Applying linear algebra to number-sequences and counting-problems.

Application 1:  Could the sequence 1,2,5,14,41,… satisfy a first-order difference equation?  That is, is there some single operator that annihilates it?

No: Let f(0)=1, f(1)=2, f(2)=5, etc., and suppose AT+BI annihilates the sequence f(0),f(1),f(2),… .  Then we must have

Af(1)+Bf(0)=0, Af(2)+Bf(1) = 0, etc.  The first two equations become 2A+1B=0 and 5A+2B=0. … They imply A=B=0.  Why? … The determinant of

[2 1]

[5 2]

is non-zero.

Linear algebra can give us positive information too.  

Application 2: Suppose we suspect that the sequence 1, 2, 5, 13, 34, … consisting of every other Fibonacci number satisfies a second-order linear recurrence.  How might we guess it?  If AT^2+BT+CI annihilates the sequence, we must have (A)(5)+(B)(2)+(C)(1) = 0 and  

(A)(13)+(B)(5)+(C)(2) = 0 and (A)(34)+(B)(13)+(C)(5) = 0.  The 3-by-3 matrix

[  5   2  1]

[13   5  2] 

[34 13 5]

has determinant zero (how can we see this? …), so there exists a non-trivial solution (infinitely many such, in fact), e.g. A=1, B=-3, C=1.

General theorem (first draft):

Let

(*)  (a_d T^d + a_{d-1} T^{d-1} + ... + a_0 T^0) f = 0

be a homogeneous linear recurrence equation 

with constant coefficients.

Let p(t) = a_d t^d + a_{d-1} t^{d-1} + ... + a_0 ,

so that we can daringly write (*) as p(T)(f)=0.

Suppose p(t) has <leave blank> (how many? ... d) 

distinct (real or complex) roots r_1,...,r_d.

Then the general solution to (*) is of the form

f(n) = A_d r_d^n + ... A_d r_d^n.

(Proof idea: Use partial fractions decomposition.)

(Alternative, after-the-fact logic:

Verify that each primitive solution f(n) = r^n

is a solution to (*).

Then show that these d functions are linearly independent.

Hence they span the d-dimensional space of solutions to (*).)

Note that even if the terms of the sequence are integers,

the numbers r_i and A_i need not be.

We’ve already seen this with Binet’s formula for

the Fibonacci sequence (remind them what this is).

Another Example: p(t)=t^2+1, with roots i and –i.

The recurrence T^2 f + f = 0

means f(n+2)=-f(n) for all n,

with general solution a,b,-a,-b,a,b,-a,-b,...

(does this remind you of anything? ... the homework).

E.g., 2,0,-2,0,2,0,-2,0,..., given by f(n) = i^n+(-i)^n.

Application 2, continued: Here’s a good way to think about the every-other-Fibonnaci-number sequence.  F_n = Ar^n + Bs^n, where r = (1+sqrt(5))/2 and s = (1-sqrt(5))/2.  So G_n = F_{2n} = Ar^(2n) + Bs^(2n) = A(r^2)^n + B(s^2)^n.  So the governing roots are r^2 = (3+sqrt(5))/2 and s^2 = (3-sqrt(5))/2, which are the roots of the quadratic equation t^2-3t+1=0.

Application 3: Find a formula for G_n, 

where G_n = F_1 + F_2 + F_3 + ... + F_n:


1,3,6,11,19,...

(or reduce it to a problem of solving for a small number

of undetermined coefficients).

Applying T-I to G_n gives F_{n+1}, 

and applying T^2-T-I to that gives 0,

so (T-I)(T^2-T-I)=(T^3-2T^2+I) annihilates G.

As before, G_n can be written in the form

A F_n + B F_{n-1} + C.

But what if the polynomial doesn’t have distinct roots?

Test-case: p(t)=(t-1)^2=t^2-2+1, p(T)=T^2-2T+1.

Wilf’s approach still applies:

We get a two-parameter family of solutions,

with generating functions (ax+b)/(x^2-2x+1).

Put a=-1 and b=1:

(1-x)/(1-2x+x^2) = 1/(1-x) = 1+x+x^2+...

(that’s the solution we already knew about).

To find another solution, put a=1 and b=0:

x/(1-2x+x^2) = x/(1-x)^2 = x(1-x)^{-2} = x + 2x^2 + 3x^3 + ...


(check that this is what the binomial theorem gives, too)

So our two fundamental solutions here are f(n)=1 and f(n)=n.

Note: The sequence of Fibonacci numbers is annihilated by

the operator ... T^2-T-I, and the generating function has denominator equal to ...1-x-x^2.  There is a correspondence here, but the exponents go in the opposite direction from one another.

In general, if p(T)=(T-rI)^d, the d fundamental solutions are

the sequences f(n)=n^k r^n for k=0 through d-1.

(When r=1, these fundamental solutions are just monomials,

and the general solution is a polynomial of degree <d.)

General fact: For any polynomial p(t) of degree d,

the solutions of p(T)(f)=0 form a d-dimensional space

with basis elements of the form n^k r^n,

where r is any root of p(t)=0

and k is any non-negative integer that is less than

the multiplicity of the root r.

Fact: Suppose a_0,...,a_d are numbers with a_0 and a_d non-zero,

and f is some sequence.

The following are equivalent:

(1) f satisfies.

(a_d T^d + a_{d-1} T^{d-1} + ... + a_1 T + a_0 I) f = 0

(2) The generating function for f can be expressed

as a rational function whose denominator is

a_d + a_{d-1} x + a_{d-2} x^2 + ... + a_1 x^{d-1} + a_0 x^d.

(3) f(n) is expressible as a linear combination of

functions of the form n^j r^n,

where r is a root of 


a_d t^d + ... + a_1 t + a_0

and where j is a non-negative integer that is less than

the multiplicity of the root r.

(When r=1, these fundamental solutions are just monomials,

and the general solution is a polynomial of degree <d.)

Group work:

Find a recurrence relation satisfied by g(n)=F_n+2^n (n geq 0).


1,1,2,3,5,...


1,2,4,8,16,...


2,3,6,11,21,...

Answer: ... (1-t-t^2)(1-2t)=1-3t+t^2+2t^3

g(n+3)-3g(n+2)+g(n+1)+2g(n)=0

g(n+3)=3g(n+2)-g(n+1)-2g(n)

Check:


11=3(6)-(3)-2(2) 

21=3(11)-(6)-2(3)

etc.

More explicitly, we have 

1/(1-x-x^2) + 1/(1-2x) = (2-3x-x^2)/(1-3x+x^2+2x^3).

[OMIT THIS, UNLESS SOMEONE ASKS FOR DETAILS:]

To see that this is the simplest possible recurrence, ...

you have to check that the numerator and denominator

(as polynomials in x) have no common factor.

Alternatively, check that the determinant

| 2   3   6|

| 3   6 11|

| 6 11 21|

doesn’t vanish (in fact, it equals 1).

(Explain why this is valid.)]

A first application:

Domino tilings of 3-by-n rectangles

Joint recurrence:

For all non-negative n,

let a_n = number of domino tilings of a 3-by-2n rectangle (a_0 = 0)

and let b_n = number of domino tilings of a 3-by-(2n+1) rectangle


with a bite taken out of one corner.

a_n = 2b_{n-1} + a_{n-1}

b_n = a_n+b_{n-1}.

Initial values: a_0 = 1, a_1 = 3, a_2 = 11, a_3 = 41, ...

Initial values: b_0 = 1, b_1 = 4, b_2 = 15, ...

Approach #1: Write down generating functions for a_n and b_n.

Then the recurrence relations for the sequences

turn into algebraic relations between the generating functions.

We have two equations in two unknowns 

(two unknown formal power series),

so we can solve and then get exact formulas

for the power series.

Approach #2: Write

a_n = 2b_{n-1} + a_{n-1}

b_n = 3b_{n-1} + a_{n-1}

in matrix form

(a_n)     (  1  2  )  (a_{n-1})

(      ) = (           ) (              )

(b_n)     (  1  3  )  (b_{n-1})

and repeat this to obtain

                           n

(a_n)     (  1  2  )    (1)

(      ) = (           )   (   )

(b_n)     (  1  3  )    (1)  .

Use linear algebra to find a formula for a_n.

Approach #3 (optional):

Find a clever way to combine the recurrence relations

so as to eliminate b

and find a recurrence relation governing a alone.

