
Math 192r, Problem Set #9 (solutions)

1. For various small values of n (1 through 5, at least), determine the
average number of times that a 2n-step Dyck path returns to the line
y = 0 (counting (2n, 0) as a return but not (0, 0)), and conjecture
a general formula. Compute at least one more value to confirm (or
disprove) your conjecture. (I strongly encourage you to do this problem
symbolically, if possible, using a system like Maple or Mathematica to
generate and study a list whose elements are representations of the
Dyck paths. Take advantage of the recursive construction of Dyck paths
discussed in class, in combination with the list-manipulation operations
that are available to you in these computer algebra systems.)

Next, I’ll show how you can explore the problem algebraically, without
actually representing the Dyck paths combinatorially. Let us create
a two-variable generating function in which a 2n-step Dyck path that
returns to the horizontal axis exactly k times is given weight xnyk.
Its generating function is 1 + yP (x) + y2[P (x)]2 + y3[P (x)]3 + . . . =
1/(1−yP (x)), where P (x) is the generating function for primitive Dyck
paths: P (x) = xS(x) = (1 −

√
1− 4x)/2. So the generating function

we want is

R(x, y) =
1

1− y 1−
√

1−4x
2

.

If we differentiate this with respect to y, and then put y = 1, we’ll ob-
tain a generating function in which the coefficient of xn is the sum, over
all Dyck paths of length n, of the number of returns to the horizontal
axis. We have

R′2(x, 1) = 2
1−
√

1− 4x

(1 +
√

1− 4x)2
.

Using Maple, we write

Q := 1/(1-y*(1-sqrt(1-4*x))/2);

R := subs(y=1,Q);

S := subs(y=1,diff(Q,y));

Rt := taylor(R,x,10);

St := taylor(S,x,10);

seq(coeff(St,x,n)/coeff(Rt,x,n),n=0..9);

1



and obtain the sequence of fractions 0, 1, 3/2, 9/5, 2, 15/7, 9/4, 7/3,
12/5, 27/11. Multiplying by 2,3,4,... respectively, we get 0, 3, 6, 9,
12, 15, 18, 21, 24, 27, which we recognize. So we conjecture that the
coefficient of xn in St, divided by the coefficient of xn in Rt, equals
3n/(n + 2). That is, the average number of returns to the horizontal
axis is exactly 3n/(n+ 2).

Before I show you how to use Maple to prove this, let’s mimic everything
we’ve done combinatorially. We’ll represent each Dyck path by a list
of 1’s and −1’s, and we’ll represent the set of all such paths by a list
of such lists. Thus we’ll have the data-structures

[[]]

[[1,-1]]

[[1,-1,1,-1],[1,1,-1,-1]]

representing the set of all 0-step, 2-step, and 4-step Dyck paths, re-
spectively. A Dyck path of size n (that is, with 2n steps) is given by a
primitive Dyck path of size k followed by an unconstrained Dyck path
of size n− k, with k ranging from 1 to n inclusive. Moreover, all such
Dyck paths that arise in this way are distinct (we haven’t over-counted
any of them). A primitive Dyck path of size n (with n > 1) is just a
+1 followed by an unconstained Dyck path of size n− 1 followed by a
−1. So we may define

All := proc(n) local k, answer;

if n=0 then answer:=[[]];

else

answer := [];

for k from 1 to n do

answer := [op(answer),op(Combine(Prim(k),All(n-k)))];

od; fi; RETURN(answer); end;

Prim := proc(n)

Combine(Combine([[+1]],All(n-1)),[[-1]]); end;

Combine := proc(a,b) local i,j;

[seq(seq([op(a[i]),op(b[j])],j=1..nops(b)),i=1..nops(a))]

end;

2



Now we could write a routine that counts the number of returns to the
horizontal axis:

Returns := proc(path) local i, partialsum, count;

count := 0;

partialsum := 0;

for i from 1 to nops(path) do

partialsum := partialsum + path[i];

if partialsum = 0 then count := count + 1; fi;

od; RETURN(count); end;

(And one nice feature of Maple is that we can test all these components
out on real data, without having to create test-harnesses.) Lastly, we
write a routine that, given a list of Dyck paths, computes the average
number of returns to the horizontal axis:

Average := proc(a) local i;

add(Returns(a[i]),i=1..nops(a))/nops(a); end;

(Note the use of add instead of sum; the latter should be used only in
situations where you want Maple to use its smarts to simplify a sum
that can be expressed in closed form.) Typing

seq(Average(All(i)),i=0..9);

gives the same sequence of fractions as before (though it takes the
computer a bit longer).

Now let’s see how Maple can help us prove the theorem. We have two
generating functions, A(x) and B(x), where

A(x) =
1−
√

1− 4x

2x

and

B(x) = 2
1−
√

1− 4x

(1 +
√

1− 4x)2
.

3



We want to show that their respective coefficients satisfy b(n) = 3n
n+2

a(n).
That is, we want to prove

(n+ 2)b(n) = (3n)a(n).

Let’s prove this by turning both sides into generating functions. If we
differentiate B(x) =

∑
n≥0 b(n)xn we get

∑
n≥0 nb(n)xn−1, so

∑
n≥0(n+

2)b(n)xn = xB′(x) + 2B(x). Likewise
∑
n≥0(3n)a(n)xn = 3xA′(x). So

we’ll be done if we can demonstrate that (x + 2)B(x) = 3xA(x). How
can Maple help us prove this? One thing we definitely shouldn’t do is
define A(x) and B(x) as functions of x! Maple knows how to simply
algebraic expressions, not programs or functions. Even if we define
things as expressions, we can still go astray. For instance, it might
seem sensible to proceed like this:

A := (1-sqrt(1-4*x))/(2*x);

B := 2*(1-sqrt(1-4*x))/(1+sqrt(1-4*x))^2;

evalb(x*diff(B,x)+2*B=3*x*diff(A,x));

Maple returns the answer false, because it doesn’t see a reason why
the two should be equal. We haven’t asked Maple to work hard at
simplifying either side, so why should it? (I still haven’t figured out
which simplifications Maple does without one’s asking; my version of
Maple says x+y=y+x is true but (x-y)*(x+y)=x*x-y*y is “false”.)

A better question to ask Maple (after defining A and B) is

evalb(simplify(x*diff(B,x)+2*B)=simplify(3*x*diff(A,x)))

But Maple still says this is false (because Maple has no standard form
for algebraic functions of x, and so it simplifies the two sides of the
equation in two different ways).

The best way to get Maple to go all-out and try to prove that two things
are equal is to ask it to simplify the difference (to see if it gets 0) or
to simplify the quotient (to see if it gets 1). But even that sometimes
fails! Maple is a partner in doing algebra, not an infallible genii. In
this case, simplify((x*diff(B,x)+2*B)-(3*x*diff(A,x))) gives 0
but simplify((x*diff(B,x)+2*B)/(3*x*diff(A,x))) doesn’t give 1.
(But

4



expand(1/(simplify((x*diff(B,x)+2*B)/(3*x*diff(A,x)))));

does give 1!)

2. Let Tn be the number of domino tilings of a 3-by-2n cylinder, obtained
by gluing together the left and right sides (of length 3) of a 3-by-2n
rectangle.

(a) Find a generating function for the sequence T1,T2,T3,... .

It is easy to see that if a vertical line cuts through an even number
of horizontal dominos, the adjacent vertical lines cut through an
odd number of horizontal dominos, and vice versa. So there are
two classes of tilings of the cylinder: those in which the 1st, 3nd,
5th, ... cuts pass through an odd number of horizontal dominos
and the 2nd, 4th, 6th, ... cuts pass through an even number of
horizontal dominos, and those in which the reverse occurs. More-
over, these two classes of tilings have the same cardinality (if we
shift a tiling of the first type one step around the cylinder, we get
a tiling of the second type, and vice versa). So we will be able to
simplify our work if we calculate the number of tilings of one type
and then double at the end to obtain the total number of tilings.

Use the T,B, L,R coding for domino tilings. Let’s assume that
we’re dealing with the class of tilings in which the leftmost column
of symbols has an even number of dominos sticking out to the left
and an odd number of dominos sticking out to the right. The
allowed column-symbols are LLL, TBL, LTB, RRL, LRR, and
RLR. (Don’t get confused here: a square marked L is a square
that is the Left half of a horizontal domino, and that domino is
going to stick out to the right .) Two columns to the right of this
column, these are also the allowed symbols. Here is the transition
matrix: 

1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 0 1 0
1 1 1 1 0 0
1 1 1 0 1 0
0 0 0 0 0 1



5



If we define Q(t) = det(I− tQ), we get Q(t) = (1− t)2(1−4t+ t2)
and

−2tQ′(t)

Q(t)
=

4t

1− t
+

8t− 4t2

1− 4t+ t2

(here we’ve included an extra factor of 2, as discussed in the pre-
ceding paragraph).

(b) Since the sequence satisfies a linear recurrence, there is a natural
way to run the recurrence backward, obtaining values for T0, T−1,
T−2, etc. Compute Tn for all n between −10 and +10.

First we’ll compute Tn for all n between 1 and 4.

taylor(2*t/(1-t)+(4*t-2*t^2)/(1-4*t+t^2),t,5);

gives us a Taylor expansion whose coefficients are the numbers
6, 16, 54, 196. The sequence T1, T2, T3, . . . is annihilated by the
operator I−6T + 10T 2−6T 3 +T 4 (that’s what you get when you
multiply the denominators 1 − t and 1 − 4t + t2 and replace the
variable t by the shift-operator T ; sorry about the proliferation
of T ’s in this problem!). We can embody the forward recursion
Tn = 6Tn−1 − 10Tn−2 + 6Tn−3 − Tn−4 and the backward recursion
Tn = 6Tn+1 − 10Tn+2 + 6Tn+3 − Tn+4 in Maple code:

T := proc(n)

if n=1 then 6;

elif n=2 then 16;

elif n=3 then 54;

elif n=4 then 196;

elif n>4 then 6*T(n-1)-10*T(n-2)+6*T(n-3)-T(n-4);

else 6*T(n+1)-10*T(n+2)+6*T(n+3)-T(n+4);

fi; end;

Then, typing seq(T(n),n=-10..10) we get the list 524176, 140454,
37636, 10086, 2704, 726, 196, 54, 16, 6, 4, 6, 16, 54, 196, 726, 2704,
10086, 37636, 140454, 524176.

(c) Formulate a conjecture based on your data.

It is natural to conjecture that T (−n) = T (n).

(d) Prove your conjecture.

6



Note that T (n) is the sum of the nth powers of the eigenval-
ues of the matrix M (with the exception of n = 0, which is a
special case because eigenvalues that equal 0 can mess things up
via the problematical quantity 00). Thus the reciprocity formula
T (−n) = T (n) is equivalent to the assertion that the non-zero
eigenvalues of the matrix, counted with multiplicity, come in re-
ciprocal pairs (where 1 and -1, being their own reciprocals, are
exempted from needing to be paired). And this is in fact true:
the non-zero eigenvalues of the matrix are 1 (counted twice) and
the two reciprocal roots of t2 − 4t+ 1.

7


