
Math 491, Problem Set #18: Solutions

1. Use Lindstrom’s lemma, the interpretation of domino tilings as rout-
ings, and a computer, in order to count the domino tilings of an 8-by-8
square. (You will receive no credit for merely giving the correct answer.)

Checkerboard-color the squares in the grid, so that the upper-left square
is shaded. Mark the mid-point of every vertical edge that has a black
square to its left or a white square to its right (or both). It’s easy to
check that every possible placement of a domino yields either zero or
two marked points on its boundary. Hence, if one fixes a domino tiling
and draws connections between all pairs of marked points that share a
domino, one gets four non-intersecting left-to-right lattice paths joining
the four leftmost marked points to the four rightmost marked points.
Conversely, given four such lattice paths, one can construct a tiling by
taking all those dominoes that cover an edge of the lattice path, along
with all dominoes that are centered on those marked points that do
not lie on any of the lattice paths. Hence there is a bijection between
domino-tilings of the 8-by-8 grid and families of non-intersecting lattice
paths joining the sources s1, s2, s3, s4 to the sinks t1, t2, t3, t4 in a trellis-
like directed graph, with directed edges corresponding to the vectors
(1, 1), (1,−1), and (2, 0). It is easy to see that the only way to connect
the si’s and the tj’s via non-intersecting paths in this directed graph is
to connect si to ti for 1 ≤ i ≤ 4. Hence Lindstrom’s Lemma applies,
and the number of families of non-intersecting lattice paths is equal to
the determinant of the 4-by-4 matrix M whose i, jth entry equals the
number of lattice paths from si to tj.

To determine the entries of M , we introduce new vertices in a shifted
lattice that fills the holes in the lattice of marked points. (That is to
say, we now associated a point with every vertical edge.) The points
s1, s2, s3, s4 are the 2nd, 4th, 6th, and 8th points on the left edge (and
similarly for t1, t2, t3, t4). Then the i, jth entry of M is equal to the
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2i, 2jth entry of AATAATAATAAT , where

A =



1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1


.

Using Maple, one gets

[ 22 68 30 48 10 12 1 1 ]

[ ]

[ 68 236 116 216 60 84 13 14 ]

[ ]

[ 30 116 62 128 41 61 11 12 ]

[ ]

[ 48 216 128 320 129 230 60 70 ]

[ ]

[ 10 60 41 129 63 128 40 48 ]

[ ]

[ 12 84 61 230 128 306 116 146 ]

[ ]

[ 1 13 11 60 40 116 52 68 ]

[ ]

[ 1 14 12 70 48 146 68 90 ]

Extracting the sub-matrix

[ 236 216 84 14 ]

[ ]

[ 216 320 230 70 ]

[ ]

[ 84 230 306 146 ]

[ ]

[ 14 70 146 90 ]
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and taking its determinant, one gets 12988816.

2. Using the bijection between tilings and routings discussed in class, Lind-
strom’s lemma, and Dodgson condensation, prove that for all a, b ≥ 0
and for c = 3, the number of ways to tile an a, b, c, a, b, c semiregular
hexagon with unit rhombuses is equal to

H(a+ b+ c)H(a)H(b)H(c)

H(a+ b)H(a+ c)H(b+ c)

where H(0) = H(1) = 1 and H(n) = 1!2!3! · · · (n− 1)! for n > 1.

I might as well prove the claim for all c (though you didn’t have to).
Let T (a, b, c) denote the number of rhombus tilings of the a, b, c, a, b, c
semiregular hexagon. It is easy to check that for all a, b ≥ 0, T (a, b, 0) =

1 = H(a+b+0)H(a)H(b)H(0)
H(a+b)H(a+0)H(b+0)

and T (a, b, 1) = (a+b)!
(a)!(b)!

= H(a+b+1)/H(a+b)
(H(a+1)/H(a))(H(b+1)/H(b)

= H(a+b+1)H(a)H(b)H(1)
H(a+b)H(a+1)H(b+1)

. We will prove the claim for c > 1 using induc-

tion on c. (For the homework problem, you don’t need induction; you
just reduce the case c = 3 to the case c = 2 already solved in an earlier
homework.)

Rhombus-tilings of the a, b, c, a, b, c semiregular hexagon correspond to
routings with c sources and c sinks in a directed graph in which the
number of paths from the ith source to the jth sink equals

(
a+b
b−i+j

)
.

Therefore by Lindstrom’s lemma we have T (a, b, c) = detM(a, b, c)

where M(a, b, c) denotes the c-by-c matrix whose i, jth entry is
(
a+b
b−i+j

)
.

In view of the this, Dodgson condensation tells us that

T (a, b, c)T (a, b, c− 2) = T (a, b, c− 1)2

−T (a+ 1, b− 1, c− 1)T (a− 1, b+ 1, c− 1).

For slight notational convenience, I’ll re-index this as

T (a, b, c+1)T (a, b, c−1) = T (a, b, c)2−T (a+1, b−1, c)T (a−1, b+1, c).

The problem now reduces to algebraically verifying that T (a, b, c + 1)
must be given by the H( )-formula if T (a, b, c − 1), T (a, b, c), T (a +
1, b− 1, c) and T (a− 1, b+ 1, c) are. Equivalently, we must verify that
if all five of these T ( )-values are as given by the H( )-formula, then
the expression

T (a, b, c+1)T (a, b, c−1)−T (a, b, c)2 +T (a+1, b−1, c)T (a−1, b+1, c)
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must vanish.

If we trust Maple, then we can prove this by noting that the final
command in the string of commands

H := proc(n) product(k!,k=1..n-1); end;

T := proc(a,b,c) H(a+b+c)*H(a)*H(b)*H(c)

/H(a+b)/H(a+c)/H(b+c); end;

U := T(a,b,c)*T(a-2,b,c)-T(a-1,b,c)^2

+T(a-1,b-1,c+1)*T(a-1,b+1,c-1);

simplify(expand(U));

gives the output 0. However, if you’re more skeptical, here’s a sketch of
how you can show by hand that the expression T (a, b, c+ 1)T (a, b, c−
1)− T (a, b, c)2 + T (a+ 1, b− 1, c)T (a− 1, b+ 1, c) vanishes when each
T ( ) is expanded using the H( )-formula. Write each of the three
terms as a fraction, and in each of the terms divide the numerator by
H(a+b+c−1)H(a+b+c)H(a−1)H(a)H(b−1)H(b)H(c−1)H(c) and
the denominator by H(a+b)2H(a+c−1)H(a+c)H(b+c−1)H(b+c),
obtaining another messy expression. But we have made progress: where
before we had a sum each term of which was a ratio of products each
factor of which was a value of the H-function, we now have a sum each
term of which is a ratio of products each factor of which is a value of
the factorial function, Moreover, there are now some factors common
to all three terms; removing them gives

(a+b+c)!(a−1)!(b−1)!(c)!
(a+c)!(b+c)!

− (a+b+c−1)!(a−1)!(b−1)!(c−1)!
(a+c−1)!(b+c−1)!

+ (a+b+c−1)!(a)!(b)!(c−1)!
(a+c)!(b+c)!

.

Removing common factors again gives us

(a+ b+ c− 1)(c− 1)− (a+ c− 1)(b+ c− 1) + (a)(b),

which vanishes.
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