Congruence mod \(n \)

Given a positive integer \(n \), and two integers \(a \) and \(b \), we say “\(a \) is congruent to \(b \) modulo \(n \)” and write “\(a \equiv b \pmod{n} \)” iff \(a - b \) is a multiple of \(n \) (or equivalently iff \(n \) divides \(a - b \)). Example: \((11) - (-19) \) is a multiple of 10, so \(11 \equiv -19 \pmod{10} \).

Congruence mod \(n \) (with \(n \) fixed) is an example of an equivalence relation:

- \(a \equiv a \pmod{n} \) for all \(a \) (reflexive property);
- If \(a \equiv b \pmod{n} \), then \(b \equiv a \pmod{n} \) (symmetric property); and
- If \(a \equiv b \pmod{n} \) and \(b \equiv c \pmod{n} \), then \(a \equiv c \pmod{n} \) (transitive property).

Consequently, the relation congruence-mod-\(n \) gives a partition of the set of integers into blocks.

When \(n = 2 \), the two blocks are the set of even integers \(\{\ldots, -4, -2, 0, 2, 4, \ldots \} \) and the set of odd integers \(\{\ldots, -3, -1, 1, 3, \ldots \} \). Two integers are congruent mod 2 iff they’re either both even or both odd.

When \(n = 10 \), there are ten blocks. One of them is \(\{\ldots, -20, -10, 0, 10, 20, \ldots \} \) (the set of multiples of ten); another is \(\{\ldots, -19, -9, 1, 11, 21, \ldots \} \) (the set of numbers that are 1 more than a multiple of ten); etc. Each of the ten blocks can be described as an arithmetic progression with difference 10.

If \(n \) is a positive integer, there are \(n \) blocks (also called equivalence classes) under the relation congruence-mod-\(n \), and each of them is an arithmetic progression with difference \(n \). Two integers are equivalent mod \(n \) if they belong to the same block, that is, if they belong to the same arithmetic progression mod \(n \), which happens precisely when the two numbers differ by a multiple of \(n \).