1. There is a unique polynomial of degree \(d \) such that \(f(k) = 2^k \) for \(k = 0, 1, \ldots, d \). What is \(f(d + 1) \)? What is \(f(-1) \)?

2. One basis for the space of polynomials of degree less than \(d \) is the monomial basis \(1, t, t^2, \ldots, t^{d-1} \). Another is the shifted monomial basis \(1, (t+1), (t+1)^2, \ldots, (t+1)^{d-1} \). Call these bases \(u_1, \ldots, u_d \) and \(v_1, \ldots, v_d \) respectively.

 (a) Derive a formula for the entries of the change-of-basis matrix \(M \) expressing the \(u_i \)'s as linear combinations of the \(v_j \)'s.

 (b) Derive a formula for the entries of the change-of-basis matrix \(N \) expressing the \(v_j \)'s as linear combinations of the \(u_i \)'s.

 (c) From the description of \(M \) and \(N \) as basis-change matrices, we know that \(MN = NM = I \). Forgetting for the moment what \(M \) and \(N \) mean, rewrite the assertions \(MN = NM = I \) as binomial coefficient identities, and prove them either algebraically or bijectively.