
Math 192r, Problem Set #20: Solutions

1. Let f(·) be some polynomial (in one variable), and define a sequence
of rational functions rn = rn(x, y) with the initial conditions r0 = x,
r1 = y and the recurrence rn+2 = f(rn+1)/rn (n ≥ 0). Here x and y are
formal indeterminates, so you don’t need to worry about ill-definedness
arising from a vanishing denominator.

(a) Find an f such that the sequence of polynomials rn is periodic with
period 5.

The polynomial f(t) = 1 + t will do:

r2 = (1 + r1)/r0 = (1 + y)/x,

r3 = (1 + r2)/r1 = (1 + x+ y)/xy,

r4 = (1 + r3)/r2 = (1 + x)/y,

r5 = (1 + r4)/r3 = x,

r5 = (1 + r5)/r4 = y,

etc.

(b) For which f does it seem to be the case that each of the rational
functions r2, r3, . . . is a Laurent polynomial in x and y? Try to find
necessary and sufficient conditions on f . (Proofs are not required
for this part of the problem.)

I retracted this problem. One general pattern that appears is that
if f(t) is off the form tm + atm−1, then Laurentness seems to hold.
However, I do not know necessary and sufficient conditions on
f() that predict exactly when the sequence r1, r2, . . . is an infinite
sequence of Laurent polynomials.

(c) Find an f (of degree at least 3, and with at least two terms) for
which the Laurentness property holds, such that the one-dimensional
recurrence associated with f is a special case of a two-dimensional
recurrence (analogous to frieze patterns or number walls) that also
has the Laurentness property. (Proofs are not required for this part
of the problem.)
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The one-dimensional recurrence associated with f(t) = t3 + 1 is a
special case of the two-dimensional recurrence

F (n, k) = (F (n−1, k−1)F (n−1, k)F (n−1, k+1)+1)/F (n−2, k),

which appears to satisfy the Laurentness property: if we put
F (0, k) = xk and F (1, k) = yk for all integers k, then this recur-
rence gives us F (2, k) = (yk−1ykyk+1+1)/xk, F (3, k) = (yk−2y
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(d) Find a two-variable polynomial f(·, ·) that genuinely involves both
of its variables such that the sequence of rational functions rn with
the initial conditions r0 = x, r1 = y, r2 = z and the recurrence
rn+3 = f(rn+1, rn+2)/rn is not periodic, and such that each rn is
a Laurent polynomial in x, y and z. (Proofs are not required for
this problem.)

If we put f(s, t) = st + 1, then we get the recurrence rn+3 =
(rn+1rn+2 + 1)/rn. Writing this as rnrn+3 − rn+1rn+2 = 1, we can
see that (with a change of indexing) this is a special case of the
recurrence we studied in the second problem of assignment 19.

2. Given formal indeterminates xi,j and yi,j, define f(i, j, k) to be xi,j if
k = 0 and yi,j if k = 1, and for k > 1 recursively define

f(i, j, k) = f(i−1,j−1,k−1)f(i+1,j+1,k−1)+f(i−1,j+1,k−1)f(i+1,j−1,k−1)
f(i,j,k−2)

.

(Note that this is Dodgson condensation with the minus-sign replaced
by a plus-sign.)

(a) Submit code that demonstrates that f(i, j, k) is a Laurent polyno-
mial in the x- and y-variables for k = 2, 3, 4, and that all coef-
ficients in this Laurent polynomial equal +1. (To say that code
“demonstrates” the truth of a proposition, I don’t mean that it
generates output which a human could look over in order to con-
vince herself/himself that the proposition is true. I mean that the
code evaluates a boolean expression that encodes the proposition in
question, and the proposition evaluates to true.)

We define f(i, j, k) by
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f := proc(i,j,k) option remember;

if k=0 then x(i,j); elif k=1 then y(i,j);

else simplify((f(i-1,j-1,k-1)*f(i+1,j+1,k-1)

+f(i-1,j+1,k-1)*f(i+1,j-1,k-1))/f(i,j,k-2));

fi; end;

Maple’s way of simplifying a rational function is to write it as a
ratio of two polynomials; this ratio can be written as a Laurent
polynomial if and only if the denominator has one term in it.
To determine this, we can use the whattype operator. If the
denominator is a sum of two or more terms, its type will be +;
otherwise its type will be * (if the denominator is a product of two
or more factors) or ^ (if the denominator is a single factor raised
to a power) or function (if the denominator is a single factor of
the form f(i, j, k) for some i, j, k). So a test of Laurentness would
be

IsLaurent := proc(e) if type(denom(e),‘+‘) then false;

else true fi; end;

and the commands

IsLaurent(f(i,j,2));

IsLaurent(f(i,j,3));

IsLaurent(f(i,j,4));

certify that f(i, j, k) is a Laurent polynomial when 2 ≤ k ≤ 4, by
returning the value true.

As for the claim that all coefficients equal 1, we have to be a
bit careful. In a simplified Maple polynomial (created with the
Maple command simplify), each term could be a constant, a
single variable, a single variable raised to some power, or a product
of such things. If the product has two or more factors, and one of
them is a number, it will appear as the first factor. So, the only
way a monomial that occurs in f(i, j, k) could have a coefficient
different from 1 is if it is a fraction or an integer not equal to 1,
or if it is a product in which the first factor is a fraction or an
integer not equal to 1. We write:

IsMonic := proc(e)

if type(e,‘*‘) then IsMonic(op(1,e));
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elif type(e,fraction) then false;

elif type(e,integer) and e<>1 then false;

else true; fi; end;

(This code would need more cases to be useful in a broader setting,
but for the purpose at hand it’s adequate.) To handle all the
coefficients of a polynomial, we write:

IsAllMonic := proc(e) local k,bit;

bit := true;

for k from 1 to nops(e) do

if not IsMonic(op(k,e)) then bit := false; break;

fi; od; bit; end;

(Note the use of the break command, to cause the execution of
the loop to terminate once a non-monic term has been found.)
The commands

IsAllMonic(numer(f(i,j,2)));

IsAllMonic(numer(f(i,j,3)));

IsAllMonic(numer(f(i,j,4)));

certify that all the coefficients of the Laurent polynomial f(i, j, 2),
f(i, j, 3), f(i, j, 4) equal 1, by returning the value true.

(b) Give a conjectural pairing between the terms of the Laurent poly-
nomial f(i, j, k) and domino tilings of the Aztec diamond of order
k − 1, and verify it for k ≤ 3.

Each domino tiling determines a Laurent monomial in the follow-
ing way: Rotate the Aztec diamond by 45 degrees, so that its
corners, instead of being north, west, south, and east, are north-
east, northwest, southwest, and southeast. Associate the vertices
inside the Aztec diamond with the variables xi,j, yi,j in the fash-
ion illustrated below for the case n = 3. Then for any tiling T ,
the exponent assigned to a variable v (in the Laurent monomial
that represents T ) is 1 minus the number of dominos in the tiling
T that lie inside a 2-by-2 square centered at v. (Compare this
with the rule we saw when studying domino tilings of a 2-by-2n
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rectangle in assignment 17.)

y−2,2 y0,2 y2,2

x−1,1 x1,1

y−2,0 y0,0 y2,0

x−1,−1 x1,−1

y−2,−2 y0,−2 y2,−2

(c) For n ≤ 6, count how many terms there are in the Laurent poly-
nomial obtained from f(i, j, k) by replacing all the x-variables by
1. Repeat, this time instead replacing all the y-variables by 1.

If after defining f we define x:=1, the command

seq(nops(numer(f(i,j,k))),k=2..6);

yields the numbers 2, 7, 42, 429, 7436. (Actually, that’s only true in
Maple 6; in Maple 5, the case k = 6 causes an object-too-large error.)

When doing this sort of thing (changing the meanings of symbols used
in a program), we can run afoul of the fact that the remember option
may cause the program to remember a value from a previous run that
is no longer applicable. In cases like this, it’s a good idea to redefine
f whenever one of the symbols it depends on (x or y in this case)
gets redefined; even though the new definition will agree with the old
on a literal level, the fact that the definition is being re-assigned will
cause Maple to relinquish what it thinks it “knows” about values of the
function f.

To get Maple to help us with the second part of the problem, we
can type unassign(’x’); y:=1 and then re-enter the definition of f.
When we enter the command seq(nops(numer(f(i,j,k))),k=2..6);

we get the numbers 1, 1, 2, 7, 42, 429.

It’s not a coincidence that we see the same numbers for both questions.
Indeed, the nth term of the sequence 1, 2, 7, 42, 429, . . . is the number
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of alternating-sign matrices (ASMs) of order n, and in a very concrete
way, every domino tiling of an Aztec diamond of order n results from
superimposing an ASM of order n with a (compatible) ASM of order
n+ 1.
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