Partitions of numbers (concluded):

Let p_k (n) be the number of ways to write n as a sum of k positive integers, where order doesn’t matter.

Lemma 1: p_k (n) = p_k (n-k) + p_{k-1} (n-1)

Lemma 2: p_k (n) is also equal to the number of partitions of n in which the largest part is of size k.

Claim: ∑_{n=0}^{(} p_k (n) x^n = 

x^k/(1-x)(1-x^2)…(1-x^k).

Proof 1: Call the infinite sum g_k (x).

Multiply Lemma 1 by x^n and sum over all n(0:

g_k (x) = ∑_{n(0} p_k (n) x^n 

= ∑_{n(0} p_k (n-k) x^n +  ∑_{n(0} p_{k-1} (n-1) x^n

= x^k g_k (x) + x g_{k-1} (x)

(1-x^k) g_k (x) = x g_{k-1} (x)

g_k (x) = (x/(1-x^k)) g_{k-1} (x)

The claim now follows by induction.

Proof 2: x^k / (1-x) (1-x^2) …  (1-x^{k-1}) (1-x^k) = (1+x+x^2+x^3+…) ( (1+x^2+x^4+…) ( … ( 

(1+x^{k-1}+x^{2(k-1)}+…} ( (x^k+x^{2k}+x^{3k}+…), so the general term in the expansion of this product is of the form x^{a_1} x^{2a_2} … x^{(k-1)a_{k-1}} x^{ka_k} with a_1,a_2,…,a_{k-1}(0 and a_k>0.  Hence the coefficient of x^n is equal to the number of solutions to the equation a_1 + 2a_2 + … + (k-1) a_{k-1} + k a_k = n, with a_1,a_2,…,a_{k-1}(0 and a_k>0.  But this is equal to the number of partitions of n with largest part k, and this is equal to p_k (n), by Lemma 2.

Questions?

Polya theory (see Ch. 14 of Brualdi, or handout)

(Re-!)-definition: A permutation is a one-to-one and onto function from a finite set S to itself.

Example: The six permutations of the set {1,2,3} are the functions

 x     | 1 | 2 | 3     x     | 1 | 2 | 3      x     | 1 | 2 | 3

-----------------   -----------------   -----------------

g(x)  | 1 | 2 | 3   g(x)  | 1 | 3 | 2    g(x)  | 2 | 1 | 3

x     | 1 | 2 | 3     x     | 1 | 2 | 3      x     | 1 | 2 | 3

-----------------   -----------------   -----------------

g(x) | 2 | 3 | 1   g(x)  | 3 | 1 | 2    g(x)  | 3 | 2 | 1

For short, we can write the permutation g as (1,2,3) ( (g(1),g(2),g(3)).

If we just list all the possibilities for the ordered triple (g(1),g(2),g(3)), we get all the ways of listing the elements 1,2,3 without repetition; that is, all the permutations (in our earlier sense of the word).

We can compose permutations by treating them as functions: E.g., if g is the permutation (1,2,3)((1,3,2) and g' is the permutation (1,2,3) ( (2,3,1), then g ( g' is the permutation (1,2,3) ( (3,2,1).

The inverse function of a permutation g is another permutation, written as g^{-1}: e.g., the inverse of (1,2,3) ( (2,3,1) is (1,2,3) ( (3,1,2).

g ( g^{-1} = g^{-1} ( g = the identity permutation e, where e(x) = x for all x.

Example: If we number the vertices of a square as 1, 2, 3, and 4 (in clockwise order), then rotating the square by 90 degrees clockwise permutes the vertices as (1,2,3,4) ( (2,3,4,1).

Let G be a set of permutations of some set S.  We say that G is a group if:

(a) the composition of two permutations in G is also in G, and

(b) the inverse of any permutation in G is also in G.

Example: {(1,2,3,4) ( (2,3,4,1), (1,2,3,4) ( (3,4,1,2), (1,2,3,4) ( (4,1,2,3), (1,2,3,4) ( (1,2,3,4)} is a group.  Geometrically, these operations correspond to the permutations of the vertices of a square when the square is rotated by 90 degrees, 180 degrees, 270 degrees, and 360 degrees clockwise, respectively.  This is “the group of rotation symmetries of the square, acting on the set of vertices”.

