The ordinary generating function of h_0, h_1, h_2, ... is the power series in which h_n is the coefficient of x^n, for all n ( 0.

These are useful for counting multiset combinations.

The exponential generating function of h_0, h_1, h_2, ... is the power series in which h_n is the coefficient of x^n / n!, for all n ( 0.

(I.e., h_n / n! is the coefficient of x^n.)

These are useful for counting multiset permutations; see Theorem 7.7.1

Special case of Theorem 7.7.1: k=2.

Claim: If h_n = the number of n-permutations of the multiset {n_1 ( a_1 , n_2 ( a_2}, then the exponential generating function for h_0, h_1, h_2, ... can be written as f_{n_1} (x) f_{n_2} (x), where

f_{n_1} (x) = 

1 + x + x^2 / 2 + x^3 / 6 + … + x^{n_1} / {n_1}!

and

f_{n_2} (x) = 

1 + x + x^2 / 2 + x^3 / 6 + … + x^{n_2} / {n_2}!.

are respectively the exponential generating functions counting permutations of {n_1 ( a_1} and {n_2 ( a_2}.

Proof:
The coefficient of x^m_1 in f_{n_1} is 

1 / m_1!  if  0(m_1(n_1  and zero otherwise,

and the coefficient of x^m_2 in f_{n_2}

is 1 / m_2!  if  0(m_2(n_2  and zero otherise.

Hence the coefficient of x^n in f_{n_1} f_{n_2} is 

sum (1 / {m_1}!) (1 / {m_2}!)

where the sum is taken over all pairs m_1, m_2 with 0(m_1(n_1, 0(m_2(n_2, and m_1+m_2=n;

so the coefficient of x^n / n! is sum n! / {m_1}! {m_2}!.

But this is exactly the number of n-permutations of the multiset S = {n_1 ( a_1, n_2 ( a_2}, since 

n! / {m_1}! {m_2}! is the number of n-permutations of S that contain m_1 a_1’s and m_2 a_2’s.

IF TIME PERMITS:

Discuss examples on pages 257-259.

Discuss how to check answers (try small values of n)

IF TIME PERMITS:

Discuss substitution of variables in a power series (implicit in the discussion of e^(3x) etc.):

Substitution: 

If g(x) = h_0 + h_1 x + h_2 x^2 + h_3 x^3 + …, then 

g(cx) = h_0 + h_1 c x + h_2 c^2 x^2 + h_3 c^3 x^3 + … .  That is, if g(x) is the ordinary generating function for the sequence h_0, h_1, h_2, h_3, …, then g(cx) is the ordinary generating function for the sequence h_0, c h_1, c^2 h_2, c^3 h_3, … .

Also: If g(x) = h_0 + h_1 x + h_2 x^2 / 2! + h_3 x^3 / 3! + …, then g(cx) = h_0 + h_1 c x + h_2 c^2 x^2 / 2! + 

h_3 c^3 x^3 / 3! + … .  That is, if g(x) is the exponential generating function for the sequence h_0, h_1, h_2, h_3, …, then g(cx) is the exponential generating function for the sequence h_0, c h_1, c^2 h_2, c^3 h_3, … .

Questions on section 7.7?

Section 8.1:

Catalan numbers:

Three questions with the same answer:

Question A: How many sequences of n +1’s and n –1’s have no negative partial sums?  (I.e., how many sequences a_1,a_2,…a_{2n} are there in which a_k = (1 for all k and in which a_1+a_2+…+a_k is 0 for k=2n and (0 for all k with 1(k<2n?)

Question B: In how many different ways can the product a_1 ( a_2 ( a_3 ( … ( a_{n+1} be parenthesized?

Question C: How many triangulations does a convex (n+2)-gon have?  (Note: This is an (n+2)-gon, not an (n+1)-gon as in section 7.6.)

Let A_n = answer to question A, 

B_n = answer to question B, and 

C_n = answer to question C.

Answer: A_n = B_n = C_n = (2n choose n) / (n+1) = the nth Catalan number.

Try n=1, n=2, n=3.

I’ll review some high points in the chapter, and then I’ll show you:

I. A different, more geometrical way of understanding Brualdi’s proof of the formula 

A_n = (2n choose n) – (2n choose n+1)

using the paths-in-a-grid picture.

II. A direct “proof by example” that A_n = B_n.

[Note: The latter was omitted in lecture, because of lack of time.]

Brualdi’s approach:

Pages 268-270 (Theorem 8.1): Brualdi proves that A_n = (2n choose n) – (2n choose n+1) = C_n.

Page 270: Brualdi applies A to a problem about people standing in line.

Page 271: Brualdi applies A to a problem about paths in a square grid.

IF TIME PERMITS:

Pages 271-275: Brualdi proves that B_n = C_n by first solving a different problem (counting “multiplication schemes”) and thus showing that n! B_n = n! C_n = the nth “pseudo-Catalan number”.  (“Multiplication scheme” and “pseudo-Catalan number” are both nonce-terms … not used in this way by anyone other than Brualdi, or even by Brualdi outside of this textbook.)

Pages 276: A direct “proof-by-example” that B_n = C_n.  (Mention the historical role of proofs-by-example.)

I. Call a lattice path from (0,0) to (n,n) acceptable if it never dips below the line y=x, and unacceptable otherwise.

Consider an unacceptable path P.  Consider the first point (x,x-1) that lies below the line y=x.  Take the part of the path P that goes from (0,0) to (x,x-1) and flip it across the line y=x-1, so that the flipped part of the path goes from … (1,-1) to (x,x-1).  Combining this with the part of P from (x,x-1) to (n,n), we get a path P’ from (1,-1) to (n,n).  Conversely, given any lattice path P’ from (1,-1) to (n,n), P’ must cross the line y=x-1.  Consider the first point (x,x-1) where P’ crosses the line.  Take the part of P’ that goes from (1,-1) to (x,x-1) and flip it across the line y=x-1, so that the flipped part of P’ goes from … (0,0) to (x,x-1).  Combining this with the part of P’ from (x,x-1) to (n,n) gives a path P from … (0,0) to (n,n) that is unacceptable.

Hence: The number of unacceptable paths from (0,0) to (n,n) equals the total number of paths from (1,-1) to (n,n), which is … (2n choose n+1) (or (2n choose n-1)).  Hence the number of acceptable paths from (0,0) to (n,n) equals (2n choose n) – (2n choose n+1) = C_n.

Is this the same proof as Brualdi’s, expressed in geometric language? … Yes!

IF TIME PERMITS:

II. How does a parenthesization of the product a_1 ( a_2 ( a_3 ( … ( a_{n+1} correspond to an acceptable sequence of n +1’s and n –1’s?

Proof by example: Think how a computer with a stack memory would process (((ab)(c(de)))(fg)):

Items in stack:
Stack-size
Increments

a



1


(+1)

a,b



2


+1

ab



1


–1

ab,c



2


+1

ab,c,d


3


+1

ab,c,d,e


4


+1

ab,c,de


3


–1

ab,c(de)


2


–1

(ab)(c(de))

1


–1

(ab)(c(de)),f

2


+1

(ab)(c(de)),f,g
3


+1

(ab)(c(de)),fg

2


–1

((ab)(c(de)))(fg))
1


–1

This gives a bijection (or one-to-one correspondence) between the parenthesizations of the product and the acceptable sequences.

