1. Use the recurrence for $p(n)$ to compute the last digit of $p(n)$ for every n between 1 and 1000. Can you make any conjectures about the relationship between the last digit of n and the last digit of $p(n)$?

Here’s a Maple program that does this:

```maple
F := proc(n) option remember; local total, k;
if n=0 then 1; elif n<0 then 0; else total := 0;
  k := 1; while k*(3*k+1)/2 <= n do
    total := total - (-1)^k*F(n-k*(3*k+1)/2): k := k+1: od:
  k := -1; while k*(3*k+1)/2 <= n do
    total := total - (-1)^k*F(n-k*(3*k+1)/2): k := k-1: od:
  total mod 10; fi: end;
```

We then create a matrix to keep track of how often it happens that n ends with the digit i while $p(n)$ ends with the digit j (for i, j between 0 and 9), and print out its entries:

```maple
for i from 0 to 9 do for j from 0 to 9 do a[i,j]:=0: od: od:
for n from 1 to 1000 do k := F(n);
  a[n mod 10, k mod 10] := a[n mod 10, k mod 10] + 1; od:
for i from 0 to 9 do seq(a[i,j],j=0..9) od;
```

This results in the output

```
14, 7, 13, 12, 3, 5, 12, 15, 9, 10
9, 11, 14, 9, 8, 9, 10, 13, 7, 10
3, 14, 12, 14, 10, 8, 8, 12, 6, 13
8, 9, 12, 9, 8, 17, 5, 13, 9, 10
49, 0, 0, 0, 0, 51, 0, 0, 0, 0
5, 12, 10, 4, 15, 7, 13, 13, 8, 13
8, 14, 11, 15, 7, 9, 8, 6, 5, 17
9, 10, 6, 9, 16, 10, 9, 9, 12, 10
10, 9, 16, 8, 11, 11, 11, 13, 5, 6
48, 0, 0, 0, 0, 52, 0, 0, 0, 0
```

1
from which we conjecture that when \(n \) ends in 4 or 9, \(p(n) \) ends in 0 or 5. That is, if \(n \) is 1 less than a multiple of 5, \(p(n) \) is a multiple of 5. (This fact was first noticed and proved by Ramanujan.)

2. Let \(F(0) = 1 \) and recursively define \(F(n) = F(n - 1) + F(n - 3) - F(n - 6) - F(n - 10) + F(n - 15) + F(n - 21) \ldots \) for all \(n > 0 \), where terms of the form \(F(n - k) \) are to be ignored once \(k > n \). There exists a set \(S \) of positive integers such that \(F(n) \) equals the number of partitions of \(n \) into parts belonging to \(S \). Find \(S \) (conjecturally).

This property of \(S \) is equivalent to
\[
1 - q + q^3 - q^6 + q^{10} - + + + \ldots = \prod_{k \in S}(1 - q^k).
\]
We note first that we must have \(1 \in S \), since if not, every factor in the product would have vanishing coefficient of \(q^1 \). Next we have
\[
\prod_{k \in S \setminus \{1\}}(1 - q^k) = (1 - q - q^3 + \ldots)/(1 - q) = 1 + 0q + 0q^2 - q^3\ldots
\]
We now note that we must have \(2 \not\in S \), since otherwise we would have
\[
\prod_{k \in S \setminus \{1\}}(1 - q^k) \text{ of the form } 1 - q^2\ldots\]
On the other hand, we must have \(3 \in S \). We now continue with
\[
\prod_{k \in S \setminus \{1, 3\}}(1 - q^k) = (1 - q - q^3 + q^6\ldots)/(1 - q)(1 - q^3) = 1 + 0q + 0q^2 + 0q^3 - q^4 - q^5 - q^7\ldots
\]
To conclude that \(4 \) and \(5 \) (but not \(6 \)) belong to \(S \). And so on. Empirically, we find that \(S \) is just the set of numbers that are not congruent to \(2 \mod 4 \).