The order sequence of a finite group The "order sequence of a finite group" (not a standard term, but one we'll use in this class) is the sequence whose terms are the respective orders of all the elements of the group, arranged in increasing order. In \mathbb{Z}_3 the element 0 has order 1, the element 1 has order 3, and the element 2 has order 3, so the order sequence of this group is 1,3,3. In \mathbb{Z}_4 the element 0 has order 1, the element 1 has order 4, the element 2 has order 2, and the element 3 has order 4, so the order sequence of this group is 1,2,4,4. (Note that I have arranged the numbers 1,4,2,4 in increasing order.) Theorem: If G_1 and G_2 are finite groups and f is an isomorphism between them, with $g \in G_1$ and $f(g) \in G_2$, the order of g in G_1 equals the order of f(g) in G_2 . ## Consequently: Theorem: If two groups are isomorphic, they have the same order sequence. The theorem is a handy tools for proving that two particular groups are not isomorphic. Consider the group $\mathbb{Z}_2 \times \mathbb{Z}_2$; the element (0,0) has order 1 while the other elements (0,1), (1,0), and (1,1) each have order 2, implying that the order sequence is 1,2,2,2. Since this is different from the sequence 1,2,4,4, the group $\mathbb{Z}_2 \times \mathbb{Z}_2$ is not isomorphic to the group \mathbb{Z}_4 . Order sequences are also useful in helping one find isomorphisms. Consider the group \mathbb{U}_5 (the set $\{1,2,3,4\}$ with mod-5 multiplication). Its order sequence is 1,2,4,4, which suggests that it might be isomorphic to \mathbb{Z}_4 . In fact, any isomorphism f from \mathbb{Z}_4 to \mathbb{U}_5 must map 0 (the only element of order 1 in \mathbb{Z}_4) to 1 (the only element of order 1 in \mathbb{U}_4) and must map 2 (the only element of order 2 in \mathbb{Z}_4) to 4 (the only element of order 2 in \mathbb{U}_4). There are only two bijections f from \mathbb{Z}_4 to \mathbb{U}_4 satisfying f(0) = 1 and f(2) = 4, so these are the only two candidate isomorphisms (and both candidates turn out to be true isomorphisms).