
Absorbing Markov chains (sections 11.1 and 11.2)

Matrices of transition probabilities

Let's  revisit  random walk on the  interval

{1, 2,  3,  4}  (note  the  change in  notation:  before,  we

used  {0,  1,  2,  3})  and  put  it  in  a  more  general

f r amewor k.

When the  walker  is at  position  i, he has some probabil -

ity  pi ,j  of  moving to  position  j .

We present  the  numbers pi ,j  in a matrix  P called  a t r an-

sition         matrix .
P = 881, 0, 0, 0<, 81 � 2, 0, 1 � 2, 0<, 80, 1 � 2, 0, 1 � 2<, 80, 0, 0, 1<<
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In  some versions  of  Mat hemat ica, the  default  style  of

presenting  a list  of  lists  looks more like  this:
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If  you find  this  happening, look  in  the  Mat hemat ica

help for  "Print  Matrix".
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This  is  a  r ow-st ochast ic  matrix:  the  entries  in  each

row  form  a probability  distribution  (i.e.,  they  are  non-

negative  numbers that  sum to  1).

Usually we will  just  call  such a matrix  st ochast ic.

(A  square matrix  that  is  both  row-stochastic  and col-

umn-stochastic  is called  doubly-st ochast ic.)

Every  stochastic  matrix  P is  associated  with  a random

process  that  at  each  discrete  time  step  is  in  some

state,  such that  the  probability  of  moving to  state  j  at

the  next  step  is  equal to  pi ,j , where  i   is  the  current

st at e.

Such  a process  is  called  a Markov            chain.  Sometimes

we will  call  the  states  s1, s2, ... instead  of  1, 2, ... .

Note  that  the  probability  of  the  chain going to  state  j

at  the  next  time  step  depends ONLY  on what  state  i

the  chain is  in NOW,  not  on what  states  the  chain vis-

ited  previously.

We  call  P the  transition                matrix  associated  with  the

Markov  chain.
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st at e.

Such  a process  is  called  a Markov            chain.  Sometimes

we will  call  the  states  s1, s2, ... instead  of  1, 2, ... .

Note  that  the  probability  of  the  chain going to  state  j

at  the  next  time  step  depends ONLY  on what  state  i

the  chain is  in NOW,  not  on what  states  the  chain vis-

ited  previously.

We  call  P the  transition                matrix  associated  with  the

Markov  chain.

Absorbing states and absorbing Markov chains

A state  i   is  called  absor bing if  pi ,i  = 1, that  is,  if  the

chain must  stay  in  state  i   forever  once it  has visited

that  state.

Equivalently,  pi ,j  = 0 for  all j    i.

In  our  random walk example, states  1 and 4 are  absorb -

ing; states  2 and 3 are  not.

Say that  state  j   is  a successor  of  state  i   if  pi ,j  > 0.

Write  this  as i ® j .

A Markov  chain is  called  absor bing if  every  state  i  has

a path  of  successors 

i ® i '  ® i ''  ® ...

that  eventually  leads to  an absorbing  state.
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A Markov  chain is  called  absor bing if  every  state  i  has

a path  of  successors 

i ® i '  ® i ''  ® ...

that  eventually  leads to  an absorbing  state.

In  an absorbing  Markov  chain,  the  states  that  aren't

absorbing  are  called  t r ansient .

Example: random walk on {1, 2,  3,  4}.   This  chain is  an

absorbing  Markov  chain.  States  2 and 3 are  transient.

A  much bigger  example  is  the  stepping  stone  model

(Example 11.12 in Grinstead  and Snell);  e.g., the  states

shown in  Figure  11.1 and 11.2 come from  an absorbing

Markov  chain  with  2400  states,  only  2  of  which  are

absor bing.

At  each stage,  a random square S and a random neigh-

bor  T   are  chosen, and the  color  of  S gets  changed to

the  color  of  T.

We  do this  on the  torus  (e.g., the  four  corner  squares

all count  as neighbors),  so that  each square has exactly

8 neighbors.

The  monochromatic  states  (colorings)  are  absorbing;

the  other  states  are  transient.

Claim: For  an absorbing  Markov  chain,  the  probability

that  the  chain  eventually  enters  an absorbing  state

(and stays  there  forever)  is 1.

Proof:  There  exists  some finite  N such that  every  tran -

sient  state  can lead  to  an absorbing  state  in  N   or

fewer  steps,  and there  exists  some positive   Ε   such

that,  for  every  transient  state  i  ,  the  probability  of

arriving  at  an absorbing  state  in  N   or  fewer  steps  is

at  least   Ε .  Then, no matter  where  you start:

the  probability  of  being  in  a transient  state  after  N

steps  is at  most  1 -  Ε ;

the  probability  of  being in  a transient  state  after  2N

steps  is at  most  H1- ΕL2;

the  probability  of  being in  a transient  state  after  3N

steps  is at  most  H1- ΕL3; etc.

Since  H1- ΕLn  ®  0  as n ®  ¥  ,  the  probability  of  the

chain visiting  only transient  states  for  all time  is zero.
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Since  H1- ΕLn  ®  0  as n ®  ¥  ,  the  probability  of  the

chain visiting  only transient  states  for  all time  is zero.

Claim: For  an absorbing  Markov  chain, the  time  that  it

takes  for  the  chain to  arrive  at  some absorbing  state

(a random variable)  has finite  expected  value.

Proof:  We can bound the  expected  value by the  conver-

gent  sum

(N-1) H1L + N H1- ΕL + N H1- ΕL2 + ...

(Here  we're  using the  formula

Exp(X) = P(X ³  1) + ... + P(X ³  N-1)

+ P(X ³  N) + ... + P(X ³  2N-1)

+ P(X ³  2N) + ... + P(X ³  3N-1)

+ ...

where  X denotes  the  number of  steps  that  it  takes  for

the  chain  to  reach  an absorbing  state,  rounded  up to

the  next  multiple  of  N.)

Note  that  this  argument  fills  a hole in one of  our  ear -

lier  analyses of  gambler's  ruin.
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Multiplying transition matrices

To multiply  P by  itself  in  Mat hemat ica, use the  opera-

tor  "."
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Theorem  11.1: Let  P be  the  transition  matrix  of  a

Markov  chain.   The  ij th  entry  pij
HmL  of  the  matrix  Pm

gives the  probability  that  the  Markov  chain, starting  in

state  si , will  be in state  sj  after  m steps.

Proof  for  the  case m=1: Trivial.

Proof  for  the  case m=2: Replace j  by  k and write  pik
H2L =

Új =1
n  pij  pjk .

The  j th  term  in  the  RHS is  equal to  the  probability,

given that  one is already  at  i, of  going to  j  at  the  next

step  and to  k  at  the  step  after  that.   Summing over  j ,

we get  the  total  probability  of  going to  k in two  steps.

Proof  for  higher  cases: Left  to  you (same idea,  more

complicated  notation).
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Theorem  11.2: Let  P be  the  transition  matrix  of  a

Markov  chain, and let  u be the

probability  row-vector  which  represents  the  starting

distribution.  Then the  probability

that  the  chain  is  in  state  i   after  m steps  is  the  it h

entry  in the  vector

uHmL = u Pm.

Proof:  Left  to  you.
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Theorem  11.2: Let  P be  the  transition  matrix  of  a

Markov  chain, and let  u be the

probability  row-vector  which  represents  the  starting

distribution.  Then the  probability

that  the  chain  is  in  state  i   after  m steps  is  the  it h

entry  in the  vector

uHmL = u Pm.

Proof:  Left  to  you.

We'll  be interested  in raising  P to  ever-higher  powers.

E.g., for  our random walk example:
N@MatrixPower@P, 100DD

1. 0. 0. 0.

0.666667 7.88861 ´ 10-31 0. 0.333333

0.333333 0. 7.88861 ´ 10-31 0.666667

0. 0. 0. 1.

This  tells  us that  if  you start  from  state  2,  you have

about  a .333333  chance of  being in state  4  a hundred

time  steps  later.

It  appears that  Pm  converges  to  a limit-matrix  P¥  as

m®¥, and Mat hemat ica confirms  this:
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MatrixForm@Limit@MatrixPower@P, mD, m ® ¥DD
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We'll  prove  this  later  when we discuss  the  canonical

form  for  absorbing  Markov  chain matrices.

Other uses of stochastic matrices

Exercise  11.2.21 (Roberts):  A  city  is  divided  into  3

areas 1, 2, and 3.  It  is estimated  that

amounts u1, u2, and u3 of  pollution  are  emitted  each day

from  these  three  areas. 

A fraction  qij  of  the  pollution  from  region  i ends up the

next  day at  region  j .  A  fraction  qi  = 1 - Új  qij  > 0  goes

into  the  atmosphere  and  escapes.  Let  wi
HnL  be  the

amount of  pollution  in area i after  n days.  Show that  

wi
HnL = u + uQ  + · · · + uQn .

Exercise  11.2.22: The Leontief  macroeconomic model.

(The  matrices  aren't  actually  stochastic,  but  the  idea

is similar.)

An  important  model  that  is  governed  by  stochastic

matrices  is  mass-flow.   We  imagine  a  unit  of  some

massy, infinitely-divisible  fluid,  distributed  over  the  n

states  of  some Markov  chain, with  each site  i  st ar t ing

out  with  u(i) units  of  fluid.

Let  u = (  u(1)  u(2)   u(3)   ... u(n)   )  be  the  row-vector

corresponding  to  the  initial  distribution  of  mass.

At  each  time-step,  the  fluid  that  is  at  i   gets  dis-

tributed  among all  the  states,  with  a proportion  of  pij

of  the  fluid  at  i  going to  j  .

After  one time-step,  the  mass-distribution  vector  is

the  row-vector  uP;

after  another  time-step,  the  mass-distribution  vector

is uP2; etc.
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the  row-vector  uP;

after  another  time-step,  the  mass-distribution  vector

is uP2; etc.

Another way to prove P = 1/3

We  saw in  the  first  lecture  that  for  random walk  on

{1,2,3,4},  the  probability  that  a walker  who starts  at  2

arrives  at  4 is 1/3.

Another  way to  prove  this  is  with  mass-flow  and the

center  of  mass.

At  each time  step:

All  the  mass at  1 stays  at  1.

The mass at  2 splits  evenly between  1 and 3.

The mass at  3 splits  evenly between  2 and 4.

All  the  mass at  4 stays  at  4.

So the  center  of  mass never changes.

At  the  start,  all of  the  mass is at  2.

At  the  end, all of  the  mass is at  1 or  4.

Specifically,  P of  the  mass is  at  4  and 1-P of  the  mass

is at  1, so the  center  of  mass ends up at  P (4)  + (1-P) (1)

= 1+3P.

Equating 1+3P and 2 gives P = 1/3.

This  argument  relies  implicitly  on the  notion  of  har -

monic functions.
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Harmonic functions

Consider an absorbing  Markov  chain with  state  space S

= 8s1, s2, ... , sn} . Let  f   be a function  defined  on S  with

the  property  that

(* ) f (i) = Új in S   pij f (j )

for  all  i, or  in vector  form,  writing  f  as a column vector

f ,

(* * ) f  = Pf  .

Then f  is called  a harmonic               function  for  P. If  you imag-

ine a game in which  your  fortune  is f (i) when you are  in

state  i, then  the  harmonic  condition  (*)  or  (**)  means

that  the  game is  fair  in  the  sense that  your  expected

fortune  after  one step  is  the  same as it  was before

the  step.   (Remember  the  gambler  whose rising  and

falling  fortunes  correspond  to  the  position  of  a random

walker.)   Prove that  when you start  in a transient  state

i   your  expected  final  fortune  is  equal to  your  starting

fortune  f (i).   In  other  words,  a fair  game on a finite

state  space remains fair  to  the  end.

(Proof  later.)
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fortune  f (i).   In  other  words,  a fair  game on a finite

state  space remains fair  to  the  end.

(Proof  later.)

Example: Random walk on {1,2,3,4}, with  f (i)=i.
MatrixForm@PD
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MatrixForm@f = 881<, 82<, 83<, 84<<D
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MatrixForm@P.fD
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If  the  mass at  site  i   is  m(i),  with  the  m(i)' s summing

to  1, then  center  of  mass is at  

1m(1) + 2m(2) + 3m(3) + 4m(4).

Let  

m  =  ( m(1)   m(2)   m(3)   m(4)   )

be  the  mass-distribution  vector  that  tells  how much

mass is  distributed  at  each site;  then  the  center  of

mass associated  with  m is  the  number  mf  (the  product

of  the  row-vector  m and the  column vector  f ).

Now let  u be the  initial  mass distribution.

The center  of  mass starts  out  at  position  uf .

One time-step  later,  the  mass distribution  is  given by

uP (the  product  of  the  row-vector  u and the  matrix  P)

and so the  center  of  mass becomes (uP)f .

But  (uP)f  =  u(Pf )  =  uf ,  which  was the  center  mass

before  the  mass-flow  occurred.

Likewise, after  the  next  step  of  flow,  the  mass distribu -

tion  is  uP2  and the  center  of  mass is  ( mP2)f  = mPPf  =

mPf  = mf  as before.

So, taking  the  limit,  (mP
¥)f  = mf .

14   Lec03.nb



If  the  mass at  site  i   is  m(i),  with  the  m(i)' s summing
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Let  
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be  the  mass-distribution  vector  that  tells  how much

mass is  distributed  at  each site;  then  the  center  of

mass associated  with  m is  the  number  mf  (the  product

of  the  row-vector  m and the  column vector  f ).

Now let  u be the  initial  mass distribution.

The center  of  mass starts  out  at  position  uf .
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One time-step  later,  the  mass distribution  is  given by

uP (the  product  of  the  row-vector  u and the  matrix  P)

and so the  center  of  mass becomes (uP)f .

But  (uP)f  =  u(Pf )  =  uf ,  which  was the  center  mass

before  the  mass-flow  occurred.

Likewise, after  the  next  step  of  flow,  the  mass distribu -

tion  is  uP2  and the  center  of  mass is  ( mP2)f  = mPPf  =

mPf  = mf  as before.

So, taking  the  limit,  (mP
¥)f  = mf .

There  is  a  2-dimensional  row-eigenspace  for  the

matrix  P and the  eigenvalue 1:
MatrixForm@88x, 0, 0, y<<.PD

H x 0 0 y L

So there  must  be  a 2-dimensional  column-eigenspace

for  the  eigenvalue 1.  

We've  found  one column-vector,  namely f:
MatrixForm@P.fD

1
2
3
4

What's  another  column-eigenvector  (for  the  eigen-

value 1), linearly  independent  of  f ? ...

..?..

The all-1's  vector.
MatrixForm@P.881<, 81<, 81<, 81<<D

1
1
1
1

In  fact,  for  any Markov  chain,  the  all-1's  column-vec-

tor  (write  it  as 1) satisfies  P1=1; this  is  just  a conse-

quence of  the  fact  that  the  matrix  P is stochastic.

If  Pf =f  then  any column-vector  v that  can be  written

as a linear  combination  of  1 and f , say v=a1+bf , has the

property  that  Pv=v:

Pv=P(a1+bf )=Pa1+Pbf =aP1+bPf =a1+bf =v.
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In  fact,  for  any Markov  chain,  the  all-1's  column-vec-

tor  (write  it  as 1) satisfies  P1=1; this  is  just  a conse-

quence of  the  fact  that  the  matrix  P is stochastic.

If  Pf =f  then  any column-vector  v that  can be  written

as a linear  combination  of  1 and f , say v=a1+bf , has the

property  that  Pv=v:

Pv=P(a1+bf )=Pa1+Pbf =aP1+bPf =a1+bf =v.

The  fact  that  the  1-eigenspace is  2-dimensional  corre -

sponds to  the  fact  that  the  mass-flow  system  has two

independent  dynamically-conserved  quantities:  total

mass and center-of-mass.
Eigenvalues@PD

:1, 1, -
1

2
,

1

2
>

Taking the  harmonic  functions  point  of  view, there  is a

two-dimensional  space of  harmonic  functions,  spanned

by the  constant  function  1(x)=1 and the  linear  function

f (x)=x .

A  different  basis  for  the  2-dimensional  space of  har -

monic functions  comes from  the  absorption  probabili -

t ies.

We  already  saw last  time  that  the  function  h(x)  =

the  probability  of  getting  

absorbed  at  the  right  if  we 

start  from  x

is  harmonic.   Last  time  we wrote  the  harmonic  condi-

tion  as 

h(x) = 1
2

 h(x-1) + 1
2

 h(x+1)

for  x  non-absorbing,  but  this  is equivalent  to

h = Ph.

We have 

h = (0 P Q  1) T  = (0 1
3

 2
3

 1) T

where superscript- T means "tranpose".   Check:
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t ies.

We  already  saw last  time  that  the  function  h(x)  =

the  probability  of  getting  

absorbed  at  the  right  if  we 

start  from  x

is  harmonic.   Last  time  we wrote  the  harmonic  condi-

tion  as 

h(x) = 1
2

 h(x-1) + 1
2

 h(x+1)

for  x  non-absorbing,  but  this  is equivalent  to

h = Ph.

We have 

h = (0 P Q  1) T  = (0 1
3

 2
3

 1) T

where superscript- T means "tranpose".   Check:
MatrixForm@P.880<, 81 � 3<, 82 � 3<, 81<<D

0
1

3

2

3

1

Any multiple  of  h is harmonic,  but  there  are  other  har -

monic functions,  such as the  one given by  the  column-

vector  (1 2
3

 1
3

 0) T ,

whose entries  give the  probability  of  getting  absorbed

at  the  left  if  we start  from  x .

These  two  column-vectors  form  a different  basis  for

the  space  of  harmonic  functions  for  this  4-state

Markov  chain.
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Any multiple  of  h is harmonic,  but  there  are  other  har -

monic functions,  such as the  one given by  the  column-

vector  (1 2
3

 1
3

 0) T ,

whose entries  give the  probability  of  getting  absorbed

at  the  left  if  we start  from  x .

These  two  column-vectors  form  a different  basis  for

the  space  of  harmonic  functions  for  this  4-state

Markov  chain.

Advance  warning:  This  approach  works  very  nicely

when our  Markov  chain  has finitely  many states  and

our  vector  spaces are  finite-dimensional.   Later  we'll

see that  things  get  more  complicated  when there  are

infinitely  many states.   For  now, just  be  warned  that

one must  be careful  when stepping  off  the  path  we're

currently  treading!
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The stepping stone model

Another  application  of  harmonic  functions  is  to  the

stepping  stones model.

Consider  the  case of  2-colorings  (black  vs. white)  of

the  20-by-20  torus.   The  state  space is  huge,  but

finite,  so harmonic  functions  can be  used without  the

cautions that  we'll  learn  about  later.
Size = 20

20

Board = Table@Table@RandomInteger@D, 8n, Size<D, 8m, Size<D

1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 0 0 0 0 1
0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0
0 0 1 1 0 0 1 0 1 1 1 1 0 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0 0 1 0 0 1 1 1 1 1 1 0 0
0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1
1 0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1
1 1 0 1 1 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1
1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 0 1 1 0 0
0 1 1 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1
0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 1
0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 0 0 1 0 0
1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1
0 0 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 1
1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 1 1
0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 1
0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 0
0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0 1 1
1 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 0
0 0 1 0 1 1 0 1 0 1 1 0 0 0 1 0 0 1 0 1
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MatrixPlot@BoardD
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RandDir@D := H* random direction in grid *L
881, 0<, 80, 1<, 8-1, 0<, 80, -1<<@@RandomInteger@81, 4<DDD

Wrap@x_D := H* wrap coordinates *LWhich@x � 0, Size, x � Size + 1, 1, True, xD

Recolor@D := H* recolor board *LModule@8NewDir, a, b<,
NewDir = RandDir@D; a = 8RandomInteger@81, Size<D, RandomInteger@81, Size<D<;
b = 8Wrap@a@@1DD + NewDir@@1DDD, Wrap@a@@2DD + NewDir@@2DDD<;
Board@@b@@1DD, b@@2DDDD = Board@@a@@1DD, a@@2DDDD; Return@BoardD;D

BoardHistory := Table@Recolor@D, 8n, 1, 1000<D;
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Animate@MatrixPlot@BoardHistory@@nDDD, 8n, Range@1, 1000D<D

n
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1
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1 5 10 15 20

1

5
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15

20

Given a coloring  x  of  the  400  cells,  let  f (x) be the  pro -

portion  of  white  squares.

f (x) = 1 when all the  cells  are  white,

f (x) = 0 when all the  cells  are  black,  and

0 < f( x) < 1 otherwise.

Claim: f  is harmonic.

Proof:  Instead  of  making S  take  the  color  of  T,  we

could have made T  take  the  color  of  S; the  probability

is the  same.  (Note:  This  is  true  because every  square

has  the  same number  of  neighbors  as  every  other.

That's  why we made the  board  into  a torus!)   If  S and

T   were  already  the  same color,  neither  of  these

courses  of  action  affects  the  coloring;  otherwise,  one

of  these  two  equally likely  courses  of  action  increases

f  by  1
400

,  and the  other  decreases  f  by  1
400

,  with  an

average change of  0.

More  formally,  if  the  current  state  is si , the  expected

value of  f  after  one random step  from  si  is a huge sum

Új  pij  f (sj ).  But  we can pair  up the  summands, associat -

ing each index  j  with  another  index  j ' , so that

pij  = pij '  and f (sj )  + f (sj ' )  = 2f (si ),  so that  the  sum

becomes Új  pij  f (si ),  which  is  just  f (si ),  which  was the

value of  f  before  we took  a random step.
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f (x) = 0 when all the  cells  are  black,  and
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More  formally,  if  the  current  state  is si , the  expected

value of  f  after  one random step  from  si  is a huge sum

Új  pij  f (sj ).  But  we can pair  up the  summands, associat -

ing each index  j  with  another  index  j ' , so that

pij  = pij '  and f (sj )  + f (sj ' )  = 2f (si ),  so that  the  sum

becomes Új  pij  f (si ),  which  is  just  f (si ),  which  was the

value of  f  before  we took  a random step.

Consequently, it  may be very  hard  to  say what  sort  of

interface  between  the  black  and white  region  is  likely

to  exist  over  intermediate  time-scales  (long enough so

that  some  sort  of  law-of-large-numbers  will  have

kicked  in to  smoothe  out  the  interface,  but  not  so long

that  the  whole system  will  get  sucked into  an absorb -

ing  state,  i.e.  a  monochromatic  coloring),  but,  it  is

simple to  figure  out  how likely  it  is  that  the  current

state  will  eventually  become all white:  it's  just  f (x).

Reasoning: Let  h(x)  be  the  probability  that,  starting

from  the  coloring  x , the  system  eventually  becomes all

white.   This  function  is clearly  harmonic,  since the  equa-

t ion

h(x) = Úy  pxy  h(y)

merely  encodes the  fact  that  your  probability  of  even-

tual  success  (in  this  case,  success  means having  all

cells  become all  white)  is the  weighted  average of  your

probability  of  success as assessed one time  step  from

now.

Since  there  are  only  two  absorbing  states,  the  space

of  row-eigenvectors  for  the  eigenvalue  1 is  only  2-

dimensional;  hence  the  space of  column-eigenvectors

for  the  eigenvalue 1 is  only 2-dimensional.   Since  f  and

1  are  linearly  independent  harmonic  functions,  h must

be a linear  combination  h=af +b1; i.e., there  exist  coeffi -

cients  a and b  such that  h(x)=af (x)+b1(x)=af (x)+b  for

all  x .  We  can solve for  a and b  by  replacing  x  by  the

two  absorbing  states.

1=h(all  white)= af (all  white)+ b=a+b

0=h(all  black)=af (all  black)+b=0+b=b

So b=0 and a=1, whence h=f  as claimed.
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The Maximum Principle

Here's  an  alternative,  more  versatile  argument  for

that  last  claim that  doesn't  require  knowing the  dimen-

sionality  of  the  space of  harmonic functions:

Look at  the  function  d =h- f , given by

d(x)=h(x)- f (x) for  all x .

The  function  d  is  harmonic  (because it's  a difference

of  two  harmonic  functions)  and it  vanishes at  both  of

the  absorbing  states  (because h(x)=f (x)=1 for  the  all-

white  state  and h(x)=f (x)=0 for  the  all-black  state).

Claim: A harmonic function  d that  vanishes at  all  absorb -

ing states  must  vanish everywhere.

(Note:  If  we can prove this,  then  we'll  have shown that

h- f =0, i.e., h=f , and we'll  be done.)

Proof  by  contradiction:  Suppose not;  that  is,  suppose d

is non-zero  somewhere.

Without  loss of  generality,  suppose d is  positive  some-

wher e.

Let  M>0 be the  maximum value of  d, and take

x0 such that  d Hx0) = M.

Since  d  is  harmonic,  the  value of  d  at  x0  must  be  a

weighted  average of  the  value of  d  at  the  successors

of  x0 (remember  that  state  y  is a successor of  state  x

if  the  transition  probability  from  x  to  y is positive).

But  all of  these  successors y must  satisfy  

d(y)  ²  M, so if  even ONE  successor  has the  property

that  d(y)  < M, the  weighted  average of  the  d(y)'s  will

be less than  M, which is a contradiction.

Hence every  successor y of  x0 satisfies  

d(y) = M.

Now  repeat  the  argument,  using each  such  y  in  the

place of  x0: We  see that  each successor z of  each suc-

cessor y must  satisfy

d(z) = M.

Taking this  logic  to  its  conclusion, we see that  d(x) = M

for  every  state  x  that  can be reached  from  x0.

But  at  least  one such x  is  an absorbing  state,  which  by

hypothesis  does not  satisfy  d(x)  = M;  indeed,  we ass-

umed that  d(x) = 0 whenever x  is an absorbing  state.

Cont r adict ion!

Conclusion: d(x) = 0  for  all  states  (transient  as well  as

absor bing).

If  this  argument  reminds  you of  a trick  you learned

complex analysis or  electrostatics,  studying  continuous

functions  that  were  called  "harmonic",  it's  not  a coinci -

dence!

In  both  cases, the  "Maximum  Principle"  tells  you that

a harmonic function  must achieve its  maximum value

on the  boundary of  its  domain.

In  electrostatics,  the  boundary  is the  geometric  bound-

ary  of  the  object  that  carries  charge;  in  finite-state

Markov  chains,  the  boundary  is  the  set  of  absorbing

st at es.
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In  both  cases, the  "Maximum  Principle"  tells  you that

a harmonic function  must achieve its  maximum value

on the  boundary of  its  domain.

In  electrostatics,  the  boundary  is the  geometric  bound-

ary  of  the  object  that  carries  charge;  in  finite-state

Markov  chains,  the  boundary  is  the  set  of  absorbing

st at es.
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Here's  an  alternative,  more  versatile  argument  for

that  last  claim that  doesn't  require  knowing the  dimen-

sionality  of  the  space of  harmonic functions:

Look at  the  function  d =h- f , given by

d(x)=h(x)- f (x) for  all x .

The  function  d  is  harmonic  (because it's  a difference

of  two  harmonic  functions)  and it  vanishes at  both  of

the  absorbing  states  (because h(x)=f (x)=1 for  the  all-

white  state  and h(x)=f (x)=0 for  the  all-black  state).

Claim: A harmonic function  d that  vanishes at  all  absorb -

ing states  must  vanish everywhere.

(Note:  If  we can prove this,  then  we'll  have shown that

h- f =0, i.e., h=f , and we'll  be done.)

Proof  by  contradiction:  Suppose not;  that  is,  suppose d

is non-zero  somewhere.

Without  loss of  generality,  suppose d is  positive  some-

wher e.

Let  M>0 be the  maximum value of  d, and take

x0 such that  d Hx0) = M.

Since  d  is  harmonic,  the  value of  d  at  x0  must  be  a

weighted  average of  the  value of  d  at  the  successors

of  x0 (remember  that  state  y  is a successor of  state  x

if  the  transition  probability  from  x  to  y is positive).

But  all of  these  successors y must  satisfy  

d(y)  ²  M, so if  even ONE  successor  has the  property

that  d(y)  < M, the  weighted  average of  the  d(y)'s  will

be less than  M, which is a contradiction.

Hence every  successor y of  x0 satisfies  

d(y) = M.

Now  repeat  the  argument,  using each  such  y  in  the

place of  x0: We  see that  each successor z of  each suc-

cessor y must  satisfy

d(z) = M.

Taking this  logic  to  its  conclusion, we see that  d(x) = M

for  every  state  x  that  can be reached  from  x0.

But  at  least  one such x  is  an absorbing  state,  which  by

hypothesis  does not  satisfy  d(x)  = M;  indeed,  we ass-

umed that  d(x) = 0 whenever x  is an absorbing  state.

Cont r adict ion!

Conclusion: d(x) = 0  for  all  states  (transient  as well  as

absor bing).

If  this  argument  reminds  you of  a trick  you learned

complex analysis or  electrostatics,  studying  continuous

functions  that  were  called  "harmonic",  it's  not  a coinci -

dence!

In  both  cases, the  "Maximum  Principle"  tells  you that

a harmonic function  must achieve its  maximum value

on the  boundary of  its  domain.

In  electrostatics,  the  boundary  is the  geometric  bound-

ary  of  the  object  that  carries  charge;  in  finite-state

Markov  chains,  the  boundary  is  the  set  of  absorbing

st at es.

Lec03.nb   27



Here's  an  alternative,  more  versatile  argument  for

that  last  claim that  doesn't  require  knowing the  dimen-

sionality  of  the  space of  harmonic functions:
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h- f =0, i.e., h=f , and we'll  be done.)

Proof  by  contradiction:  Suppose not;  that  is,  suppose d

is non-zero  somewhere.

Without  loss of  generality,  suppose d is  positive  some-

wher e.

Let  M>0 be the  maximum value of  d, and take

x0 such that  d Hx0) = M.

Since  d  is  harmonic,  the  value of  d  at  x0  must  be  a

weighted  average of  the  value of  d  at  the  successors

of  x0 (remember  that  state  y  is a successor of  state  x

if  the  transition  probability  from  x  to  y is positive).

But  all of  these  successors y must  satisfy  

d(y)  ²  M, so if  even ONE  successor  has the  property

that  d(y)  < M, the  weighted  average of  the  d(y)'s  will

be less than  M, which is a contradiction.

Hence every  successor y of  x0 satisfies  

d(y) = M.

Now  repeat  the  argument,  using each  such  y  in  the

place of  x0: We  see that  each successor z of  each suc-

cessor y must  satisfy

d(z) = M.

Taking this  logic  to  its  conclusion, we see that  d(x) = M

for  every  state  x  that  can be reached  from  x0.

But  at  least  one such x  is  an absorbing  state,  which  by

hypothesis  does not  satisfy  d(x)  = M;  indeed,  we ass-

umed that  d(x) = 0 whenever x  is an absorbing  state.

Cont r adict ion!

Conclusion: d(x) = 0  for  all  states  (transient  as well  as

absor bing).

If  this  argument  reminds  you of  a trick  you learned

complex analysis or  electrostatics,  studying  continuous

functions  that  were  called  "harmonic",  it's  not  a coinci -

dence!

In  both  cases, the  "Maximum  Principle"  tells  you that

a harmonic function  must achieve its  maximum value

on the  boundary of  its  domain.

In  electrostatics,  the  boundary  is the  geometric  bound-

ary  of  the  object  that  carries  charge;  in  finite-state

Markov  chains,  the  boundary  is  the  set  of  absorbing

st at es.
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Here's  an  alternative,  more  versatile  argument  for

that  last  claim that  doesn't  require  knowing the  dimen-

sionality  of  the  space of  harmonic functions:

Look at  the  function  d =h- f , given by

d(x)=h(x)- f (x) for  all x .

The  function  d  is  harmonic  (because it's  a difference

of  two  harmonic  functions)  and it  vanishes at  both  of

the  absorbing  states  (because h(x)=f (x)=1 for  the  all-

white  state  and h(x)=f (x)=0 for  the  all-black  state).

Claim: A harmonic function  d that  vanishes at  all  absorb -

ing states  must  vanish everywhere.

(Note:  If  we can prove this,  then  we'll  have shown that

h- f =0, i.e., h=f , and we'll  be done.)

Proof  by  contradiction:  Suppose not;  that  is,  suppose d

is non-zero  somewhere.

Without  loss of  generality,  suppose d is  positive  some-

wher e.

Let  M>0 be the  maximum value of  d, and take

x0 such that  d Hx0) = M.

Since  d  is  harmonic,  the  value of  d  at  x0  must  be  a

weighted  average of  the  value of  d  at  the  successors

of  x0 (remember  that  state  y  is a successor of  state  x

if  the  transition  probability  from  x  to  y is positive).

But  all of  these  successors y must  satisfy  

d(y)  ²  M, so if  even ONE  successor  has the  property

that  d(y)  < M, the  weighted  average of  the  d(y)'s  will

be less than  M, which is a contradiction.

Hence every  successor y of  x0 satisfies  

d(y) = M.

Now  repeat  the  argument,  using each  such  y  in  the

place of  x0: We  see that  each successor z of  each suc-

cessor y must  satisfy

d(z) = M.

Taking this  logic  to  its  conclusion, we see that  d(x) = M

for  every  state  x  that  can be reached  from  x0.

But  at  least  one such x  is  an absorbing  state,  which  by

hypothesis  does not  satisfy  d(x)  = M;  indeed,  we ass-

umed that  d(x) = 0 whenever x  is an absorbing  state.

Cont r adict ion!

Conclusion: d(x) = 0  for  all  states  (transient  as well  as

absor bing).

If  this  argument  reminds  you of  a trick  you learned

complex analysis or  electrostatics,  studying  continuous

functions  that  were  called  "harmonic",  it's  not  a coinci -

dence!

In  both  cases, the  "Maximum  Principle"  tells  you that

a harmonic function  must achieve its  maximum value

on the  boundary of  its  domain.

In  electrostatics,  the  boundary  is the  geometric  bound-

ary  of  the  object  that  carries  charge;  in  finite-state

Markov  chains,  the  boundary  is  the  set  of  absorbing

st at es.

Canonical form

We  renumber  the  states  so that  the  transient  states

come first.   Thus, for  our  random walk on {1,2,3,4},  the

matrix  that  used to  be
1 0 0 0
1

2
0

1

2
0

0
1

2
0

1

2

0 0 0 1

becomes
0

1

2

1

2
0

1

2
0 0

1

2

0 0 1 0

0 0 0 1

Suppose the  chain has t   transient  states  and 

r   absorbing  states.   Then  we can write  the  canonical

matrix  in block-form  as
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Q R
0 I

where 

Q  is a t -by- t  square matrix,

R is a non-zero  t -by-r  matrix,

0 is the  all-zeroes  r -by- t  matrix,  and

I  is the  r -by-r  identity  matrix.

We say such a transition  matrix  is in canonical              form .
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Number of visits and the fundamental matrix

Theorem  11.3: In  an absorbing  Markov  chain, the  proba -

bility  that  the  process  will  be  absorbed  is  1 (in  fact,

Qn ® 0 exponentially  as n ® ¥).

(Proved above.)

Consequence: I  -  Q  is  invertible  (where  I  here  stands

for  the  t -by- t  identity  matrix),  and its  inverse  can be

written  as the  convergent  infinite  sum N  = I  + Q  + Q2

+ ... .  The  matrix  N  is  called  the  fundamental  matrix

for  the   absorbing  Markov  chain.

Claim: The  ij -entry  nij  of  the  matrix  N  is the  expected

number  of  times  the  chain is  in  state  sj , given that  it

starts  in state  si . The  initial  state  is  counted  (as part

of  "the  number of  times...")  if  i = j .

Proof:  Fix  two  transient  states  si  and sj ,  and assume

the  chain  starts  in  si .  Let  X Hk L  be  a random  variable

that  equals 1 if  the  chain is  in  state  sj  after  k  steps,

and equals 0 otherwise.  

We  have  Prob(X Hk L  =  1)  = qij
Hk L  and  Prob(X Hk L  =  0)  =

1 - qij
Hk L,  where  qij

Hk L  denotes  the  ij th  entry  of  Qk .

(Note  that  this  works  for  k = 0  as well  as k > 0,  since

Q0 = I.)   Hence E(X Hk L) = qij
Hk L .

The  expected  number  of  times  the  chain  (having

started  in state  si ) is in state  sj  in the  first  n steps  is

E(X H0L + X H1L + ... + X HnL) = qij
H0L + qij

H1L + ... + qij
HnL.

Sending n®¥ we have

E(X H0L + X H1L + ...) = qij
H0L + qij

H1L + ... = nij  as claimed.
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Theorem  11.3: In  an absorbing  Markov  chain, the  proba -

bility  that  the  process  will  be  absorbed  is  1 (in  fact,

Qn ® 0 exponentially  as n ® ¥).

(Proved above.)

Consequence: I  -  Q  is  invertible  (where  I  here  stands

for  the  t -by- t  identity  matrix),  and its  inverse  can be

written  as the  convergent  infinite  sum N  = I  + Q  + Q2

+ ... .  The  matrix  N  is  called  the  fundamental  matrix

for  the   absorbing  Markov  chain.

Claim: The  ij -entry  nij  of  the  matrix  N  is the  expected

number  of  times  the  chain is  in  state  sj , given that  it

starts  in state  si . The  initial  state  is  counted  (as part

of  "the  number of  times...")  if  i = j .

Proof:  Fix  two  transient  states  si  and sj ,  and assume

the  chain  starts  in  si .  Let  X Hk L  be  a random  variable

that  equals 1 if  the  chain is  in  state  sj  after  k  steps,

and equals 0 otherwise.  

We  have  Prob(X Hk L  =  1)  = qij
Hk L  and  Prob(X Hk L  =  0)  =

1 - qij
Hk L,  where  qij

Hk L  denotes  the  ij th  entry  of  Qk .

(Note  that  this  works  for  k = 0  as well  as k > 0,  since

Q0 = I.)   Hence E(X Hk L) = qij
Hk L .

The  expected  number  of  times  the  chain  (having

started  in state  si ) is in state  sj  in the  first  n steps  is

E(X H0L + X H1L + ... + X HnL) = qij
H0L + qij

H1L + ... + qij
HnL.

Sending n®¥ we have

E(X H0L + X H1L + ...) = qij
H0L + qij

H1L + ... = nij  as claimed.

Q = ::0,
1

2
>, :

1

2
, 0>>;

R = ::
1

2
, 0>, :0,

1

2
>>;

N = Inverse@IdentityMatrix@2D - QD;

Set::wrsym : Symbol N is Protected. �

FM = Inverse@IdentityMatrix@2D - QD;
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MatrixForm@FMD

4

3

2

3

2

3

4

3

To see why 4
3

 and 2
3

 are  correct,  let  x  (resp.  y) be the

expected  number  of  visits  to  2  (resp.  3)  starting  from

2 (recall  that  2  and 3  are  transient  while  1 and 4  are

absor bing).

By symmetry,  x  is  also the  expected  number  of  visits

to  3  starting  from  3,  and y is  also the  expected  num-

ber  of  visits  to  2  starting  from  3.  So x  = 1 + (0+y)/ 2

and y  = 0  + (x+0)/2  (make sure  you see where  they

come from!),  and these  equations have the  unique solu-

tion  

x  = 4
3

,  y = 2
3

 .

Note  that  x  +y  =  2,  which  agrees  with  our  earlier

result  that  the  expected  number of  steps  until  absorp-

tion  (which  is equal to  the  sum over  all  transient  states

of  the  expected  number  of  visits  to  that  states

before  absorption)  is 2.

Theorem  11.5: Let  t i  be the  expected  number  of  steps

before  the  chain is absorbed,

given that  the  chain starts  in state  si , and let  t  be the

column vector  whose ith  entry  is t i . Then t  = Nc, where

c is the  column vector  all of  whose entries  are  1.

Proof.  If  we add all  the  entries  in the  ith  row of  N , we

have the  expected  number  of  times  the  Markov  chain

is  in  a transient  state  (i.e.,  the  time  until  absorption),

given that  the  chain starts  in state  si .  Hence t i  is  the

sum of  the  entries  in  the  ith  row  of  N . Writing  this

statement  in matrix  form  yields  the  theorem.
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sum of  the  entries  in  the  ith  row  of  N . Writing  this

statement  in matrix  form  yields  the  theorem.

34   Lec03.nb


