
The Euclidean algorithm

The Euclidean algorithm is one of the oldest numerical algorithms around
(not counting more basic algorithms for addition, subtraction, multiplication,
and division, and special-purpose algorithms for calenders and navigation).
It answers the question “What is the greatest common divisor of a and b?”
with astonishing efficiency, even when the numbers a and b are enormous.

Before I say more about the common divisors of two numbers, let’s talk
about the divisors of a single number. We’ll say that d is a divisor of n if there
exists an integer q such that dq equals n. In such a situation, we’ll also say
that n is a multiple of d. The set of multiples of d is simple to understand:
it’s just the infinite set {0,±d,±2d,±3d, . . .} (though for the rest of this
document I’ll restrict attention to nonnegative integers). In contrast, the
set of divisors of n, although finite, is often hard to describe explicitly, since
it depends on how n factors into primes, and there’s no known algorithm
for factoring 1000-digit numbers into primes. Yet amazingly, the Euclidean
algorithm gives an efficient way to compute the greatest common divisor of
two or more numbers, even when those numbers have many thousands of
digits.

To read this document, you’ll need to know that if you add or subtract
two multiples of d, the result is again a multiple of d. (Proof: If a = dp and
b = dq then a+ b = d(p+q) and a− b = d(p−q), both of which are multiples
of d.) You’ll also need to know that if you multiply a multiple of d by some
integer, the result is a multiple of d. (Proof: If a = dq and m is some integer,
then am = (dq)m = d(qm), which is a multiple of d.)

Let D(n) be the set of (positive) divisors of the natural number n, and
let CD(m,n) be the set of common divisors of m and n; that is, CD(m,n) =
D(m)∩D(n). Then gcd(m,n) can be (and often is) defined as the maximum
element of CD(m,n). But it doesn’t merely have the property that every
element of CD(m,n) is less than or equal to gcd(m,n); it has the stronger
property that every element of CD(m,n) is a divisor of gcd(m,n). So Doerr
and Levasseur take the latter, stronger property to be the defining property
of gcd(m,n). (It’s obvious ahead of time that the finite set CD(m,n) has a
greatest element, but it’s not so obvious that CD(m,n) has an element that’s
a multiple of all the other elements! If you think it’s “intuitively obvious” that
D(m) ∩ D(n) must contain an element that’s a multiple of other elements,
explain why D(m) ∩D(n) has this property while D(m) ∪D(n) doesn’t.)

Example: D(12) = {1, 2, 3, 4, 6, 12} and D(20) = {1, 2, 4, 5, 10, 20}, so



CD(12, 20) = D(12) ∩D(20) = {1, 2, 4} and gcd(12, 20) = 4.
One way to compute gcd(m,n) is to use the factorizations of m and

n into primes: If m = 2e13e25e3 · · · and n = 2f13f25f3 · · · (where most
of the exponents are zeroes!), then gcd(m,n) = 2g13g25g3 · · · where gi =
min(ei, fi) = whichever of ei, fi is smaller. For instance, 12 = 22315070 · · ·
and 20 = 22305170 · · · so gcd(12, 20) = 2min(2,2)3min(1,0)5min(0,1)7min(0,0) · · · =
22305070 · · · = 4.

But when m and n are really large and hard to factor, a better way is
the Euclidean algorithm. It is based on the following fact:

Claim: If a = bq + r, then CD(a, b) = CD(b, r).
Application: CD(20, 12) = CD(12, 8) = CD(8, 4) = CD(4, 0) (by re-

peated application of the Claim), and CD(4, 0) = D(4) = {1, 2, 4}, so
gcd(20, 12) = 4.

Proof of Claim:
(1) Suppose n is in CD(a, b), so that n|a and n|b. Since a = bq + r,

r = a − bq (that is, r can be expressed as a linear combination of a and b
with integer coefficients). Since n divides a and n divides b, n divides both
(1)a and (−q)b and therefore n divides their sum (1)a+(−q)b which equals r.
So n|b and n|r. So n is in CD(b, r). Hence CD(a, b) is a subset of CD(b, r).

(2) The proof that CD(b, r) is a subset of CD(a, b) is similar (and will
be assigned for homework).

If we define gcd(a, b) as the largest element of CD(a, b) (as I myself prefer
to do), then we can show that for all positive integers c, if c|a and c|b then
c| gcd(a, b). That is, (∀c ∈ P)(c|a ∧ c|b ⇒ c| gcd(a, b)). We can also show
that if k is any positive integer other than gcd(a, b), then it is not the case
that (∀c ∈ P)(c|a ∧ c|b ⇒ c|k); that is, if k 6= gcd(a, b), then there exists
an integer c that divides a and b but doesn’t divide k. Putting it differently,
gcd(a, b) is the unique integer k that satisfies (∀c ∈ P)(c|a ∧ c|b ⇒ c|k).
That’s why Doerr and Levasseur define gcd in this way. But note two defects
of their definition: it’s not obvious in advance that there are any such values
of k, and it’s not obvious in advance that there couldn’t be two or more such
values of k!

While we’re talking about the gcd (greatest common divisor) we should
also talk about the lcm (least common multiple). It’s easiest to think about
the relationship between the two in terms of prime factorizations: if m =
2e13e25e3 · · · and n = 2f13f25f3 · · ·, then, just as gcd(m,n) = 2g13g25g3 · · ·
where gi = min(ei, fi) = whichever of ei, fi is smaller, we have lcm(m,n) =



2h13h25h3 · · · where hi = max(ei, fi) = whichever of ei, fi is LARGER. As a
consequence of the easily proved fact min(x, y) + max(x, y) = x+ y, we have
gcd(m,n)lcm(m,n) = mn. (Example: gcd(4, 6) = 2, lcm(4, 6) = 12, and
2 × 12 = 4 × 6.) So, if you want to compute the least common multiple of
two large numbers m and n, don’t try to factor them into products of primes
(which could be hard); instead, use the Euclidean algorithm to compute
gcd(m,n), and then use the formula lcm(m,n) = mn/ gcd(m,n).

It’s helpful to note that the Claim “If a = bq + r, then CD(a, b) =
CD(b, r)” does not require that q be the quotient obtained when a is divided
by b. In particular, setting q = 1 and r = a−b, we have the sometimes useful
formula CD(a, b) = CD(b, a− b).


