2cxn +
O(xn+1) so that x/G2 − x/F 2 = O(xn+1). We also have G− F =
cxn+O(xn+1). Combining, we find that 1

2
(G+1/G−x/G2)− 1

2
(F+

1/F − x/F 2) = 1
2

((G− F ) + (1/G− 1/F )− x(x/G2 − x/F 2)) =
O(xn+1), so that 1

2
(F +1/F −x/F 2) and 1

2
(G+1/G−x/G2) agree

at the coefficient of xn. Hence the mapping is a contraction in the
q-adic metric. Since the operation F 7→ 1

2
(F + 1/F −x/F 2) sends

the set of power series with constant term 1 into itself, this set of
power series contains a unique fixed point of the mapping.

Iteration of the mapping

series((1/2)*(%+1/(x^2*%)-1/(x^2*%^2)),x,14);

(starting from the initial value 1/x) gives us

g(x) = 1/x− (1/2)− (3/8)x− (1/2)x2 − (105/128)x3 − (3/2)x4

−(3003/1024)x5 − (6)x6 − (415701/32768)x7 − ....

The coefficient of xn is apparently always either an integer or a
half-integer when n is even. If we multiply these half-integers by 2,
we get the numbers 1, 1, 3, 12, 55, 273, . . . encountered in part (a).

Hence for n = 2k even, the coefficient of xn in g is −
(

3k
k

)
/(4k+2).

Let’s now focus on the coefficients we don’t have a formula for yet,
which (ignoring sign) are 3/8, 105/128, 3003/1024, 415701/32768,
15935205/262144, and 1302340845/4194304. Noticing that all the
denominators are powers of 2, we can put the fractions over a
denominator that grows systematically, obtaining 3/8, 105/128,
6006/2048, ..., with numerators 3, 105, 6006, 415701, 31870410,
2604681690. If we take the ratios of these integers, we get the
fractions 35/1, 286/5, 969/14, 230/3, 899/11, which with some
effort (and some help from a few two-digit primes) we can rec-
ognize as (5 × 6 × 7)/(1 × 2 × 3), (11 × 12 × 13)/(2 × 3 × 5),
(17 × 18 × 19)/(3 × 4 × 7), (23 × 24 × 25)/(4 × 5 × 9), and
(29 × 30 × 31)/(5 × 6 × 11). So the ratio of the coefficients of
x2k+1 and x2k−1 in g is

(6k − 1)(6k)(6k + 1)

16(k)(k + 1)(2k + 1)
,
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which (anticipating the desire to telescope our product) we may
write as

((6k − 1)(6k)(6k + 1)(6k + 2)(6k + 3)(6k + 4))(k)2

16(k + 1)((2k)(2k + 1))2((3k)(3k + 1)(3k + 2))
.

Then the coefficient of x2k+1 equals the coefficient of x1 (namely,
−3/8) times

((6k + 4)!/4!)(k!)2

16k(k + 1)!(2k + 1)!2(3k + 2)!/2!
,

so the final answer comes out to be

− (6k + 4)!k!

24k+5(2k + 1)!2(3k + 2)!
/(k + 1).

Final remarks:

1) How did I recognize 35/1, 286/5, 969/14, 230/3, and 899/11 as
(5×6×7)/(1×2×3), (11×12×13)/(2×3×5), (17×18×19)/(3×
4× 7), (23× 24× 25)/(4× 5× 9), and (29× 30× 31)/(5× 6× 11)?
I made the assumption that these ratios could be expressed in the
form p(n)/q(n) where p, q are polynomials of small degree that
factor nicely. Under this assumption, the sequence of observed
denominators 1,5,14,3,11 should be “close to” at least one arith-
metic progression, where we say two numbers are close if one of
them divides the other or their ratio is a ratio of small whole num-
bers. In this case, a “nearby” arithmetic progression is 3,5,7,9,11,
and I was on my way to an exact formula. Likewise, the sequence
of numerators 5×7, 2×11×13, 3×17×19, 2×5×23, 29×31 sug-
gested that I look for an arithmetic progression whose first term
is 1, 5, or 7, whose second term is 2, 11, 13, 22, or 26, whose third
term is 3, 17, 19, 51, or 57, whose fourth term is 2, 5, 10, 23,
46, or 115, and whose last term is 29 or 31 — or a sequence that
doesn’t meet this conditions but is nonetheless a “near miss”. I
scored a direct hit with 5, 11, 17, 23, 29 and a near miss with 7,
13, 19, 25, 31. Removing the factors 3,5,7,9,11 from the denom-
inators and the factors 5,11,17,23,29 and 7,13,19,25,31 from the
numerators, the ratios to be matched by an exact formula become
(35/1)× (3/35) = 3, (286/5)× (5/143) = 2, (969/14)× (7/323) =
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3/2, (230/3) × (9/575) = 6/5, and (899/11) × (11/899) = 1. To
handle the decreasing sequence 3, 2, 3/2, 6/5, 1, I took a hint from
the denominator 5 and assumed that the denominators coming
from the formula would be 2, 3, 4, 5, and 6. Multiplying through
by these numbers gave 3 × 2 = 6, 2 × 3 = 6, (3/2) × 4 = 6,
(6/5)× 5 = 6, 1× 6 = 6 — a pattern which is hard to ignore, and
which gives the final piece of the puzzle.

2) If I hadn’t been so confident that the numerators and denomi-
nators in the formula for the ratio would factor into linear factors,
I might have used the method of undetermined coefficients. I
would have first tried to write the ratios r1 = 35/1, r2 = 286/5,
r3 = 969/14, r4 = 230/3, r5 = 899/11 in the form p(n)/q(n)
where p, q are polynomials of degree 1. Then, if that failed (and
it would!), I would try polynomials of degree 2. That is, I’d con-
jecture that rn = (an2 + bn + c)/(dn2 + en + f). Since there
are six unknowns here, we first need to use Maple to compute
r6 = 1110/13. It would be a big chore to solve for a, ..., f by
hand, but with Maple it isn’t so hard. Let’s suppose we’ve al-
ready got the ratios r1 = 35/1 through r6 = 1110/13 stored as
r[1] through r[6]. We would then enter

eqnlist:={seq(r[n]=(a*n^2+b*n+c)/(d*n^2+e*n+f),n=1..6)};

solve(eqnlist,{a,b,c,d,e,f});

to obtain the one-parameter family of solutions a = 108d, b = 0,
c = −3d, d = d, e = 3d/2, f = d/2. Putting d = 2 we get a = 216,
b = 0, c = −6, d = 2, e = 3, f = 1, or

rn =
216n2 − 6

2n2 + 3n+ 1
=

6(6k − 1)(6k + 1)

(k + 1)(2k + 1)
.

3) Can anyone think of a combinatorial relationship between the
generating functions considered in parts (a) and (b)?
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