Polya theory
Let G be a group of permutations of a finite set S.  We say two elements s and s' in S belong to the same orbit if there exists g in G such that g(s)=s'.  (Side note: This makes sense, because if there exists g such that g(s) = s', then there exists g' such that g'(s') = s, namely … g' = g^{-1}.  Also: if there exists g such that g(s) = s', and there exists g' such that g'(s')=s", then there also exists h such that h(s)=s", namely … h = g' ( g.)

Let G be a group of permutations of a finite set S.  Define

Orbit(s) = G(s) = {g(s): g in G}.  For all s,t in S, Orbit(s) and Orbit(t) are either equal or disjoint, so S breaks up into disjoint orbits.

Hence |S| = the sum of the sizes of the orbits.

Example 1: S = the set of all ways to put the numbers 1 through 6 at the corners of a hexagon.  |S| = … 6! = 720.  

Let G be the group that acts by rotations through multiples of 60 degrees.

There are 6!/6 = 5! = 120 orbits, each of size 6.

So, instead of saying “let's count all the circular arrangements of 6 things, where two circular arrangements count as the same if they differ by rotation”, we're saying “let’s count the orbits”.

Bringing the group G into the story serves as an alternative to talking about things being distinguishable or indistinguishable.

Example 2: S = the set of all ways to color three of the corners of a hexagon red, and the rest blue.  |S| = (6 choose 3) = 20. 

Let G be the group that acts by rotations through multiples

of 60 degrees.  There is an orbit of size 2 (where the colors

alternate) and 3 orbits of size 6.

These four orbits correspond to the four circular 6-permutations of the multiset {R,R,R,B,B,B} = {3•R,3•B}.

Note that the division principle applies in Example 1, because all the orbits are the same size.  But in Example 2, some orbits are bigger than others, so we can't use the division principle.

What can we do instead?

Burnside's Lemma: Let G be a permutation group acting on a set S.  Then the number of orbits is equal to

                (1/|G|) ∑_g |Fix(g)|

        where Fix(g) = {s in S: g(s) = s}.

Application to Example 2: 

If g is the identity permutation, |Fix(g)| = ... 20.  

If g is rotation by 60( clockwise or counterclockwise,

|Fix(g)| = ... 0.  

If g is rotation by 120( clockwise or counterclockwise, |Fix(g)| = ... 2.  

If g is rotation by 180(, then |Fix(g)| = ... 0.  

So # of orbits = (1/6) (20 + 0 + 0 + 2 + 2 + 0) = 24/6 = 4.

Example 3: How many circular 6-permutations of the multiset {(•R,(•B}?

Use Burnside: (1/6) (64 + 2 + 2 + 4 + 4 + 8) = 84/6 = 14.

[Check directly: 4 + 3 + 3 + 1 + 1 + 1 + 1 = 14.]

Example 4: How many genuinely different ways are there to color the faces of a cube red and blue?

Warm-up:

Let S_0 = the set of faces of a cube, G = the group of all permutations you can achieve by rotating the cube.

How big is S_0?  |S_0| = … 6.

How big is G? ... |G| = 24.

A cube can sit on the table in 24 different ways.

Before we can apply Burnside’s Lemma, we need to take a census of the 24 elements of G.

a) Identity element: 1

b) Rotations by (90 degrees (rotating around an axis 

joining the centers of two opposite faces): … 6

c) Rotations by (120 degrees (rotating around an axis 

joining two opposite corners): … 8

d) Rotations by 180 degrees (rotating around an axis 

joining the centers of two opposite faces): … 3

What’s missing? …

e) Rotations by 180 degrees (rotating around an axis 

joining the midpoints of two opposite edges): … 6

Total: 24

Now let S = the set of all ways to color the faces of a cube red and blue (a bigger set than S_0!), and G = the group of rotations of the cube.  |G| = 24 as before, but S is big: |S| = … 2^6 = 64.

How many rotationally distinct ways are there to color the faces of a cube red and blue?

How many colorings of the cube are invariant under the action of the identity element? … 2^6 = 64.

How many are invariant in case b? … 2^3 = 8.

How many are invariant in case c? … 2^2 = 4.

How many are invariant in case d? … 2^4 = 16.

How many are invariant in case e? … 2^3 = 8.

How many rotationally distinct colorings? … 

(1/24) (1( 64 + 6( 8 + 8( 4 + 3( 16 + 6( 8) = 10.

You can (and should) check this directly by listing the ten possibilities.

More generally, the number of rotationally distinct ways to color the faces of a cube using n colors is


(1/24) (n^6 + 6n^3 + 8n^2 + 3n^4 + 6n^3).
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(Why my notation is better: It applies to more than just colorings, and the symbols “Stab” and “Fix” look more like what they mean.)

