Some words about words

Here is some information about some math words, including a few whose use in mathematics is different from their use in ordinary language. If later in the semester you trip across any examples of misleading or obscure math-language that the book doesn’t explain well, and you wish that this document had discussed them, let me know, and I’ll include them in future versions of this document.

1. Zero versus the empty set
Zero is a number; the empty set is a set with zero elements. (Both are handy in similar ways. Its handy to have zero as a number so that you can ask “How many elements does this set have?” before you know whether the set actually has any. Likewise, it’s handy to have the empty set as a set so that you can talk about the intersection of two sets before you know whether the two sets actually intersect. But zero and the empty set are not the same thing.) In this class, please write 0 as a circle without a slash, and the empty set as a circle with a slash, so that it’s clear which one you mean.

(Fun fact: In some work on what’s called “foundations of math”, zero gets defined as the empty set. Ditto for a number system called the surreal numbers. But we’re not doing foundations of math or studying surreal numbers.)

2. “Positive”, “negative”
A positive number is one that is greater than 0. A negative number is one that is less than 0. 0 is neither positive nor negative. In this class (and in most computer science contexts), 0 is considered a natural number (though some mathematicians consider 0 “unnatural” and insist that 1 is the first natural number).

(Fun fact: In France, at least in some contexts, zero is considered “positif”. But we’re not in France.)

3. “Even”, “Odd”
Sure, dividing an empty set of cookies into two equally large empty sets doesn’t really feel like dividing the empty set in two. But if we call zero an odd number, then it becomes the lone example of an odd number which when you add it to itself gives an odd number. So it’s more convenient to call 0 even. Plus, if you try to give a general mathematical definition of what “even” means that doesn’t deliberately discriminate against zero, you’ll
probably find that your definition applies to zero. So, 0 is even. Likewise for
−2, −4, etc. The other integers (1, −1, 3, −3, etc.) are odd.

4. “Iff”
“Iff” means if-and-only-if. Example: “You are married if you are a hus-
band” is true, but “You are married iff you are a husband” is false (roughly
half of all married people are wives!).

5. “Divides”
When \(a\) and \(b\) are integers with \(b\) nonzero, “\(a\) divides \(b\)" means \(b/a\) is an
integer. (For instance, 2 and 3 divide 6, but 4 doesn’t.) Sometimes people say
“\(a\) evenly divides \(b\)”, but don’t be misled (by the use of the word “evenly”) into thinking that this has something to do with \(a\) or \(b\) or \(b/a\) being even.

Note that “\(a\) divides \(b\)” says that \(b\) divided by \(a\) (not \(a\) divided by \(b\)!)
is an integer.

6. “Let”
In math, “Let \(A\) be a set with \(|A| = n\)” usually means “Let \(A\) be an
arbitrary set with \(|A| = n\).” If the next sentence asks you to prove something
about \(A\), you can’t just take \(A\) to be some particular set with \(n\) elements
and prove that the claim holds in that one case.

By way of comparison, later on I might ask a question like “Let \(n\) be an
odd number. Show that \(n + 1\) must be even.” You would NOT get credit
if you wrote “Okay, I’ll let \(n = 3\), which is odd. Then \(n + 1 = 4\), which is
even.” I would want to see an argument like this: “Suppose \(n\) is odd. Then
\(n\) is of the form \(2k + 1\). So then \(n + 1\) is of the form \(2k + 2\), which can be
written as \(2(k + 1)\), so it is even.” (Here I’m assuming that at that point in
the course you would know that a number is even iff it is a multiple of 2 that
a number is odd iff it is 1 more than a multiple of 2.)

7. “Distinct” versus “unique”
People new to writing math-prose often confuse these two words.
We say a mathematical entity is unique when there’s nothing else like it.
“There exists a unique real number \(x\) such that \(x^2 = 0\)” means there’s only
one such number.
We say that two mathematical entities are distinct when they are unequal
to each other. “There exist distinct real numbers \(x, y\) such that \(x^2 = y^2\)”
means you can find real numbers \(x \neq y\) satisfying \(x^2 = y^2\). More generally,
we say that \(n \) mathematical entities are distinct when no two of them are equal.

Usually we apply the word “unique” to a single thing, and “distinct” to two or more things. But there are exceptions. For instance, we say “There exist unique \(x, y \) such that . . .” to mean that there’s only one ordered pair \((x, y)\) satisfying a specified condition.

Here are a few (somewhat artificial) examples to highlight the difference between these two words:

“There exist distinct integers \(x, y \) such that \(x^2 + y^2 = 1 \)” is true (just take \(x = 0 \) and \(y = 1 \), for instance; there are other solutions but just one will do to prove existence);

“There exist unique integers \(x, y \) such that \(x^2 + y^2 = 1 \)” is false (there are four solutions \((x, y) = (0, 1), (0, -1), (1, 0), \) and \((-1, 0), \) though finding just two solutions suffices to prove non-uniqueness);

“There exist distinct integers \(x, y \) such that \(x^2 + y^2 = 0 \)” is false; and

“There exist unique integers \(x, y \) such that \(x^2 + y^2 = 0 \)” is true.

Moral: “distinct” and “unique” mean very different things.

A symbol we sometimes use to assert “There exists a unique \(x \)” is \(\exists! x \); e.g., we write \((\exists! x)(\exists! y) \ x^2 + y^2 = 0. \)

8. “Prime”, “Composite”

A prime number is an integer greater than 1 that has exactly two positive divisors, namely 1 and itself; the primes as 2, 3, 5, 7, etc.

The integers greater than 1 that have more than two positive divisors (i.e., the ones that can be written in the from \(a \times b \) where \(a \) and \(b \) are integers bigger than 1) are called composite.

The integer 1 is considered to be neither prime nor composite.

(Fun fact: In ancient Greece, 1 was considered not to be a number at all. Now of course we think of 1 as a number. Once 1 was accepted as a number, it was natural to think it was prime since it can’t be factored, and some older definitions of the word “prime” do indeed apply to 1; but as number theory developed, treating 1 as a prime led to problems, and it was agreed that 1 should be considered to be neither prime nor composite. It took a while for the new definition of “prime” to be adopted universally, and as recently as the early 20th century there were tables of prime numbers that began with 1. But it is no longer the early 20th century.)