
Reading and homework assignment

For  9/27,  read  11.1  -  11.2  in  Grin-

stead and Snell.

For  10/4,  read  11.3  -  11.5  in  Grin-

stead and Snell AND do assignment

#2:  http://jamesprop-

p.org/584/P2.pdf

Mathematica reimbursement

During the break, please fill out the

Expense Approval forms forms (for

purchase of copies of Mathematica)

as described below and return them

with your receipt.  (You can also do

this next week.)

Name of Person or Business To Be Reimbursed: <your

name>

Date: <today's date>

Department: Mathematical Sciences

Remit To Address: <your address>

Purpose for Incurring the Expense: Purchase of soft-

ware related to PI's research

Total:  [make  entries  on  separate  lines  for  purchase

price, sales tax, and total]

Signature (Person Incurring Expense): <your signature>



Name of Person or Business To Be Reimbursed: <your

name>

Date: <today's date>

Department: Mathematical Sciences

Remit To Address: <your address>

Purpose for Incurring the Expense: Purchase of soft-

ware related to PI's research

Total:  [make  entries  on  separate  lines  for  purchase

price, sales tax, and total]

Signature (Person Incurring Expense): <your signature>

Random variables (mostly review)

Probability spaces

A  probability  space  is  a  set  W

equipped with a probability measure

m(.),  i.e.,  a real-valued function m(.)

satisfying two properties:

(1) m(Ω) ³ 0 for all Ω in W, and

(2) ÚΩ in W m(Ω) = 1.

(Interpretation: W is a set of all pos-

sible  outcomes  of  a  one-step  pro-

cess,  like  the  roll  of  a  die,  or  the

set  of  all  possible  histories  of  a

many-step  process,  like  tossing  a

coin  repeatedly;  for  each  Ω  in  W,

m(Ω)  is  the probability of the out-

come/history Ω.)
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For  any  subset  E  of  W,  we  define

P(E) (or sometimes "Prob(E)") as 

ÚΩ in E   m(Ω).

We call E  an event, and we call P(E)

the probability of E.
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For  any  subset  E  of  W,  we  define

P(E) (or sometimes "Prob(E)") as 

ÚΩ in E   m(Ω).

We call E  an event, and we call P(E)

the probability of E.

We say two events E and F are inde-

pendent if P(E Ý F), also written P(E

and F), is equal to 

P(E) P(F).

Example:  Let  W  =  {1,2,3,4,5,6}  with

m(Ω) = 1

6
 for all Ω in W, correspond-

ing to the rolls of a fair die.   The

event  "We  roll  an  odd  number"  is

the set E = {1,3,5},  the event "We

roll a square" is the event F = {1,4},

and the event "We roll an odd num-

ber that is also a perfect square" is

the event E Ý F = {1}.  Since 

P(E) = 1

6
 + 1

6
 + 1

6
 = 1

2
 ,

P(F) = 1

6
 + 1

6
 = 1

3
 , and 

P(E Ý F ) = 1

6
 = ( 1

2
)( 1

3
) = P(E) P(F) ,

the events E and F  are independent.

Note: P({Ω}) = m(Ω).
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 , and 

P(E Ý F ) = 1

6
 = ( 1

2
)( 1

3
) = P(E) P(F) ,

the events E and F  are independent.

Note: P({Ω}) = m(Ω).
H* This is a Mathematica comment.*L

H* Does Mathematica let us define a function by example rather than by a general rule? *L

In[2]:= For@Ω = 1, Ω £ 6, Ω++, m@ΩD = 1 � 6D

In[3]:= m@7D

Out[3]= m@7D

In[4]:= m@3D

Out[4]=
1

6

H* Yes it does! *L

In[5]:= Prob@E_D := Sum@m@E@@iDDD, 8i, Length@ED<D

In[6]:= Prob@81, 3, 5<D

Out[6]=
1

2

In[7]:= Prob@81, 4<D

Out[7]=
1

3

In[8]:= Prob@Intersection@81, 3, 5<, 81, 4<DD

Out[8]=
1

6

In[9]:= Indep@E_, F_D := Prob@Intersection@E, FDD � Prob@ED Prob@FD

In[10]:= Indep@81, 3, 5<, 81, 4<D

Out[10]= True

In[11]:= Indep@81, 3, 5<, 81, 5<D

Out[11]= False
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Random variables as functions

A random variable (or  "r.v.")  is  a

real-valued function on a probabil-

ity space.

Let X   be a real-valued function on

W, and let a be some real number.

We define the event X=a as the set 

{Ω: X(Ω)=a}.

Example:  W  =  {HH,HT,TH,TT},  with

m(Ω)= 1

4
 for all Ω.  

Let 

Z(HH)=0, 

Z(HT)=Z(TH)=1, and 

Z(TT)=2.

That  is,  the  random  variable  Z  is

the number of Tails that turn up in

two tosses of a fair coin.  We have 

P(Z=0) = P({HH}) = 1

4
, 

P(Z=1) = P({HT,TH}) = 1

4
 + 1

4
 = 1

2
, and

P(Z=2) = P({TT}) = 1

4
 .

We recognize this as the probability

distribution  function  of  a  binomial

random  variable  with  parameters

n=2 and p= 1

2
.

Consider  the  random  variable  Z'

given by

Z'(HH)=2, 

Z'(HT)=Z'(TH)=1, and 

Z'(TT)=0.

That  is,  the  random  variable  Z'  is

the number of Heads that turn up in

those same two tosses of the coin.

Z' , like Z, is a binomial random vari-

able  with  parameters  n=2  and  p= 1

2
.

They have the same probability dis-

tribution or probability law.  But Z'

is not the same  random variable as

Z, because it is not the same func-

tion on the set W = {HH,HT,TH,TT}.

A random variable taking only the val-

ues 0 and 1 is called a Bernoulli r.v.

We say X  is Bernoulli  with parame-

ter p if P(X=1) = p and P(X=0) = 1-p.

Other kinds of discrete random vari-

ables  you  need  to  be  comfortable

with are uniform, binomial, and geo-

metric random variables.
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Expected value and linearity of expectation

Given  two  random variables  X,Y  on

the  same  probability  space  W,  we

define a new random variable X+Y on

W by the formula

(X+Y)(Ω) = X(Ω) + Y(Ω).

Going back to the previous example:

Put

X(HH) = 0, X(HT) = 0, 

X(TH) = 1, X(TT) = 1

(that is, 0 if the 1st toss is Heads

and 1 if the 1st toss is Tails) and

Y(HH) = 0, Y(HT) = 1, 

Y(TH) = 0, Y(TT) = 1

(that is, 0 if the 2nd toss is Heads

and 1 if the 2nd toss is Tails).

Then X+Y is the function Z satisfy-

ing

Z(HH) = 0, Z(HT) = 1, 

Z(TH) = 1, Z(TT) = 2

which we recognize as the function

we called Z in the previous section.
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In[12]:= 8X@HHD, X@HTD, X@THD, X@TTD< = 80, 0, 1, 1<

Out[12]= 80, 0, 1, 1<

In[13]:= X@HHD

Out[13]= 0

In[14]:= X@HHHD

Out[14]= X@HHHD

In[15]:= 8Y@HHD, Y@HTD, Y@THD, Y@TTD< = 80, 1, 0, 1<

Out[15]= 80, 1, 0, 1<

In[16]:= Z@w_D := X@wD + Y@wD

In[17]:= 8Z@HHD, Z@HTD, Z@THD, Z@TTD<

Out[17]= 80, 1, 1, 2<

In[18]:= Map@Z, 8HH, HT, TH, TT<D

Out[18]= 80, 1, 1, 2<

In[19]:= Z �� 8HH, HT, TH, TT<

Out[19]= 80, 1, 1, 2<

In[20]:= AddTwoRVs := Function@8f, g<, Function@w, f@wD + g@wDDD

In[21]:= AddTwoRVs@X, YD �� 8HH, HT, TH, TT<

Out[21]= 80, 1, 1, 2<

Define the expected value of the ran-

dom variable X  (in symbols, Exp(X)

or E(X)) as 

(1) E(X) = ÚΩ in W  X(Ω) m(Ω).

By grouping together those terms in

which the value of X(Ω) is the same,

we get

(2) E(X) = Úa  ÚΩ: X HΩL=a X(Ω) m(Ω)

        = Úa ÚΩ: X HΩL=a a m(Ω)

        = Úa a  ÚΩ: X HΩL=a m(Ω)

        = Úa a  P(X=a)

where a ranges over all values taken

by X(Ω).
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Define the expected value of the ran-

dom variable X  (in symbols, Exp(X)

or E(X)) as 

(1) E(X) = ÚΩ in W  X(Ω) m(Ω).

By grouping together those terms in

which the value of X(Ω) is the same,

we get

(2) E(X) = Úa  ÚΩ: X HΩL=a X(Ω) m(Ω)

        = Úa ÚΩ: X HΩL=a a m(Ω)

        = Úa a  ÚΩ: X HΩL=a m(Ω)

        = Úa a  P(X=a)

where a ranges over all values taken

by X(Ω).

Example: If X is Bernoulli with param-

eter p,

E(X) = (1)(p)+(0)(1-p) = p.

Fact: E(X+Y)=E(X)+E(Y).

Proof: E(X+Y) = ÚΩ  (X+Y)(Ω) m(Ω)

= ÚΩ  (X(Ω)+Y(Ω)) m(Ω)

= ÚΩ  X(Ω) m(Ω) + Y(Ω) m(Ω)

= ÚΩ X(Ω) m(Ω) +  ÚΩY(Ω) m(Ω)

= E(X) + E(Y).

More generally, 

E(aX+bY) = a E(X) + b E(Y),

for arbitrary coefficients a,b.

This  is  called  linearity                of

expectation.
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E(aX+bY) = a E(X) + b E(Y),

for arbitrary coefficients a,b.

This  is  called  linearity                of

expectation.
In[22]:= 8m@HHD, m@HTD, m@THD, m@TTD< = 81 � 4, 1 � 4, 1 � 4, 1 � 4<

Out[22]= :
1

4
,
1

4
,
1

4
,
1

4
>

In[23]:= Domain@XD = 8HH, HT, TH, TT<

Out[23]= 8HH, HT, TH, TT<

In[27]:= Map@X, Domain@XDD

Out[27]= 80, 0, 1, 1<

In[28]:= Map@m, Domain@XDD

Out[28]= :
1

4
,
1

4
,
1

4
,
1

4
>

In[24]:= Sum@X@wD m@wD, 8w, Domain@XD<D

Out[24]=
1

2

In[29]:= ExpVal@f_D := Sum@f@wD * m@wD, 8w, Domain@fD<D

In[30]:= ExpVal@XD

Out[30]=
1

2

In[31]:= Domain@YD = Domain@XD

Out[31]= 8HH, HT, TH, TT<

In[32]:= Domain@ZD = Domain@XD;

In[35]:= Map@X, Domain@XDD

Out[35]= 80, 0, 1, 1<

16   Lec02.nb



In[36]:= Map@Y, Domain@YDD

Out[36]= 80, 1, 0, 1<

In[37]:= Map@Z, Domain@ZDD

Out[37]= 80, 1, 1, 2<

In[33]:= ExpVal@YD

Out[33]=
1

2

In[34]:= ExpVal@ZD

Out[34]= 1

(This trick of explicitly defining the

domain  strikes  me  as  kludgey;  can

anyone think of a better way to do

this?  When a function is defined by

example,  Mathematica  must  record

the  (current)  domain  someplace;  is

there a way to access this?)

H* For subscripts, use control-minus;

for superscripts, use control-6;

for returning to the main line, use control-space. *L
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Multiplying random variables

Given two random variables X and Y

on  the  probability  space  W,  we

define a new random variable XY on

the probability space W  by the for-

mula (XY)(Ω) = X(Ω) Y(Ω).

Returning to our two-coins example,

XY is the function W satisfying

W(HH) = 0, W(HT) = 0, 

W(TH) = 0, W(TT) = 1.

In general, it is not the case that 

E(XY) = E(X) E(Y)

whenever  X,Y  are  random variables

on a probability space W.

E.g., in our two-coins example,

E(WX) = E(W) = 1

4
 whereas 

E(W) E(X) = ( 1

4
)( 1

2
) = 1

8
 ¹ 1

4
.
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on a probability space W.

E.g., in our two-coins example,

E(WX) = E(W) = 1

4
 whereas 

E(W) E(X) = ( 1

4
)( 1

2
) = 1

8
 ¹ 1

4
.

We say that the random            variables X

and Y are independent if the events

X=a and Y=b are independent for all

a and b.

That is, X and Y are independent iff

P(X=a  and  Y=b)  =  P(X=a)

P(Y=b) 

for all a,b (or equivalently "for all a

in the range of X and b in the range

of Y" or "for all a,b with P(X=a) and

P(Y=b) positive").

Fact:  When  X  and  Y  are  indepen-

dent, 

E(XY) = E(X) E(Y).

For a proof, see Theorem 6.4 of Grin-

stead and Snell.

In our running example (tossing two

coins), X and Y are independent but

X and W are not.
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We say that the random            variables X

and Y are independent if the events

X=a and Y=b are independent for all

a and b.

That is, X and Y are independent iff

P(X=a  and  Y=b)  =  P(X=a)

P(Y=b) 

for all a,b (or equivalently "for all a

in the range of X and b in the range

of Y" or "for all a,b with P(X=a) and

P(Y=b) positive").

Fact:  When  X  and  Y  are  indepen-

dent, 

E(XY) = E(X) E(Y).

For a proof, see Theorem 6.4 of Grin-

stead and Snell.

In our running example (tossing two

coins), X and Y are independent but

X and W are not.
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We say that the random            variables X

and Y are independent if the events

X=a and Y=b are independent for all

a and b.

That is, X and Y are independent iff

P(X=a  and  Y=b)  =  P(X=a)

P(Y=b) 

for all a,b (or equivalently "for all a

in the range of X and b in the range

of Y" or "for all a,b with P(X=a) and

P(Y=b) positive").

Fact:  When  X  and  Y  are  indepen-

dent, 

E(XY) = E(X) E(Y).

For a proof, see Theorem 6.4 of Grin-

stead and Snell.

In our running example (tossing two

coins), X and Y are independent but

X and W are not.
Variance

Definition: 

Var(X) = E(X 2) - [E(X)] 2 ³ 0.

Example:  With Z  governed by the

distribution Binomial(2, 1

2
) as above, 

E(Z)=(0)( 1

4
)+(1)( 1

2
)+(2)( 1

4
) = 1 and

E(Z 2)=(0)( 1

4
)+(1)( 1

2
)+(4)( 1

4
) = 3

2
, so

Var(Z) = 3

2
 - 1 = 1

2
 .

Important  special  case:  If  X  is  a

Bernoulli  r.v.  with  P(X=1)  =  p   and

P(X=0) = 1-p, we have X 2= X  (that

is, X 2(Ω)=X(Ω) for all Ω), so 

Var(X) = E(X 2) - [E(X)] 2 

= E(X) - [E(X)] 2 

= p  - p2  (also written as p(1-

p)).

Fact:  If  X  and  Y  are  independent

r.v.'s, 

 Var(X+Y) = Var(X) + Var(Y).

Proof: See Theorem 6.8.

Example:  In  our  two-coins  example,

we have 

Var(X) = 1

2
 - 1

4
 = 1

4
,

Var(Y) = 1

2
 - 1

4
 = 1

4
, and 

Var(X+Y) = Var(Z) 

    = 1

2
 = Var(X) + Var(Y).

Note by the way that 

Var(aX) = a2 Var(X), 

so for independent random variables

X and Y,

Var(aX+bY) = a2 Var(X) + b2 Var(Y).
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Important  special  case:  If  X  is  a

Bernoulli  r.v.  with  P(X=1)  =  p   and

P(X=0) = 1-p, we have X 2= X  (that

is, X 2(Ω)=X(Ω) for all Ω), so 

Var(X) = E(X 2) - [E(X)] 2 

= E(X) - [E(X)] 2 

= p  - p2  (also written as p(1-

p)).

Fact:  If  X  and  Y  are  independent

r.v.'s, 

 Var(X+Y) = Var(X) + Var(Y).

Proof: See Theorem 6.8.

Example:  In  our  two-coins  example,

we have 

Var(X) = 1

2
 - 1

4
 = 1

4
,

Var(Y) = 1

2
 - 1

4
 = 1

4
, and 

Var(X+Y) = Var(Z) 

    = 1

2
 = Var(X) + Var(Y).

Note by the way that 

Var(aX) = a2 Var(X), 

so for independent random variables

X and Y,

Var(aX+bY) = a2 Var(X) + b2 Var(Y).
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Important  special  case:  If  X  is  a

Bernoulli  r.v.  with  P(X=1)  =  p   and

P(X=0) = 1-p, we have X 2= X  (that

is, X 2(Ω)=X(Ω) for all Ω), so 

Var(X) = E(X 2) - [E(X)] 2 

= E(X) - [E(X)] 2 

= p  - p2  (also written as p(1-

p)).

Fact:  If  X  and  Y  are  independent

r.v.'s, 

 Var(X+Y) = Var(X) + Var(Y).

Proof: See Theorem 6.8.

Example:  In  our  two-coins  example,

we have 

Var(X) = 1

2
 - 1

4
 = 1

4
,

Var(Y) = 1

2
 - 1

4
 = 1

4
, and 

Var(X+Y) = Var(Z) 

    = 1

2
 = Var(X) + Var(Y).

Note by the way that 

Var(aX) = a2 Var(X), 

so for independent random variables

X and Y,

Var(aX+bY) = a2 Var(X) + b2 Var(Y).
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Important  special  case:  If  X  is  a

Bernoulli  r.v.  with  P(X=1)  =  p   and

P(X=0) = 1-p, we have X 2= X  (that

is, X 2(Ω)=X(Ω) for all Ω), so 

Var(X) = E(X 2) - [E(X)] 2 

= E(X) - [E(X)] 2 

= p  - p2  (also written as p(1-

p)).

Fact:  If  X  and  Y  are  independent

r.v.'s, 

 Var(X+Y) = Var(X) + Var(Y).

Proof: See Theorem 6.8.

Example:  In  our  two-coins  example,

we have 

Var(X) = 1

2
 - 1

4
 = 1

4
,

Var(Y) = 1

2
 - 1

4
 = 1

4
, and 

Var(X+Y) = Var(Z) 

    = 1

2
 = Var(X) + Var(Y).

Note by the way that 

Var(aX) = a2 Var(X), 

so for independent random variables

X and Y,

Var(aX+bY) = a2 Var(X) + b2 Var(Y).
More than two random variables

We say  three random variables  X1,

X2, X3 are independent if

   P(X1 = a  and X2 = b  and X3 = c) 

   = P(X1 = a) P(X2 = b) P(X3 = c)

for all a,b,c.

Fact: If X1, X2, X3 are independent,

E(X1X2X3) = E(X1) E(X2) E(X3).

Fact: If X1, X2, X3 are independent,

Var(X1+X2+X3) = Var(X1) + Var(X2) +

Var(X3).

Note that the formula

E(X1+X2+X3) = E(X1) + E(X2) + E(X3) 

holds in every case, whether or not

the r.v.'s are independent.

That is, expected values always add,

but  variances  typically  only  add

when the random variables are inde-

pendent.

(Non-)Example:  W  =

{000,011,101,110}, with m(Ω) = 1

4
 for

all Ω, and with

X(Ω) = the 1st bit of Ω,

Y(Ω) = the 2nd bit of Ω,

Z(Ω) = the 3rd bit of Ω.

Then  X  and  Y  are  independent;  X

and Z are independent; and Y and Z

are independent (that is, the ensem-

ble  exhibits  "pairwise-indepen-

dence"); but X, Y, and Z (taken as a

threesome) are not independent.

What is Var(X+Y+Z) in this case?

(Scroll  back  up  and  have  the  stu-

dents  take  2  minutes  to  compute

this by hand.)

..?..

Exp(X+Y+Z) = (0)(1/4)+(2)(3/4) = 3/2

Exp((X+Y+Z) 2)  =  (0)(1/4)+(4)(3/4) =

3

Var(X+Y+Z) = 3 - 9/4 = 3/4

It's 3/4, which is also equal to the

sum of the variances!  Check: 

Var(X) + Var(Y) + Var(Z) = 3/4.

What's going on here?

..?..

Fact: As long as X,Y,Z  are pairwise

independent, Var(X+Y+Z) = Var(X) +

Var(Y) + Var(Z).

However,  if  X,Y,  and  Z  are  merely

pairwise independent, we cannot con-

clude that E(XYZ) = E(X)E(Y)E(Z).

All of this applies straightforwardly

to  larger  families  /  ensembles  /

sequences of random variables.
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We say  three random variables  X1,

X2, X3 are independent if

   P(X1 = a  and X2 = b  and X3 = c) 

   = P(X1 = a) P(X2 = b) P(X3 = c)

for all a,b,c.

Fact: If X1, X2, X3 are independent,

E(X1X2X3) = E(X1) E(X2) E(X3).

Fact: If X1, X2, X3 are independent,

Var(X1+X2+X3) = Var(X1) + Var(X2) +

Var(X3).

Note that the formula

E(X1+X2+X3) = E(X1) + E(X2) + E(X3) 

holds in every case, whether or not

the r.v.'s are independent.

That is, expected values always add,

but  variances  typically  only  add

when the random variables are inde-

pendent.

(Non-)Example:  W  =

{000,011,101,110}, with m(Ω) = 1

4
 for

all Ω, and with

X(Ω) = the 1st bit of Ω,

Y(Ω) = the 2nd bit of Ω,

Z(Ω) = the 3rd bit of Ω.

Then  X  and  Y  are  independent;  X

and Z are independent; and Y and Z

are independent (that is, the ensem-

ble  exhibits  "pairwise-indepen-

dence"); but X, Y, and Z (taken as a

threesome) are not independent.

What is Var(X+Y+Z) in this case?

(Scroll  back  up  and  have  the  stu-

dents  take  2  minutes  to  compute

this by hand.)

..?..

Exp(X+Y+Z) = (0)(1/4)+(2)(3/4) = 3/2

Exp((X+Y+Z) 2)  =  (0)(1/4)+(4)(3/4) =

3

Var(X+Y+Z) = 3 - 9/4 = 3/4

It's 3/4, which is also equal to the

sum of the variances!  Check: 

Var(X) + Var(Y) + Var(Z) = 3/4.

What's going on here?

..?..

Fact: As long as X,Y,Z  are pairwise

independent, Var(X+Y+Z) = Var(X) +

Var(Y) + Var(Z).

However,  if  X,Y,  and  Z  are  merely

pairwise independent, we cannot con-

clude that E(XYZ) = E(X)E(Y)E(Z).

All of this applies straightforwardly

to  larger  families  /  ensembles  /

sequences of random variables.
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We say  three random variables  X1,

X2, X3 are independent if

   P(X1 = a  and X2 = b  and X3 = c) 

   = P(X1 = a) P(X2 = b) P(X3 = c)

for all a,b,c.

Fact: If X1, X2, X3 are independent,

E(X1X2X3) = E(X1) E(X2) E(X3).

Fact: If X1, X2, X3 are independent,

Var(X1+X2+X3) = Var(X1) + Var(X2) +

Var(X3).

Note that the formula

E(X1+X2+X3) = E(X1) + E(X2) + E(X3) 

holds in every case, whether or not

the r.v.'s are independent.

That is, expected values always add,

but  variances  typically  only  add

when the random variables are inde-

pendent.

(Non-)Example:  W  =

{000,011,101,110}, with m(Ω) = 1

4
 for

all Ω, and with

X(Ω) = the 1st bit of Ω,

Y(Ω) = the 2nd bit of Ω,

Z(Ω) = the 3rd bit of Ω.

Then  X  and  Y  are  independent;  X

and Z are independent; and Y and Z

are independent (that is, the ensem-

ble  exhibits  "pairwise-indepen-

dence"); but X, Y, and Z (taken as a

threesome) are not independent.

What is Var(X+Y+Z) in this case?

(Scroll  back  up  and  have  the  stu-

dents  take  2  minutes  to  compute

this by hand.)

..?..

Exp(X+Y+Z) = (0)(1/4)+(2)(3/4) = 3/2

Exp((X+Y+Z) 2)  =  (0)(1/4)+(4)(3/4) =

3

Var(X+Y+Z) = 3 - 9/4 = 3/4

It's 3/4, which is also equal to the

sum of the variances!  Check: 

Var(X) + Var(Y) + Var(Z) = 3/4.

What's going on here?

..?..

Fact: As long as X,Y,Z  are pairwise

independent, Var(X+Y+Z) = Var(X) +

Var(Y) + Var(Z).

However,  if  X,Y,  and  Z  are  merely

pairwise independent, we cannot con-

clude that E(XYZ) = E(X)E(Y)E(Z).

All of this applies straightforwardly

to  larger  families  /  ensembles  /

sequences of random variables.

26   Lec02.nb



We say  three random variables  X1,

X2, X3 are independent if

   P(X1 = a  and X2 = b  and X3 = c) 

   = P(X1 = a) P(X2 = b) P(X3 = c)

for all a,b,c.

Fact: If X1, X2, X3 are independent,

E(X1X2X3) = E(X1) E(X2) E(X3).

Fact: If X1, X2, X3 are independent,

Var(X1+X2+X3) = Var(X1) + Var(X2) +

Var(X3).

Note that the formula

E(X1+X2+X3) = E(X1) + E(X2) + E(X3) 

holds in every case, whether or not

the r.v.'s are independent.

That is, expected values always add,

but  variances  typically  only  add

when the random variables are inde-

pendent.

(Non-)Example:  W  =

{000,011,101,110}, with m(Ω) = 1

4
 for

all Ω, and with

X(Ω) = the 1st bit of Ω,

Y(Ω) = the 2nd bit of Ω,

Z(Ω) = the 3rd bit of Ω.

Then  X  and  Y  are  independent;  X

and Z are independent; and Y and Z

are independent (that is, the ensem-

ble  exhibits  "pairwise-indepen-

dence"); but X, Y, and Z (taken as a

threesome) are not independent.

What is Var(X+Y+Z) in this case?

(Scroll  back  up  and  have  the  stu-

dents  take  2  minutes  to  compute

this by hand.)

..?..

Exp(X+Y+Z) = (0)(1/4)+(2)(3/4) = 3/2

Exp((X+Y+Z) 2)  =  (0)(1/4)+(4)(3/4) =

3

Var(X+Y+Z) = 3 - 9/4 = 3/4

It's 3/4, which is also equal to the

sum of the variances!  Check: 

Var(X) + Var(Y) + Var(Z) = 3/4.

What's going on here?

..?..

Fact: As long as X,Y,Z  are pairwise

independent, Var(X+Y+Z) = Var(X) +

Var(Y) + Var(Z).

However,  if  X,Y,  and  Z  are  merely

pairwise independent, we cannot con-

clude that E(XYZ) = E(X)E(Y)E(Z).

All of this applies straightforwardly

to  larger  families  /  ensembles  /

sequences of random variables.
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We say  three random variables  X1,

X2, X3 are independent if

   P(X1 = a  and X2 = b  and X3 = c) 

   = P(X1 = a) P(X2 = b) P(X3 = c)

for all a,b,c.

Fact: If X1, X2, X3 are independent,

E(X1X2X3) = E(X1) E(X2) E(X3).

Fact: If X1, X2, X3 are independent,

Var(X1+X2+X3) = Var(X1) + Var(X2) +

Var(X3).

Note that the formula

E(X1+X2+X3) = E(X1) + E(X2) + E(X3) 

holds in every case, whether or not

the r.v.'s are independent.

That is, expected values always add,

but  variances  typically  only  add

when the random variables are inde-

pendent.

(Non-)Example:  W  =

{000,011,101,110}, with m(Ω) = 1

4
 for

all Ω, and with

X(Ω) = the 1st bit of Ω,

Y(Ω) = the 2nd bit of Ω,

Z(Ω) = the 3rd bit of Ω.

Then  X  and  Y  are  independent;  X

and Z are independent; and Y and Z

are independent (that is, the ensem-

ble  exhibits  "pairwise-indepen-

dence"); but X, Y, and Z (taken as a

threesome) are not independent.

What is Var(X+Y+Z) in this case?

(Scroll  back  up  and  have  the  stu-

dents  take  2  minutes  to  compute

this by hand.)

..?..

Exp(X+Y+Z) = (0)(1/4)+(2)(3/4) = 3/2

Exp((X+Y+Z) 2)  =  (0)(1/4)+(4)(3/4) =

3

Var(X+Y+Z) = 3 - 9/4 = 3/4

It's 3/4, which is also equal to the

sum of the variances!  Check: 

Var(X) + Var(Y) + Var(Z) = 3/4.

What's going on here?

..?..

Fact: As long as X,Y,Z  are pairwise

independent, Var(X+Y+Z) = Var(X) +

Var(Y) + Var(Z).

However,  if  X,Y,  and  Z  are  merely

pairwise independent, we cannot con-

clude that E(XYZ) = E(X)E(Y)E(Z).

All of this applies straightforwardly

to  larger  families  /  ensembles  /

sequences of random variables.

Simulation

Suppose  we  wish  to  simulate  a

Bernoulli random variable with param-

eter p, where p is a rational number,

say p = k/n.

One way to do this is to generate a

uniform random variable on the set

{1,2,3,...,n}; call this random variable

U.  (Let W = {1,2,...,n} and let m(Ω) =

1/n  for all  Ω  in  W.)   Then define a

"parasitic" random variable 

X = f(U), 

where f(i) = 1 if i £ k and f(i) = 0 oth-

erwise.  Then X  is a 0,1-valued (i.e.

Bernoulli) random variable with

Prob(X = 1) = Prob(f(U) = 1)

        = Prob(U £ k)

        = 1/n + ... + 1/n (k times)

        = k/n

        = p.

What if p isn't rational?

In  Mathematica,  this  isn't  a  prob-

lem, since Bernoulli random variables

are a built-in part of the language.

Go  to  the  Help  page  and  enter

"Bernoulli".
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Suppose  we  wish  to  simulate  a

Bernoulli random variable with param-

eter p, where p is a rational number,

say p = k/n.

One way to do this is to generate a

uniform random variable on the set

{1,2,3,...,n}; call this random variable

U.  (Let W = {1,2,...,n} and let m(Ω) =

1/n  for all  Ω  in  W.)   Then define a

"parasitic" random variable 

X = f(U), 

where f(i) = 1 if i £ k and f(i) = 0 oth-

erwise.  Then X  is a 0,1-valued (i.e.

Bernoulli) random variable with

Prob(X = 1) = Prob(f(U) = 1)

        = Prob(U £ k)

        = 1/n + ... + 1/n (k times)

        = k/n

        = p.

What if p isn't rational?

In  Mathematica,  this  isn't  a  prob-

lem, since Bernoulli random variables

are a built-in part of the language.

Go  to  the  Help  page  and  enter

"Bernoulli".
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Suppose  we  wish  to  simulate  a

Bernoulli random variable with param-

eter p, where p is a rational number,

say p = k/n.

One way to do this is to generate a

uniform random variable on the set

{1,2,3,...,n}; call this random variable

U.  (Let W = {1,2,...,n} and let m(Ω) =

1/n  for all  Ω  in  W.)   Then define a

"parasitic" random variable 

X = f(U), 

where f(i) = 1 if i £ k and f(i) = 0 oth-

erwise.  Then X  is a 0,1-valued (i.e.

Bernoulli) random variable with

Prob(X = 1) = Prob(f(U) = 1)

        = Prob(U £ k)

        = 1/n + ... + 1/n (k times)

        = k/n

        = p.

What if p isn't rational?

In  Mathematica,  this  isn't  a  prob-

lem, since Bernoulli random variables

are a built-in part of the language.

Go  to  the  Help  page  and  enter

"Bernoulli".
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Suppose  we  wish  to  simulate  a

Bernoulli random variable with param-

eter p, where p is a rational number,

say p = k/n.

One way to do this is to generate a

uniform random variable on the set

{1,2,3,...,n}; call this random variable

U.  (Let W = {1,2,...,n} and let m(Ω) =

1/n  for all  Ω  in  W.)   Then define a

"parasitic" random variable 

X = f(U), 

where f(i) = 1 if i £ k and f(i) = 0 oth-

erwise.  Then X  is a 0,1-valued (i.e.

Bernoulli) random variable with

Prob(X = 1) = Prob(f(U) = 1)

        = Prob(U £ k)

        = 1/n + ... + 1/n (k times)

        = k/n

        = p.

What if p isn't rational?

In  Mathematica,  this  isn't  a  prob-

lem, since Bernoulli random variables

are a built-in part of the language.

Go  to  the  Help  page  and  enter

"Bernoulli".
In[38]:= Mean@RandomInteger@BernoulliDistribution@1 � 2D, 1000DD

Out[38]=
53

100

In[39]:= N@Mean@RandomInteger@BernoulliDistribution@Pi � 10D, 1000DDD

Out[39]= 0.31

But  what  is  Mathematica  really

doing?  (And what can a programmer

do in  a  language that  doesn't  have

Bernoulli random variables built in?)

..?..

You generate a random real number

between 0 and 1 (call it U but keep

in  mind  that  unlike  our  previous  U 

it's  a  continuous  random  variable)

and then define a  parasitic  random

variable 

X = f(U), 

where f(t) = 1 if t £ p and f(t) = 0 oth-

erwise.  Then X  is a 0,1-valued (i.e.

Bernoulli) random variable with

Prob(X = 1) = Prob(f(U) = 1)

        = Prob(0 £U £ p)

        = p.
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But  what  is  Mathematica  really

doing?  (And what can a programmer

do in  a  language that  doesn't  have

Bernoulli random variables built in?)

..?..

You generate a random real number

between 0 and 1 (call it U but keep

in  mind  that  unlike  our  previous  U 

it's  a  continuous  random  variable)

and then define a  parasitic  random

variable 

X = f(U), 

where f(t) = 1 if t £ p and f(t) = 0 oth-

erwise.  Then X  is a 0,1-valued (i.e.

Bernoulli) random variable with

Prob(X = 1) = Prob(f(U) = 1)

        = Prob(0 £U £ p)

        = p.
In[40]:= f@x_D := If@x £ Pi � 10, 1, 0D

In[41]:= N@Mean@Map@f, Table@RandomReal@D, 8n, 10 000<DDDD

Out[41]= 0.317

(Caveat: Since computer precision is

finite, RandomReal[] is really generat-

ing a random rational number of the

form  k � 2m,  for  some  fixed  m,

where k is a uniform random integer

in {1,2,...,2m}.  So the above code is

really generating a Bernoulli(p)  ran-

dom variable for some rational num-

ber  p  that  is  very  close,  but  not

equal, to Π/10.  More generally: on a

finite  precision  machine,  the  two

cases we've looked at --- rational p

vs. irrational p --- aren't all that dif-

ferent.)
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(Caveat: Since computer precision is

finite, RandomReal[] is really generat-

ing a random rational number of the

form  k � 2m,  for  some  fixed  m,

where k is a uniform random integer

in {1,2,...,2m}.  So the above code is

really generating a Bernoulli(p)  ran-

dom variable for some rational num-

ber  p  that  is  very  close,  but  not

equal, to Π/10.  More generally: on a

finite  precision  machine,  the  two

cases we've looked at --- rational p

vs. irrational p --- aren't all that dif-

ferent.)
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(Caveat: Since computer precision is

finite, RandomReal[] is really generat-

ing a random rational number of the

form  k � 2m,  for  some  fixed  m,

where k is a uniform random integer

in {1,2,...,2m}.  So the above code is

really generating a Bernoulli(p)  ran-

dom variable for some rational num-

ber  p  that  is  very  close,  but  not

equal, to Π/10.  More generally: on a

finite  precision  machine,  the  two

cases we've looked at --- rational p

vs. irrational p --- aren't all that dif-

ferent.)

We've just seen how to construct a

Bernoulli(p)  random variable  from a

Uniform(0,1) random variable.

Can we construct a Geometric(p) ran-

dom variable from a Uniform(0,1) ran-

dom variable?
In[42]:= f@x_D := Ceiling@Log@1 � 2, xDD

In[43]:= Map@f, Table@RandomReal@D, 8n, 100<DD

Out[43]= 81, 4, 2, 1, 1, 4, 2, 1, 2, 2, 1, 1, 5, 1, 1, 1, 5, 2, 1, 1, 1, 2, 4, 2, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1,

4, 3, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 1, 4, 3, 3, 2, 2, 1, 5, 4, 1, 1, 3, 1, 1, 1, 1, 2, 6, 1, 2,

1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 7, 2, 1, 2, 1, 1, 1, 4, 2, 2, 1, 2, 7, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2<

In[44]:= Tally@%D

Out[44]= 881, 54<, 84, 8<, 82, 27<, 85, 3<, 83, 5<, 86, 1<, 87, 2<<

In[45]:= Sort@%D

Out[45]= 881, 54<, 82, 27<, 83, 5<, 84, 8<, 85, 3<, 86, 1<, 87, 2<<

In[46]:= Sort@Tally@Map@f, Table@RandomReal@D, 8n, 1000<DDDD

Out[46]= 881, 494<, 82, 244<, 83, 135<, 84, 63<, 85, 24<, 86, 24<, 87, 7<, 88, 6<, 811, 2<, 816, 1<<

On  the  next  homework  assignment

I'll  ask  you  to  generalize  this  to

other values of p, and then run a sim-

ulation to  check that your program

is giving sensible output.
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On  the  next  homework  assignment

I'll  ask  you  to  generalize  this  to

other values of p, and then run a sim-

ulation to  check that your program

is giving sensible output.

Can we construct a Normal(0,1) (aka

Gaussian) random variable from a Uni-

form(0,1)  random  variable?   (Note

that  here  we're  fully  leaving  the

realm of discrete random variables;

but then we already stuck our toes

over  the  border  when  we  brought

Uniform(0,1)  random  variables  into

the discrete realm.)

Recall the definition of the cumula-

tive distribution function erf(x) asso-

ciated with a Gaussian random vari-

able Z: 

erf(x) = P(Z £ x).

(erf(x)  cannot  be  expressed  in

closed form, but can be written as

an integral.)  erf has domain (-¥,¥)

and  range  (0,1).   Let  f  be  the

inverse  function  of  erf  (sometimes

called  the  probit  function)  with

domain (0,1) and range (-¥,¥).

Claim: If U is U(0,1) (that is, if the

random  variableU  has  probability

law  U(0,1),  i.e.,  is  uniformly  dis-

tributed on the interval [0,1]), then

f(U)  is  N(0,1)  (that  is,  the  random

variable  f(U)  has  probability  law

N(0,1),  i.e.,  is  normally  distributed

with mean 0 and variance 1).

Proof: For every real number a, Prob(-

f(U) £ a) = Prob(U £ erf(a)) = erf(a)

= Prob(Z £ a), so f(U) has the same

cdf  (cumulative  distribution  func-

tion) as an N(0,1) random variable.

Remark:  Since  there  is  no  simple

closed form for the probit function,

this  method  is  not  as  good  as  it

looks.  Other methods are typically

used in practice (e.g. the Box-Muller

method), using only arithmetic opera-

tions,  trig  functions,  exponentials,

and logs.  But the probit method is

conceptually  the  simplest  method,

and the method most susceptible to

generalization.
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Can we construct a Normal(0,1) (aka

Gaussian) random variable from a Uni-

form(0,1)  random  variable?   (Note

that  here  we're  fully  leaving  the

realm of discrete random variables;

but then we already stuck our toes

over  the  border  when  we  brought

Uniform(0,1)  random  variables  into

the discrete realm.)

Recall the definition of the cumula-

tive distribution function erf(x) asso-

ciated with a Gaussian random vari-

able Z: 

erf(x) = P(Z £ x).

(erf(x)  cannot  be  expressed  in

closed form, but can be written as

an integral.)  erf has domain (-¥,¥)

and  range  (0,1).   Let  f  be  the

inverse  function  of  erf  (sometimes

called  the  probit  function)  with

domain (0,1) and range (-¥,¥).

Claim: If U is U(0,1) (that is, if the

random  variableU  has  probability

law  U(0,1),  i.e.,  is  uniformly  dis-

tributed on the interval [0,1]), then

f(U)  is  N(0,1)  (that  is,  the  random

variable  f(U)  has  probability  law

N(0,1),  i.e.,  is  normally  distributed

with mean 0 and variance 1).

Proof: For every real number a, Prob(-

f(U) £ a) = Prob(U £ erf(a)) = erf(a)

= Prob(Z £ a), so f(U) has the same

cdf  (cumulative  distribution  func-

tion) as an N(0,1) random variable.

Remark:  Since  there  is  no  simple

closed form for the probit function,

this  method  is  not  as  good  as  it

looks.  Other methods are typically

used in practice (e.g. the Box-Muller

method), using only arithmetic opera-

tions,  trig  functions,  exponentials,

and logs.  But the probit method is

conceptually  the  simplest  method,

and the method most susceptible to

generalization.

36   Lec02.nb



Can we construct a Normal(0,1) (aka

Gaussian) random variable from a Uni-

form(0,1)  random  variable?   (Note

that  here  we're  fully  leaving  the

realm of discrete random variables;

but then we already stuck our toes

over  the  border  when  we  brought

Uniform(0,1)  random  variables  into

the discrete realm.)

Recall the definition of the cumula-

tive distribution function erf(x) asso-

ciated with a Gaussian random vari-

able Z: 

erf(x) = P(Z £ x).

(erf(x)  cannot  be  expressed  in

closed form, but can be written as

an integral.)  erf has domain (-¥,¥)

and  range  (0,1).   Let  f  be  the

inverse  function  of  erf  (sometimes

called  the  probit  function)  with

domain (0,1) and range (-¥,¥).

Claim: If U is U(0,1) (that is, if the

random  variableU  has  probability

law  U(0,1),  i.e.,  is  uniformly  dis-

tributed on the interval [0,1]), then

f(U)  is  N(0,1)  (that  is,  the  random

variable  f(U)  has  probability  law

N(0,1),  i.e.,  is  normally  distributed

with mean 0 and variance 1).

Proof: For every real number a, Prob(-

f(U) £ a) = Prob(U £ erf(a)) = erf(a)

= Prob(Z £ a), so f(U) has the same

cdf  (cumulative  distribution  func-

tion) as an N(0,1) random variable.

Remark:  Since  there  is  no  simple

closed form for the probit function,

this  method  is  not  as  good  as  it

looks.  Other methods are typically

used in practice (e.g. the Box-Muller

method), using only arithmetic opera-

tions,  trig  functions,  exponentials,

and logs.  But the probit method is

conceptually  the  simplest  method,

and the method most susceptible to

generalization.
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Can we construct a Normal(0,1) (aka

Gaussian) random variable from a Uni-

form(0,1)  random  variable?   (Note

that  here  we're  fully  leaving  the

realm of discrete random variables;

but then we already stuck our toes

over  the  border  when  we  brought

Uniform(0,1)  random  variables  into

the discrete realm.)

Recall the definition of the cumula-

tive distribution function erf(x) asso-

ciated with a Gaussian random vari-

able Z: 

erf(x) = P(Z £ x).

(erf(x)  cannot  be  expressed  in

closed form, but can be written as

an integral.)  erf has domain (-¥,¥)

and  range  (0,1).   Let  f  be  the

inverse  function  of  erf  (sometimes

called  the  probit  function)  with

domain (0,1) and range (-¥,¥).

Claim: If U is U(0,1) (that is, if the

random  variableU  has  probability

law  U(0,1),  i.e.,  is  uniformly  dis-

tributed on the interval [0,1]), then

f(U)  is  N(0,1)  (that  is,  the  random

variable  f(U)  has  probability  law

N(0,1),  i.e.,  is  normally  distributed

with mean 0 and variance 1).

Proof: For every real number a, Prob(-

f(U) £ a) = Prob(U £ erf(a)) = erf(a)

= Prob(Z £ a), so f(U) has the same

cdf  (cumulative  distribution  func-

tion) as an N(0,1) random variable.

Remark:  Since  there  is  no  simple

closed form for the probit function,

this  method  is  not  as  good  as  it

looks.  Other methods are typically

used in practice (e.g. the Box-Muller

method), using only arithmetic opera-

tions,  trig  functions,  exponentials,

and logs.  But the probit method is

conceptually  the  simplest  method,

and the method most susceptible to

generalization.
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Can we construct a Normal(0,1) (aka

Gaussian) random variable from a Uni-

form(0,1)  random  variable?   (Note

that  here  we're  fully  leaving  the

realm of discrete random variables;

but then we already stuck our toes

over  the  border  when  we  brought

Uniform(0,1)  random  variables  into

the discrete realm.)

Recall the definition of the cumula-

tive distribution function erf(x) asso-

ciated with a Gaussian random vari-

able Z: 

erf(x) = P(Z £ x).

(erf(x)  cannot  be  expressed  in

closed form, but can be written as

an integral.)  erf has domain (-¥,¥)

and  range  (0,1).   Let  f  be  the

inverse  function  of  erf  (sometimes

called  the  probit  function)  with

domain (0,1) and range (-¥,¥).

Claim: If U is U(0,1) (that is, if the

random  variableU  has  probability

law  U(0,1),  i.e.,  is  uniformly  dis-

tributed on the interval [0,1]), then

f(U)  is  N(0,1)  (that  is,  the  random

variable  f(U)  has  probability  law

N(0,1),  i.e.,  is  normally  distributed

with mean 0 and variance 1).

Proof: For every real number a, Prob(-

f(U) £ a) = Prob(U £ erf(a)) = erf(a)

= Prob(Z £ a), so f(U) has the same

cdf  (cumulative  distribution  func-

tion) as an N(0,1) random variable.

Remark:  Since  there  is  no  simple

closed form for the probit function,

this  method  is  not  as  good  as  it

looks.  Other methods are typically

used in practice (e.g. the Box-Muller

method), using only arithmetic opera-

tions,  trig  functions,  exponentials,

and logs.  But the probit method is

conceptually  the  simplest  method,

and the method most susceptible to

generalization.

The first homework problem (hints)

Suppose X  and Y  are Bernoulli  ran-

dom variables, so that their joint dis-

tribution is determined by four num-

bers: 

P[X=0 and Y=0],

P[X=0 and Y=1],

P[X=1 and Y=0], and

P[X=1 and Y=1].

Do  we  have  four  degrees  of  free-

dom?

No.   These  four  probabilities  must

add up to 1!

That  leaves  just  three  degrees  of

freedom.
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Suppose X  and Y  are Bernoulli  ran-

dom variables, so that their joint dis-

tribution is determined by four num-

bers: 

P[X=0 and Y=0],

P[X=0 and Y=1],

P[X=1 and Y=0], and

P[X=1 and Y=1].

Do  we  have  four  degrees  of  free-

dom?

No.   These  four  probabilities  must

add up to 1!

That  leaves  just  three  degrees  of

freedom.

If  we  are  given  P[X=1]  and  P[Y=1]

(the  "marginal  probabilities"),  then

that removes two of those degrees

of freedom.

Say P[X=1] = p  and P[Y=1] = q  (so

that P[X=0] = 1-p  and P[Y=0] = 1-q).

Then, putting

    P[X=1 and Y=1] = s,

we have

    P[X=1 and Y=0] = p-s,

    P[X=0 and Y=0] = (1-q)-(p-s),

and

    P[X=0 and Y=1] = q-s.
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If  we  are  given  P[X=1]  and  P[Y=1]

(the  "marginal  probabilities"),  then

that removes two of those degrees

of freedom.

Say P[X=1] = p  and P[Y=1] = q  (so

that P[X=0] = 1-p  and P[Y=0] = 1-q).

Then, putting

    P[X=1 and Y=1] = s,

we have

    P[X=1 and Y=0] = p-s,

    P[X=0 and Y=0] = (1-q)-(p-s),

and

    P[X=0 and Y=1] = q-s.

Take p = q = 1/2.  Then

P[X=0 and Y=0] = s,

P[X=0 and Y=1] = 1/2 - s,

P[X=1 and Y=0] = 1/2 - s, and

P[X=1 and Y=1] = s,

where the only sensible values of s

are 0 £ s £ 1/2.

(The case where X and Y are indepen-

dent corresponds to what value of s?

..?..

s = 1/4.)

Now we can compute Var[X+Y] as a

function of s.

P[X+Y = 0] = s,

P[X+Y = 1] = (1/2 - s) + (1/2 - s) 

      = 1 - 2s, 

P[X+Y = 2] = s.

Exp[X+Y] = ... [have the students do

it]

..?..

(0)(s) + (1)(1-2s) + (2)(s) = 1

(Why is this independent of s?

..?..

Linearity of expectation!

Since  X  and  Y  are  Bernoulli  with

parameter p and q respectively, E(X)

= p, E(Y) = q and E(X+Y) = p+q which

in  our  case  equals  1  and  in  every

case  is  a  constant  that  doesn't

depend on s.)

Exp[(X+Y) 2] = ... [have the students

do it]

..?..

(0)(s) + (1)(1-2s) + (4)(s) = 1+2s

Var[X+Y]  =  Exp[(X+Y) 2]  -

(Exp[X+Y]) 2

= (1+2s) - (1) 2

= 2s.
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Take p = q = 1/2.  Then

P[X=0 and Y=0] = s,

P[X=0 and Y=1] = 1/2 - s,

P[X=1 and Y=0] = 1/2 - s, and

P[X=1 and Y=1] = s,

where the only sensible values of s

are 0 £ s £ 1/2.

(The case where X and Y are indepen-

dent corresponds to what value of s?

..?..

s = 1/4.)

Now we can compute Var[X+Y] as a

function of s.

P[X+Y = 0] = s,

P[X+Y = 1] = (1/2 - s) + (1/2 - s) 

      = 1 - 2s, 

P[X+Y = 2] = s.

Exp[X+Y] = ... [have the students do

it]

..?..

(0)(s) + (1)(1-2s) + (2)(s) = 1

(Why is this independent of s?

..?..

Linearity of expectation!

Since  X  and  Y  are  Bernoulli  with

parameter p and q respectively, E(X)

= p, E(Y) = q and E(X+Y) = p+q which

in  our  case  equals  1  and  in  every

case  is  a  constant  that  doesn't

depend on s.)

Exp[(X+Y) 2] = ... [have the students

do it]

..?..

(0)(s) + (1)(1-2s) + (4)(s) = 1+2s

Var[X+Y]  =  Exp[(X+Y) 2]  -

(Exp[X+Y]) 2

= (1+2s) - (1) 2

= 2s.
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Take p = q = 1/2.  Then

P[X=0 and Y=0] = s,

P[X=0 and Y=1] = 1/2 - s,

P[X=1 and Y=0] = 1/2 - s, and

P[X=1 and Y=1] = s,

where the only sensible values of s

are 0 £ s £ 1/2.

(The case where X and Y are indepen-

dent corresponds to what value of s?

..?..

s = 1/4.)

Now we can compute Var[X+Y] as a

function of s.

P[X+Y = 0] = s,

P[X+Y = 1] = (1/2 - s) + (1/2 - s) 

      = 1 - 2s, 

P[X+Y = 2] = s.

Exp[X+Y] = ... [have the students do

it]

..?..

(0)(s) + (1)(1-2s) + (2)(s) = 1

(Why is this independent of s?

..?..

Linearity of expectation!

Since  X  and  Y  are  Bernoulli  with

parameter p and q respectively, E(X)

= p, E(Y) = q and E(X+Y) = p+q which

in  our  case  equals  1  and  in  every

case  is  a  constant  that  doesn't

depend on s.)

Exp[(X+Y) 2] = ... [have the students

do it]

..?..

(0)(s) + (1)(1-2s) + (4)(s) = 1+2s

Var[X+Y]  =  Exp[(X+Y) 2]  -

(Exp[X+Y]) 2

= (1+2s) - (1) 2

= 2s.
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Take p = q = 1/2.  Then

P[X=0 and Y=0] = s,

P[X=0 and Y=1] = 1/2 - s,

P[X=1 and Y=0] = 1/2 - s, and

P[X=1 and Y=1] = s,

where the only sensible values of s

are 0 £ s £ 1/2.

(The case where X and Y are indepen-

dent corresponds to what value of s?

..?..

s = 1/4.)

Now we can compute Var[X+Y] as a

function of s.

P[X+Y = 0] = s,

P[X+Y = 1] = (1/2 - s) + (1/2 - s) 

      = 1 - 2s, 

P[X+Y = 2] = s.

Exp[X+Y] = ... [have the students do

it]

..?..

(0)(s) + (1)(1-2s) + (2)(s) = 1

(Why is this independent of s?

..?..

Linearity of expectation!

Since  X  and  Y  are  Bernoulli  with

parameter p and q respectively, E(X)

= p, E(Y) = q and E(X+Y) = p+q which

in  our  case  equals  1  and  in  every

case  is  a  constant  that  doesn't

depend on s.)

Exp[(X+Y) 2] = ... [have the students

do it]

..?..

(0)(s) + (1)(1-2s) + (4)(s) = 1+2s

Var[X+Y]  =  Exp[(X+Y) 2]  -

(Exp[X+Y]) 2

= (1+2s) - (1) 2

= 2s.

Check:

If s=0, Var[X+Y] = 0 because X+Y is

constantly 1;

if s=1/4, Var[X+Y] = 1/2 = Var[X] +

Var[Y] because X and Y are indepen-

dent; and

if s=1/2, Var[X+Y] = 1 = 4 Var[X] =

Var[2X] = Var[X+Y] because X = Y. 
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Check:

If s=0, Var[X+Y] = 0 because X+Y is

constantly 1;

if s=1/4, Var[X+Y] = 1/2 = Var[X] +

Var[Y] because X and Y are indepen-

dent; and

if s=1/2, Var[X+Y] = 1 = 4 Var[X] =

Var[2X] = Var[X+Y] because X = Y. 

The homework is similar, with p = q =

0.4.
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Quasirandomness with rotor-routing (demo)

I  demonstrated  the  program  http-

://www.cs.uml.edu/~jpropp/rotor-

router-model/ in its "Walk on finite

graph  A"  mode  (random  walk  on

{0,1,2,3}).
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