
Lecture 1: Random and Quasirandom Simulation

The  "Bartholomew Paradox" (a warm-
up)

Given  a  family  with  two  children,

what's  the  chance  that  both  are

boys?

With  no  prior  information,  the

answer is about 1/4.

What if we know that at least one

of the children is a boy?

Then  the  chance  (the  conditional

probability)  that  both  are  boys  is

about 1/3.

What if we know that at least one

of  the  children  is  a  boy  named

Bartholomew?

Then the chance that both are boys

is about 1/2.

? ! ?

To  see  what's  going  on  here,  let's

look  at  an  analogous  problem about

numbers.

If  I  am  assigned  a  two-digit  PIN

(00-99),  the  probability  that  both

digits are odd is exactly 1/4.

If I know that at least one of the

digits  is  odd,  then  the  probability

that both digits are odd is  exactly

25/75, or 1/3.

If I know that at least one of the

digits  is  a  7,  then  the  probability

that both digits are odd is  exactly

9/19, which is close to 1/2.

Check:  the  PIN is  equally  likely  to

be any of the nineteen combinations

70,71,72,73,74,75,76,77,78,79,

07,17,27,37,47,57,67,87, or 97,

of  which  exactly  nine  (the  ones

underlined) have both digits odd.

Let's  see  how  we  could  have  used

Mathematica to work this out for us.
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In[1]:= Range@0, 9D
Out[1]= 80, 1, 2, 3, 4, 5, 6, 7, 8, 9<
In[2]:= Tuples@Range@0, 9D, 2D

Out[2]= 880, 0<, 80, 1<, 80, 2<, 80, 3<, 80, 4<, 80, 5<, 80, 6<, 80, 7<, 80, 8<, 80, 9<, 81, 0<, 81, 1<,
81, 2<, 81, 3<, 81, 4<, 81, 5<, 81, 6<, 81, 7<, 81, 8<, 81, 9<, 82, 0<, 82, 1<, 82, 2<,
82, 3<, 82, 4<, 82, 5<, 82, 6<, 82, 7<, 82, 8<, 82, 9<, 83, 0<, 83, 1<, 83, 2<, 83, 3<,
83, 4<, 83, 5<, 83, 6<, 83, 7<, 83, 8<, 83, 9<, 84, 0<, 84, 1<, 84, 2<, 84, 3<, 84, 4<,
84, 5<, 84, 6<, 84, 7<, 84, 8<, 84, 9<, 85, 0<, 85, 1<, 85, 2<, 85, 3<, 85, 4<, 85, 5<,
85, 6<, 85, 7<, 85, 8<, 85, 9<, 86, 0<, 86, 1<, 86, 2<, 86, 3<, 86, 4<, 86, 5<, 86, 6<,
86, 7<, 86, 8<, 86, 9<, 87, 0<, 87, 1<, 87, 2<, 87, 3<, 87, 4<, 87, 5<, 87, 6<, 87, 7<,
87, 8<, 87, 9<, 88, 0<, 88, 1<, 88, 2<, 88, 3<, 88, 4<, 88, 5<, 88, 6<, 88, 7<, 88, 8<,
88, 9<, 89, 0<, 89, 1<, 89, 2<, 89, 3<, 89, 4<, 89, 5<, 89, 6<, 89, 7<, 89, 8<, 89, 9<<

In[3]:= AllPairs = Tuples@Range@0, 9D, 2D
Out[3]= 880, 0<, 80, 1<, 80, 2<, 80, 3<, 80, 4<, 80, 5<, 80, 6<, 80, 7<, 80, 8<, 80, 9<, 81, 0<, 81, 1<,

81, 2<, 81, 3<, 81, 4<, 81, 5<, 81, 6<, 81, 7<, 81, 8<, 81, 9<, 82, 0<, 82, 1<, 82, 2<,
82, 3<, 82, 4<, 82, 5<, 82, 6<, 82, 7<, 82, 8<, 82, 9<, 83, 0<, 83, 1<, 83, 2<, 83, 3<,
83, 4<, 83, 5<, 83, 6<, 83, 7<, 83, 8<, 83, 9<, 84, 0<, 84, 1<, 84, 2<, 84, 3<, 84, 4<,
84, 5<, 84, 6<, 84, 7<, 84, 8<, 84, 9<, 85, 0<, 85, 1<, 85, 2<, 85, 3<, 85, 4<, 85, 5<,
85, 6<, 85, 7<, 85, 8<, 85, 9<, 86, 0<, 86, 1<, 86, 2<, 86, 3<, 86, 4<, 86, 5<, 86, 6<,
86, 7<, 86, 8<, 86, 9<, 87, 0<, 87, 1<, 87, 2<, 87, 3<, 87, 4<, 87, 5<, 87, 6<, 87, 7<,
87, 8<, 87, 9<, 88, 0<, 88, 1<, 88, 2<, 88, 3<, 88, 4<, 88, 5<, 88, 6<, 88, 7<, 88, 8<,
88, 9<, 89, 0<, 89, 1<, 89, 2<, 89, 3<, 89, 4<, 89, 5<, 89, 6<, 89, 7<, 89, 8<, 89, 9<<
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In[4]:= Length@%D
Out[4]= 100

In[5]:= AllPairs@@99DD
Out[5]= 89, 8<
In[6]:= AtLeastOneSeven =

Select@AllPairs, MemberQ@ð, 7D &D
Out[6]= 880, 7<, 81, 7<, 82, 7<, 83, 7<, 84, 7<, 85, 7<, 86, 7<, 87, 0<, 87, 1<,

87, 2<, 87, 3<, 87, 4<, 87, 5<, 87, 6<, 87, 7<, 87, 8<, 87, 9<, 88, 7<, 89, 7<<
In[7]:= Length@%D

Out[7]= 19

In[8]:= Select@AtLeastOneSeven, OddQ@ð@@1DDD && OddQ@ð@@2DDD &D
Out[8]= 881, 7<, 83, 7<, 85, 7<, 87, 1<, 87, 3<, 87, 5<, 87, 7<, 87, 9<, 89, 7<<
In[9]:= Length@%D

Out[9]= 9

If  we  limit  ourselves  to  PINs  in

which  the  two  digits  are  distinct

(analogous  to  the  assumption  that

the  children  in  a  two-child  family

are  given  different  names),  that

changes  the  answer  slightly:  the

probability  is  8/18,  which  is  still

quite close to 1/2.

I  won't  discuss  this  paradox  fur-

ther in class, except to ask what I

hope is a clarifying question: If you

ring the doorbell and a boy answers,

is that the same as learning that at

least  one  child  in  the  family  is  a

boy?

I  got  the  Bartholomew  problem

wrong  the  first  time  I  heard  it,

years after I got my Ph.D.

MORAL: No matter how much proba-

bility theory you know, you're never

immune to being led astray by your

intuition!
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Gambler's ruin

A  gambler  starts  with  $1  in  his

pocket and makes a sequence of fair

$1  wagers  at  a  casino,  each  time

either gaining $1 or losing a $1, until

he  either  goes  down to  $0 (and  is

forced  to  stop)  or  gets  up  to  $3

(and leaves with the $3).

Question  1:  How likely  is  the  gam-

bler  to  leave  with  $3?   (Call  this

probability P .)

Question  2:  How  many  wagers  on

average can  the gambler  expect  to

make  before  he  leaves?   (Call  this

average A.)

Note:  We  also  call  this  a  random

walk problem; imagine a drunkard on

the number line who starts at 1 and

randomly staggers to the left or to

the right repeatedly until he arrives

either at 0 or at 3.
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P  =  1/4 (win, win)

     + 1/16 (win, lose, win, win)

     + 1/64 (win after 6 wagers)

     + ...

  = 
1�4

1-1�4  = 1/3.
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P  =  1/4 (win, win)

     + 1/16 (win, lose, win, win)

     + 1/64 (win after 6 wagers)

     + ...

  = 
1�4

1-1�4  = 1/3.

In[10]:= Sum@1 � 4^n, 8n, Infinity<D
Out[10]=

1

3

A =  (1)(1/2)+(2)(1/4)+(3)(1/8)+

      + (4)(1/16)+...

   =  ?

A = A(1/2) with

A(x ) = 1x+2x 2+3x 3+4x 4+...

     = (x +x 2+x 3+x 4+...)

         + (x 2+x 3+x 4+...)

              + (x 3+x 4+...)

                   + (x 4+...)

                       + ...

     = x

1-x
+ x 2

1-x
+ x 3

1-x
+ x 4

1-x
+ ...

     = (x + x 2 + x 3 + x 4 + ...) / (1-x )

     = ( x

1-x
)/(1-x)

     = xH1-x L2 , so

A = A(1/2) = 
1�2
1�4 = 2.
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Sum@n � 2^n, 8n, Infinity<D
Out[11]= 2

In[12]:= Sum@n � 2^n, 8n, N<D
Out[12]= 2-N I-2 + 21+N - NM
In[13]:= Limit@%, N ® InfinityD

Out[13]=
Log@4D
Log@2D
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In[14]:= Simplify@%D
Out[14]=

Log@4D
Log@2D

In[15]:= FullSimplify@%D
Out[15]= 2

Another way to calculate A is to rec-

ognize it  as the average value of a

geometric  random  variable  with

parameter 1/2.

(Regardless of whether the gambler

has $1 or $2, his chance of leaving

the  game  after  his  next  wager  is

1/2.)

So A is also the expected number of

times  you  have  to  toss  a  fair  coin

until it comes up Heads.

If  you  don't  remember  why  this

should be 2, here's an argument:

If you toss the coin until  it  comes

up Heads, then with probability 1/2

the first toss comes up Heads and

the total number of tosses required

is  1,  while  with  probability  1/2 the

first  toss  comes  up  Tails  and  the

total  number  of  tosses  required  is

1+A on  average.   So  A =  (1/2)(1)  +

(1/2)(1+A). 

 

Lec01pdf.nb  13



Another way to calculate A is to rec-

ognize it  as the average value of a

geometric  random  variable  with

parameter 1/2.

(Regardless of whether the gambler

has $1 or $2, his chance of leaving

the  game  after  his  next  wager  is

1/2.)

So A is also the expected number of

times  you  have  to  toss  a  fair  coin

until it comes up Heads.

If  you  don't  remember  why  this

should be 2, here's an argument:

If you toss the coin until  it  comes

up Heads, then with probability 1/2

the first toss comes up Heads and

the total number of tosses required

is  1,  while  with  probability  1/2 the

first  toss  comes  up  Tails  and  the

total  number  of  tosses  required  is

1+A on  average.   So  A =  (1/2)(1)  +

(1/2)(1+A). 

 

14   Lec01pdf.nb



Another way to calculate A is to rec-

ognize it  as the average value of a

geometric  random  variable  with

parameter 1/2.

(Regardless of whether the gambler

has $1 or $2, his chance of leaving

the  game  after  his  next  wager  is

1/2.)

So A is also the expected number of

times  you  have  to  toss  a  fair  coin

until it comes up Heads.

If  you  don't  remember  why  this

should be 2, here's an argument:

If you toss the coin until  it  comes

up Heads, then with probability 1/2

the first toss comes up Heads and

the total number of tosses required

is  1,  while  with  probability  1/2 the

first  toss  comes  up  Tails  and  the

total  number  of  tosses  required  is

1+A on  average.   So  A =  (1/2)(1)  +

(1/2)(1+A). 

 
In[16]:= Solve@A == 1 � 2 + H1 + AL � 2, AD

Out[16]= 88A ® 2<<

(Note  that  strictly  speaking  this

argument does not rule out the possi-

bility that A = ¥; for more on this,

see below.)
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Harmonic functions

We can also use linear equations to

solve for P  and A.

Recall  that  P  =  the  probability  of

ending up at 3 if you start at 1.

Let Q  = the probability of ending up

at 3 if you start at 2.

(Note: 

the probability of ending up at 3 if

you start at 0 is 0, and

the probability of ending up at 3 if

you start at 3 is 1.)  

I claim that

(*)      P  = 
0+Q

2
 and Q  = P +1

2
.

That  is,  I  claim  that  the  function

h(x ) defined by

h(0) = 0,

h(1) = P ,

h(2) = Q ,

h(3) = 1

satisfies 

h(x ) = 
hHx -1L+hHx +1L

2
 for x  = 1,2.

Such  a  function  is  called  harmonic

(we'll  see  the  definition  of  this

term in a future lecture).
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term in a future lecture).
In[17]:= Solve@8P � H0 + QL � 2, Q � HP + 1L � 2<, 8P, Q<D

Out[17]= ::P ®
1

3
, Q ®

2

3
>>

Likewise,  recalling  that  A  =  the

expected  number  of  steps  the

walker takes starting from 1, let B

= the expected number of steps the

walker takes starting from 2.

Then

(**) A = 1 + 0+B

2
 and B  = 1 + A+0

2
.

In[18]:= Solve@8A � 1 + H0 + BL � 2, B � 1 + HA + 0L � 2<, 8A, B<D
Out[18]= 88A ® 2, B ® 2<<

Caveat:  This  argument  only  shows

that if A and B  are finite, then they

must both equal 2; it does not rule

out  the  possibility  that  the

expected  number  of  steps  the

walker  takes  is  infinite  starting

from both 1 and 2.  Indeed, we will

see  later  that  for  random walk  on

{0,1,2,...},  a  walker  who  starts  at  1

will eventually hit 0 with probability

1, but that the time it takes for this

to  happen  has  infinite  expected

value.

(If you've never seen a random vari-

able with infinite expected value, con-

sider 2X , where X  is a geometric ran-

dom variable with parameter 1

2
:

Exp (2X ) =   (2)( 1

2
) + (4)( 1

4
) 

                 + (8)( 1

8
) + (16)( 1

16
) + ...

which is ¥.)

Fortunately for us, it's not hard to

show that A is finite.
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Fortunately for us, it's not hard to

show that A is finite.

Random simulation

One way to see what a random sys-

tem does is to simulate it on a com-

puter using a pseudorandom number

generator;  this  is  an  algorithm

designed  to  produce  output  that

passes as many statistical tests for

randomness as possible.
In[21]:= RandomInteger@D

H* generate a random bit *L
Out[21]= 0

In[25]:= Random@IntegerD H* generate a random bit *L
Out[25]= 1

In[26]:= Table@Random@IntegerD, 8n, 10<D
Out[26]= 81, 1, 0, 0, 1, 0, 1, 1, 1, 0<
In[28]:= Wager@n_D := If@Random@IntegerD � 0, n - 1, n + 1D
In[32]:= Wager@1D

Out[32]= 0
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Wager@n_D := n + H-1L^Random@IntegerD
H* another implementation *L

In[33]:= Table@Wager@1D, 8k, 10<D
Out[33]= 80, 2, 0, 2, 0, 2, 0, 2, 0, 0<
In[34]:= Ruin@n_D := If@Hn £ 0 ÈÈ n ³ 3L, n, Ruin@Wager@nDDD
In[35]:= Table@Ruin@1D, 8n, 20<D

Out[35]= 80, 3, 0, 3, 0, 0, 0, 3, 0, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 3<
In[37]:= ManyRuins@n_D := Sum@Ruin@1D � 3, 8k, n<D
In[41]:= ManyRuins@100D

Out[41]= 43

In[42]:= Table@ManyRuins@100D, 8n, 10<D
Out[42]= 831, 40, 28, 34, 35, 29, 36, 36, 32, 29<
In[43]:= Histogram@%D

Out[43]=

30 35 40 45

0.5

1.0

1.5

2.0

2.5

3.0

In[44]:= Histogram@Table@ManyRuins@100D, 8n, 100<DD

Out[44]=

25 30 35 40 45 50

10

20

30

40
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In[45]:= Histogram@Table@ManyRuins@100D, 8n, 1000<DD

Out[45]=

20 25 30 35 40 45 50

50

100

150

Let's manually re-enter the code.
Histogram@Table@ManyRuins@100D, 8n, 1000<DD

Note  how  Mathematica  helpfully

matches brackets as you type.
In[46]:= HundredValues = Table@ManyRuins@100D � 100, 8n, 100<D;
In[47]:= Mean@HundredValuesD

Out[47]=
1673

5000

In[48]:= N@%D
Out[48]= 0.3346

In[49]:= StandardDeviation@HundredValuesD

Out[49]=

54121

11

1500

In[50]:= N@%D
Out[50]= 0.0467622

Drawing a sample of size 100 will usu-

ally lead us to estimate P  as lying in

some interval whose endpoints both

lie between .29 and .37, but it does

not suffice to give us an estimate of

P  with two significant figures.

To see why, note that the output of

ManyRuins[100]  is  governed  by  the

distribution Binomial(100,P ).
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Drawing a sample of size 100 will usu-

ally lead us to estimate P  as lying in

some interval whose endpoints both

lie between .29 and .37, but it does

not suffice to give us an estimate of

P  with two significant figures.

To see why, note that the output of

ManyRuins[100]  is  governed  by  the

distribution Binomial(100,P ).

Recall  that  a  Binomial(n ,P )  random

variable  is  a  sum of  n  independent

Bernoulli(P )  random  variables,  each

of which has variance P (1-P ),  for a

total variance of nP (1-P ), and stan-

dard deviation of n P H1 - P L   .  So

Binomial(n ,P )/n  has standard devia-

tion n P H1 - P L / n = P H1 - P L � n .  
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Recall  that  a  Binomial(n ,P )  random

variable  is  a  sum of  n  independent

Bernoulli(P )  random  variables,  each

of which has variance P (1-P ),  for a

total variance of nP (1-P ), and stan-

dard deviation of n P H1 - P L   .  So

Binomial(n ,P )/n  has standard devia-

tion n P H1 - P L / n = P H1 - P L � n .  

So, the error for this kind of simula-

tion-based  estimation  goes  like

C / n ,  where  C  is  some constant

and n is the size of our sample.  

In our case:
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In[51]:= N@Sqrt@H1 � 3L H1 - 1 � 3L � 100DD
Out[51]= 0.0471405

That's  good  enough  to  estimate  P

to one digit, but not to two digits.

To decrease the error by a  factor

of 10, we need to increase n by a fac-

tor of 100.

E.g.,  to estimate P  to 3 significant

figures, we would need n  ~ 106, and

to  estimate  P  to  6  significant  fig-

ures, we would need n  ~ 1012 (which

would  be  computationally  infeasible

in most cases).

We could also estimate A by simula-

tion.   Here  again,  we  need  about

102 k  trials to estimate A to k  signifi-

cant figures.
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We could also estimate A by simula-

tion.   Here  again,  we  need  about

102 k  trials to estimate A to k  signifi-

cant figures.

Probabilities, expected values, and 
integrals

If U  is a U(0,1) random variable (a

real number uniformly distributed in

the  interval  [0,1]),  the  bits  of  its

binary  expansion  can  be  used  as  a

sequence of independent, identically

distributed  ("i.i.d.")  bits:  the  first

bit is equally likely to be a 0 or a 1,

the next bit is equally likely to be a

0 or a 1 regardless of what the first

bit was, etc.

Take 0 = Heads = Left,

         1 = Tails = Right.

If U =.0... (that is, if the first bit is

0), the walk ends at 0.

If U =.11..., the walk ends at 3.

If U =.100..., the walk ends at 0.

If U =.1011..., the walk ends at 3.

If U =.10100..., the walk ends at 0.

I.e., the walk ends at 0 if U < 2

3
 and

the walk ends at 3 if U  > 2

3
 .

("What if U  = 2

3
?"

The probability of that happening is

0.

This is an aspect of probability the-

ory  that  gives  novices  trouble:  you

have to learn how to pay the right

sort of attention to events of proba-

bility 0.

While  we're  speaking  of  such

things,  note  that  there's  a  slight

mis-match  between  the  discrete

world  of  sequences of  H's  and T's

and the continuous world of real num-

bers;  e.g.,  the  bit-strings  THHH...

(infinitely  many  H's)  and  HTTT...

(infinitely  many  T's)  both  corre-

spond to the fraction 1

2
 (though only

the  former  is  the  standard  binary

representation of 1

2
).

But this problem only affects ratio-

nal  numbers  of  the  form  k

2n ,  of

which there are only countably many

in  [0,1],  so  this  won't  cause  prob-

lems for us.  I'll say more about this

in the next lecture.)

So  P  (the  probability  that  the

walker reaches 3 before reaching 0)

is equal to the integral 

Ù0

1
1@2�3, 1D(x)  d x ,  where  1@2�3, 1D(x)  =  1

if x is in [2/3, 1] and = 0 otherwise.

This equals 1/3.
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So  P  (the  probability  that  the
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Ù0

1
1@2�3, 1D(x)  d x ,  where  1@2�3, 1D(x)  =  1

if x is in [2/3, 1] and = 0 otherwise.

This equals 1/3.

What about A?  Write A = Exp(W ),

where the random variable W  is the

number  of  steps  the  walker  takes

before reaching 0 or 3.

If we use U  to generate coin-flips

as before, then U  determines W :

If 0 < U  < 1

2
, then W  = 1;

if 3

4
 < U  < 1, then W  = 2;

if 1

2
 < U  < 5

8
, then W  = 3;

if 11

16
 < U  < 3

4
, then W  = 4;

if 5

8
 < U  < 21

32
, then W  = 5; etc.

That is, W  = f (U ), where 

f (x )  =  the  first  position  at  which

the  binary  expansion  of  x  differs

from the binary expansion of 2

3
.

So A = Exp(W ) = Ù0

1
f (x ) d x .
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In[52]:= WPlot = Plot@Piecewise@8
81, 0 < x && x < 1 � 2<,
82, 3 � 4 < x && x < 1<,
83, 1 � 2 < x && x < 5 � 8<,
84, 11 � 16 < x && x < 3 � 4<,
85, 5 � 8 < x && x < 21 � 32<,
86, 43 � 64 < x && x < 11 � 16<,
87, 21 � 32 < x && x < 43 � 64<<D, 8x, 0, 1<, Exclusions ® None, AxesOrigin ® 80, 0<D
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(Of course this is just an approxima-

tion  to  the  graph  of  f (x ),  since

f (x ) ® ¥ as x ® 2

3
.)

Note that the x- and y-axes are not

drawn to the same scale.

If  we compute  the  area  under  the

curve in the usual way (splitting the

region along vertical lines into  rect-

angles  that  touch  the  x -axis),  we

get  ( 1

2
)(1)+( 1

4
)(2)+( 1

8
)(3)+...  =  2  as

before.
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But if we split the region along hori-

zontal lines into maximally wide rect-

angles,  we get  (1)(1)+( 1

2
)(1)+( 1

4
)(1)+...

= 2.
In[54]:= WPlot
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This second calculation of the area

is  a  geometrical  version  of  one  of

the slickest tricks I know for com-

puting the expected value of a ran-

dom variable that takes on only non-

negative integer values:

         Exp(X ) = Ún=1
¥  P(X ³n)

Proof: Exp(X ) =

   1P(X =1)+2P(X =2)+3P(X =3)+...

=   P(X =1)+P(X =2)+P(X =3)+...

               +P(X =2)+P(X =3)+...

                            +P(X =3)+...

                                         +...

= P(X ³1)+P(X ³2)+P(X ³3)+...
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Reduction of variance and 
quasirandomness

Recall that A = Ù0

1
f (x ) d x  for a cer-

tain  piecewise-constant,  unbounded

function f (x ) on [0,1], namely f(x) =

the 1st position at which the binary

representations  of  x  and  2/3  =

.101010... disagree.

Likewise P  = Ù0

1
 1@2�3, 1D(x ) d x , where

1@2�3, 1D(x ) is 1 if x Ε [2/3, 1] and is 0

otherwise.

Our  simulation-based  methods  of

estimating P  and A  are tantamount

to estimating these integrals by sam-

pling  the  functions  1@2�3, 1D(x )  and

f (x )  at  n  randomly  chosen  points

X1, X2, ..., Xn  in [0,1] and taking the

average of the n values:

Ù0

1
f (x )  d x

~ 1

n
[f (X1)+f (X2)+...+f (Xn)].

This technique is called Monte Carlo

integration,  or  MC  integration  for

short. (Its serious applications come

in higher-dimensional problems.)

Intuition:  If  X  is  chosen  uniformly

from [0,1], then the expected value

of f(X) is Ù0

1
f (x ) d x .   The same is

true for each of X1, X2, ..., Xn, and if

we average  these estimates of the

integral,  then  by  the  law  of  large

numbers, our average will be a bet-

ter and better estimate of the true

integral as n goes to infinity.

If  Σ  is  the  standard  deviation  of

the  random variable  f(X)  (where  X

is uniform on [0,1]), then the average

(1) 1

n
[f (X1)+f (X2)+...+f (Xn)]

has standard deviation Σ/ n .

This is not so good: e.g., to increase

the  accuracy  of  your  estimate  of

the integral Ù0

1
f (x ) d x  by a factor

of 10, you have to increase the num-

ber of sample-points 100-fold.
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X1, X2, ..., Xn  in [0,1] and taking the

average of the n values:
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1
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~ 1
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integral,  then  by  the  law  of  large

numbers, our average will be a bet-

ter and better estimate of the true

integral as n goes to infinity.

If  Σ  is  the  standard  deviation  of

the  random variable  f(X)  (where  X

is uniform on [0,1]), then the average

(1) 1

n
[f (X1)+f (X2)+...+f (Xn)]

has standard deviation Σ/ n .

This is not so good: e.g., to increase
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1
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of 10, you have to increase the num-

ber of sample-points 100-fold.
In[55]:= f@x_D := Which@x < 1 � 2, 1, x > 3 � 4, 2, True, 2 + f@4 x - 2DD
In[56]:= Plot@f@xD, 8x, 0, 1<D
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In[57]:= Integrate@f@xD, 8x, 0, 1<D
Out[57]= à

0

1

WhichBx <
1

2
, 1, x >

3

4
, 2, True, 2 + f@4 x - 2DF âx

In[59]:= Table@f@Random@DD, 8n, 10<D
Out[59]= 82, 1, 1, 1, 2, 1, 2, 3, 1, 2<
In[60]:= Mean@%D

Out[60]=
8

5

In[61]:= MC@n_D := Mean@Table@f@Random@DD, 8k, n<DD
In[62]:= N@MC@100DD

Out[62]= 2.07
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In[63]:= N@MC@10^4DD
Out[63]= 1.9932

In[64]:= N@MC@10^6DD
Out[64]= 2.00207

A much better  way  to  estimate  an

integral  in  one  dimension  is  to

choose  n  evenly-spaced  random

points in [0,1].

"How  can  they  be  evenly-spaced  if

they're random?"

If  you  choose  a  random number  U

in [0,1] (under the uniform distribu-

tion) and take

U 1 = U,

U2 = U + 1/n (mod 1),

U3 = U + 2/n (mod 1),

...

Un = U + (n-1)/n (mod 1)

then all of the random variables U1,

U2, ..., Un  are (individually) uniformly

distributed on [0,1],  so the derived

random  variables  f(U1),  f(U2),  ...,

f(Un)  all  have expected value  equal

to Ù0

1
f (x ) d x , and so the average 

(2) 1

n
[f (U1)+f (U2)+...+f (Un)]

is  also  a  random  variable  with

expected value Ù0

1
f (x ) d x , but this

estimate of the integral will  usually

have much less error than (1). 

A consequence of this is that if you

choose V  uniformly at random in [0,

1/n] (not [0, 1]) and then take

V 1 = V,

V2 = V + 1/n ,

V3 = V + 2/n ,

...

Vn = V + (n-1)/n 

then

(3) 1

n
[f (V1)+f (V2)+...+f (Vn)]

has expected value Ù0

1
f (x )  d x ,  and

because  the  variance of  (3)  is  low,

(3) tends to be very close to the inte-

gral  (compare  with  Riemann

integration).
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is  also  a  random  variable  with

expected value Ù0

1
f (x ) d x , but this
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In[65]:= Range@10D

Out[65]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10<
In[66]:= Random@D

Out[66]= 0.969234

In[67]:= HRange@10D - Random@DL � 10

Out[67]= 80.0359418, 0.135942, 0.235942, 0.335942,

0.435942, 0.535942, 0.635942, 0.735942, 0.835942, 0.935942<
In[68]:= Map@f, HRange@10D - Random@DL � 10D

Out[68]= 81, 1, 1, 1, 1, 3, 5, 2, 2, 2<
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In[69]:= Mean@Map@f, HRange@10D - Random@DL � 10DD
Out[69]=

9

5

In[70]:= QMC@n_D := Mean@Map@f, HRange@nD - Random@DL � nDD
In[71]:= N@QMC@10^2DD

Out[71]= 1.97

In[72]:= N@QMC@10^4DD
Out[72]= 2.0001

In[73]:= N@QMC@10^6DD
Out[73]= 2.

In[74]:= % - 2

Out[74]= -3. ´ 10-6

This  is  an  example  of  quasi-Monte

Carlo  integration.  (Actually,  the

term "QMC" is sometimes applied to

only fully deterministic analogues of

MC;  e.g.,  taking  Vi =  i  /n  for  i  =

1,2,...,n.   A  scheme  like  the  above,

which  still  uses  some  randomness,

would  be  called  randomized  quasi-

Monte Carlo, or RQMC integration.)

A crude slogan we might consider is

"To reduce variance, reduce random-

ness."   But how true is  this?  And

how  much  randomness  can  we  take

away  from  a  stochastic  process

before we destroy the things we're

trying to measure, like A and P?  

Can we take away ALL of the random-

ness and construct a non-stochastic

process that nonetheless gives use-

ful  information  about  the  original

stochastic process?

These  are  major  themes  of  my

research,  and  they're  themes  that

I'll  touch upon  in  the  lectures  and

the  homework,  and  that  you  may

wish to explore in your final project.

At the same time, I want you to end

up with  a  basic  knowledge of  some

of the sorts of stochastic processes

I and others study:  Markov chains,

Poisson processes,  Brownian motion,

etc.
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term "QMC" is sometimes applied to

only fully deterministic analogues of

MC;  e.g.,  taking  Vi =  i  /n  for  i  =

1,2,...,n.   A  scheme  like  the  above,

which  still  uses  some  randomness,

would  be  called  randomized  quasi-

Monte Carlo, or RQMC integration.)

A crude slogan we might consider is

"To reduce variance, reduce random-

ness."   But how true is  this?  And

how  much  randomness  can  we  take

away  from  a  stochastic  process

before we destroy the things we're

trying to measure, like A and P?  

Can we take away ALL of the random-

ness and construct a non-stochastic

process that nonetheless gives use-

ful  information  about  the  original

stochastic process?

These  are  major  themes  of  my

research,  and  they're  themes  that

I'll  touch upon  in  the  lectures  and

the  homework,  and  that  you  may

wish to explore in your final project.

At the same time, I want you to end

up with  a  basic  knowledge of  some

of the sorts of stochastic processes

I and others study:  Markov chains,

Poisson processes,  Brownian motion,

etc.
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This  is  an  example  of  quasi-Monte

Carlo  integration.  (Actually,  the

term "QMC" is sometimes applied to

only fully deterministic analogues of

MC;  e.g.,  taking  Vi =  i  /n  for  i  =

1,2,...,n.   A  scheme  like  the  above,

which  still  uses  some  randomness,

would  be  called  randomized  quasi-

Monte Carlo, or RQMC integration.)

A crude slogan we might consider is

"To reduce variance, reduce random-

ness."   But how true is  this?  And

how  much  randomness  can  we  take

away  from  a  stochastic  process

before we destroy the things we're

trying to measure, like A and P?  

Can we take away ALL of the random-

ness and construct a non-stochastic

process that nonetheless gives use-

ful  information  about  the  original

stochastic process?

These  are  major  themes  of  my

research,  and  they're  themes  that

I'll  touch upon  in  the  lectures  and

the  homework,  and  that  you  may

wish to explore in your final project.

At the same time, I want you to end

up with  a  basic  knowledge of  some

of the sorts of stochastic processes

I and others study:  Markov chains,

Poisson processes,  Brownian motion,

etc.

Homework for next Monday

1.  Use  Mathematica  to  find  the

100th digit of Π (counting the initial

3 as a digit) and the 100th digit of Π

after the decimal point.   (To get a

free copy of Mathematica  for your

PC, contact me.)  

2. Suppose X and Y are Bernoulli ran-

dom variables with P(X=1) = P(Y=1) =

.4.  Note that this description does

not specify the joint distribution of

X  and  Y.   (Let  s  =  P(X=1,Y=1),  t  =

P(X=1,Y=0),  u = P(X=0,Y=1),  and v  =

P(X=0, Y=0); all we know is that s + t

+ u + v = 1 with s + t = P(X=1) = .4 and

s + u = P(Y=1) = .4.)  How big might

the variance of X+Y be?  How small

might  the  variance  of  X+Y  be?

What would the variance be if X and

Y are independent?  (As a warm-up,

first  do  the  simplified  version  of

the problem in which .4 is replaced

by .5.)
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2. Suppose X and Y are Bernoulli ran-

dom variables with P(X=1) = P(Y=1) =

.4.  Note that this description does

not specify the joint distribution of

X  and  Y.   (Let  s  =  P(X=1,Y=1),  t  =
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the variance of X+Y be?  How small

might  the  variance  of  X+Y  be?

What would the variance be if X and

Y are independent?  (As a warm-up,

first  do  the  simplified  version  of

the problem in which .4 is replaced

by .5.)
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