Absorbing Markov chains (sections 11.1 and 11.2)

What is a Markov chain, really?

That is, what kind of mathematical object is it?

It's NOT a special kind of stochastic matrix (although
we do use stochastic matrices to understand the behav-
lor of Markov chains).

An n-state Markov chain is a probability measure on a
space of (finite or infinite) sequences of states.

It's easiest to explain this in the case of an absorbing
Markov chain.

Example: The Markov chain on the state-space
{1,2,3,4} with transition matrix
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and initial state 2 is a random variable taking the value
(2,1,1,1,1,1,...with probability

P21 P11 P11 P11 P11 --- = 1/2,
the value (2,3,4,4,4,4,...) with probability

P23 P34 P34 P34 Pas .. = 1/4,
the value (2,3,2,1,1,1,...)with probability

P23 P32 P21 P11 P11 .- =1/8,
the value (2,3,2,3,4,4,...) with probability

P23 P32 P23 P34 Pag ... = 1/16,
etc.
(and all other values have probability 0).
Note that (using the terminology introduced in the sec-
ond lecture), things like (2,3,4,4,4,4,...) are not
"states" but outcomes, or elements of the probability
space.
We have an (infinite) probability space

Q :{a)l, Wwo, W3, Wy, }
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wit h
w1 =02,111,11,..),
wy =(2,3,4,4,4,4,..)),
w3 =(2,3,2,1,1,1,...),
wy =(2,3,2,3,4,4,...

j —

and a probability measure m satisfying

m(w;) =1/2" for all i.
If you want, you can include the outcome
(2,3,2,3,2,3,...), which has probability O.
Or you can leave it out. Either way, we get a set of out-
comes, and an assignment of probabilities to those outc-
omes such that every outcome has non-negative proba-
bility and the sum of the probabilities of all the outc-
omes equals 1, which is precisely what we mean by a
probability space.

Sometimes it's more handy to index time starting
from O rather than 1;that is, we use (Xq, X1, X5, ...) INS-
tead of (X, Xo, X3, ...).
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We formalize the notion of an n-state Markov chain by
defining the set

Q) ={(Xg, X1, X2, ...):1 x; nfor alli 0}

and turning it into the probability space by giving it
the probability measure

m((XOv X1, X2, )) = Oxo Pxoxq Pxix, Pxoxg -

This prescription for building a probability space does-
n't make sense for all Markov chains; e.qg., if Pis the 2-

by-2 matrix
11
11
2 2

then for every (Xq, X1, X5, ...) we get an infinite product
with infinitely many factors equal to 1/2, which con-
verges to 0. So each individual outcome w has m(w) =
O! Later on I'll say a little bit about how we make
sense of Markov chains in such cases.

But for absorbing Markov chains, it turns out we don't
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have to worry about such things.
Fact: If the Markov chain associated with the matrix

Pis absorbing, then the sum of m(w) over all win () is
1. So we have a well-defined discrete probability space.
(Note: For some sequences w we have m(w) =0 because
one of the transitions in w corresponds to an entry of
the transition matrix that equalsO.

E.g., for our standard 4-state example,
m((2,3,2,2,1,1,1,...)) because p,, =0.

And for other sequences w we have m(w) =0 because
the infinite product vanishes, even if none of the fac-
tors vanish.

E.g., for our standard 4-state example,
m((2,3,2,3,2,3,...)) =(1/2)(1/2)(1/2)... =0.

But because every absorbing Markov chain has states
X with p,x =1, we have many outcomes w with m(w) >0.
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And indeed if we sum m(w) over all w we get 1, as long
as our Markov chain is an absorbing Markov chain.

This means that to compute the probability of some
event E c () we just need to compute the (possibly infi -
nite) sum 2, ;e M(w).

E.g., returning to our favorite example, to compute the
probability of the event "The Markov chain eventually
gets to state 4", we compute Prob({ws,wq,...} = M(w,) +
M(wy) +...=

1/4 +1/16 +...=1/3.

For most absorbing Markov chains, the space of outc-
omes has a much more complicated structure, so we
can't answer questions like this by just summing geo-
metric series. Instead, we use linear algebra.

For instance, returning to our favorite 4-state Markov
chain, the probability the chain enters state 4 within
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10 steps can be computed as the 2,4th entry of the
matrix P, and the probability that the chain eventu-
ally enters state 4 can be computed as the 2,4th entry
of the matrix

P° =lim,,. P"
Mat hemat ica caveat: don't confuse e WIth wetrixroverip,m !

P={¢1, 0 0, 0}, {272, 0, 1/2, 0}, {0, 1/2, 0, 2/2}, {O, O, O, 1}}
PA2

Mat ri xPower [P, 2]

N[Mat ri xPower [P, 10]1[[2, 411]

Limt [MatrixPower [P, m], m- »][[2, 4]]

But don't make the mistake of confusing these kinds
of calculations with simulations, and don't mistake a
Markov chain (a probability distribution on sequences
of states) with the associated matrix.

The matrix

0

O O Nk
o O NI O
N O

o v O O

1

IS just a matrix, not a Markov chain; its entries deter -
mine a probability measure on the space of sequences
of 1's, 2's, 3's and 4's, and this probability measure is
what we mean by a Markov chain.
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More generally, a probability space whose outcomes
are sequences is called a discrete-time stochastic
process.

(Note that a sequence w = (Xg, X1, X2, ...) can also be
thought of as a function whose domain is the set of
non-negative integers. Later we'll see probability
spaces whose outcomes are functions on{tin R:t 0}
rather than on {0,1,2,...}; such a probability space is
called a continuous-timestochastic process.)

When the elements of () are sequences of the form
(Xg, X1, X2, ...) (Where Xq, X1, X, ... are elements of
{1,2,3,...,n}), it's natural to define random variables Xo,

X1, X5, ... on L. Remember that a random variable is

just a function on (). We define
XO(XO’ X1, X2, ) = X0,
X1(Xo, X1, X2, ...) = Xy,
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XZ(XO! X1, X2, ) = X2,
et C.

So a random element of () can (somewhat circularly!)

be written asthe sequence

(Xo(w), Xa(w), Xz(w), ...)

Note that we've been taking the x's to be elements of
{1,2,...,n} where n is the number of states. This is a

good choice when the states ARE just the numbers

1,2,...,n; but when the state s; is different from the

number i, it's often handy to use (sy,, Sx,, Sx, --.) iNS-
tead of (Xg, X1, X2, ...).

Simulating a generic absorbing Markov chain

Simulating a Markov chain means generating a particu -
lar sequence X4, X», X3, ... In accordance with the transi -
tion probabilities p;. More specifically, suppose you've
already picked x4, X», ..., X;y, and you chose x,, =1, and
now it's time to choose X,,.1. Then your selection proce-
dure must have the property that your chance of choos-
INg Xm41 =] should be p;, regardless of what x4, X, ...,

Xm_1 Were.
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That is, the probability of the compoundevent
Xl = X1, X2 = X9, X3 = X3y veny Xm = Xm
should be of the form

qxl pX1X2 sz X3 pX3 Xgq =" pXm_]_Xm

where dy, is the probability Prob(X; = Xx;).

Let's write code to simulate one step of the Markov
chain associated with an n-by-n transition matrix P,
starting from state |.

First let's solve the sub-problem of simulating a dis-
crete random variable that takes its values on the set
{1,2,...,n}, so that the probabilities of the outcomes
1,2,...,n are precisely the entries of a specified probabil -
ity vector V.

To do this, we divide the interval [0,1] from left to
right into subintervals of lengths vq, v,, vs, ... and pick
a random real number r in [0,1]; our output should be
the unique i such that r is in v;,. Note that the subinter -
vals are

[0,v4], [V1,V1tVo], [Vy1HVo,ViHVo+Y3], ..., SO we can also
describe the output as the smallest i such that
viH,+... 1 exceeds .
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(» sanmple fromthe discrete random variable associated with the vector v x)

DRV[v_] : =
Modul e[{i, sum r},
r = RandonReal []; i =1; sum=vVvI[[1]];
VWil e[sum<r, i ++; sum+=V[[i]]];
Returnfli ]]
(» I f we wanted nore efficiency,
we could use a bisection nethod to find the smallest such i. =)

Tabl e [DRV[{1/2, 1/4, 1/4}], {n, 1, 100}]

Tal |y [%]
Tal | y[Tabl e[DRV[{1/2, 1/4, 1/4}], {n, 1, 1000}]]

Now it's easy to write code to simulate a single step of
the Markov chain with transition matrix P, starting

from state .

Mar kovStep[P_, i _] :=DRV[P[[i1]]

Using this we can simulate n steps of the Markov chain:

Mar kovMul ti Step[P_, i_, n_] :=Mdule[{State =i, Kk},
Print [State];
For [k =1, k =n, K++,
State = MarkovStep[P, State];
Print [State]]]
(» Note that ";" takes precedence over "," in For[...] and If[...] statenents! =)

P={{1, 0, O, 0}, {1/2,0,1/2, 0}, {O,1/2, 0, 1/2}, {0, 0, O, 1}}

Mar kovMul ti Step[P, 2, 10]
Now let's write code to simulate the chain starting
from state until it enters atransient state.

Mar kovAbsorb[P_, i _]1:=Mdule[{State =i, k},
Print [State];
For [k =0, P[[State, State]] <1, K++,
State = MarkovStep[P, State];
Print [State]]; Return[k]]

Mar kovAbsor b [P, 2]
Mar kovAbsorb[P_, i _]1:= Mdule[{State =i, k},

For [k =0, P[[State, State]] <1, k++,
State = MarkovStep[P, State]]; Return[k]]



12 | LecO4.nb

Let's see what sorts of things we get if we run this pro-
cess 1000 times.

Hi st ogram[Tabl e [Mar kovAbsorb [P, 2], {n, 1, 1000}]1]

For comparison, let's see what sorts of things we get
if we sample from a geometric random variable (with
parameter p =1/2) 1000 times:

Hi st ogram[Tabl e [Randoni nt eger [GeonetricDistribution[l/2]], {n, 1, 1000}]1]

The histograms look similar, which makes sense,
because the time it takes to get from state 2 to an
absorbing state is a geometric random variable with
parameter p =1/2:

Canonical form (review)

We renumber the states so that the transient states
come first.

Supposethe chain hast transient states and
r absorbing states. Then we can write the canonical
matrix in block-form as
QR
(6 1)
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where

Q is at-by-t square matrix,

Ris a nhon-zero t-by-r matrix,

O is the all-zeroes r-by-t matrix, and

| is the r-by-r identity matrix.

We say such a transition matrix is in canonical form .

Number of visits and the fundamental matrix (review)

The matrix | - Q is invertible (where | here stands for
the t-by-t identity matrix), and its inverse can be writ -
ten asthe convergent infinite sumN =1 +Q + Q% +....
The matrix N is called the fundamental matrix for the
absorbing Markov chain.

Claim: The ij-entry n; of the matrix N is the expected
number of times the chain is In state s;, given that it

starts in state s;. The initial state is counted (as part
of "the number of times...") if 1 =].
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Claim: Let t; be the expected number of steps before

the chain is absorbed,

given that the chain starts in state s;, and let t be the
column vector whose ith entry is t;. Then t = Nc, where
c is the columnvector all of whose entries are 1.

Absorption probabilities

Let B=NR (with N,Rasin the canonical form).

Claim: The ij-entry b; of the matrix B is the probabil -

ity that an absorbing chain started in the transient
state s; will be absorbed in the absorbing state s; .

Proof 1: The probability in question is equal to
She0 Sk G’ Mg = 2k 2n=0 Gy g = 2k Nik Mg » Which is
b;. (Here n denotes the number of steps the Markov
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chain takes before it leaves the set of transient
states, and k denotes the last transient state the
chain visits.)

before it hits the absorbing state i, and n denotes the
number of steps the chain takes

Proof 2: Let c; be the probability that an absorbing

chain started in the transient state s; will be absorbed
In the absorbing state s;. If we compute c; In terms

of the possibilities on the outcome of the first step,
we have

Cij = Pj + 2k Pik Ck
where k ranges over all the transient states. This is
true for all i,j. This family of equations is equivalent
to the single matrix equation C=R + QC, which we can
successively rewrite asC- QC=R, (I - Q)C=R, and
C=(l - Q) 'R=NR=B.

Mat ri xFor m[FM R]

This agrees with what we proved before (P=1/3).
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Questions about the homework?

Hint for A:

See the discussion "Can we construct a Geometric( p)
random variable from a Uniform(0,1) random variable?"
from near the end of Lecture 2.

Hint for B:

P = {{.5 .5 0}, {.25, .5, .25}, {0, .5, .5}}
N[Mat ri xPower [P, 1000000 000]]

Limt [MatrixPower [P, k], k » o]

(*» What's going on here? x)

P=4{{1/2, 1/2, 0}, {1/4,1/2,1/4}, {0, 1/2, 1/2}}

(» Moral: Don't trust Mathematica's built -
in ideas about handling limts in conjunction with decinmal constants! x)

Mathematica reimbursement

Please hand in your Expense Approval forms (for pur-
chase of copies of Mathematica). Next Tuesday will
be your last chance to do this if you want to reim-
bursed anytime soon.



LecOd.nb |17

Name of Person or Business To Be Reimbursed: <your
name>

Date: <today's date >

Department. Mathematical Sciences

Remit To Address: <your address>

Purpose for Incurring the Expense: Purchase of soft -
ware related to Pl's research

Total: [make entries on separate lines for purchase

price, sales tax, and total]

Signature (Person Incurring EXxpense): <your signature>

Ergodic Markov chains (sections 11.3 and 11.5)

Ergodicity

Definition 11.4: A Markov chain is called an ergodic
chain if it is possible to go from every state to every
state in afinite number of steps. (Note that no absorb-
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ing Markov chain is ergodic, aside from the trivial
absorbing Markov chains with zero or one absorbing
states and no transient states.)

Example: Randomwalk on {1,2,3,4} with reflection on
the ends (1-2 with probability 1and 4-3 with probabil -
ity 1)is ergodic.

Ref = {{0, 1, 0, O}, {1/2, 0, 1/2, 0}, {O, 1/2, 0, 1/2}, {0, 0, 1, 0}};

Mat ri xFor m[Mat ri xPower [Ref, 471]

Note that for this example, it is possible to go from
every state s;to every state s; in afinite number N(i,])
of steps, but it is impossible to remove the depen-
dence of N(i,j) oni and j; that is, there does not exist
N such that for alli andj , it is possible to go from s;
to s; in exactly N steps. That is because N(i,j) must

have the same parity asi-j.
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We say a Markov chain is reqular if there exists an N
such that for alli andj , it is possible to go from s; to
s; in exactly N steps; that is, the Nth power of the

transition matrix P has all its entries positive (see Defi -
nition 11.5). Note that every regular Markov chain is
ergodic.

The reflecting random walk described above is ergodic
but not regular. A slightly different reflecting random
walk that is regular can be obtained from our non-regu-
lar example by changing the behavior at the ends so
that reflection is only partial:

ParRef = {{1/2, 1/2, 0, 0}, {1/2,0,1/2, 0}, {0, 1/2,0, 1/2}, {0, 0,172, 1/2}};

Mat ri xFor m[Mat ri xPower [Par Ref, 311



