
Absorbing Markov chains (sections 11.1 and 11.2)

What is a Markov chain, really?

That  is, what  kind  of  mathematical  object  is it?

It's  NOT  a special  kind  of  stochastic  matrix  (although

we do use stochastic  matrices  to  understand  the  behav-

ior  of  Markov  chains).

An n-state  Markov  chain is  a probability  measure on a

space of  (finite  or  infinite)  sequences of  states.

It's  easiest  to  explain  this  in the  case of  an absorbing

Markov  chain.

Example:  The  Markov  chain  on  the  state-space

{1,2,3,4}  with  transition  matrix
1 0 0 0
1

2
0 1

2
0

0 1

2
0 1

2

0 0 0 1

and initial  state  2 is a random variable  taking  the  value

(2,1,1,1,1,1,...) with  probability  

p21 p11 p11 p11 p11 ... = 1/2,

the  value (2,3,4,4,4,4,...)  with  probability

p23  p34  p34  p34  p34  ... = 1/4,

the  value (2,3,2,1,1,1,...) with  probability

p23  p32  p21 p11 p11 ... = 1/8,

the  value (2,3,2,3,4,4,...)  with  probability

p23  p32  p23  p34  p44  ... = 1/16,

et c.

(and all other  values have probability  0).

Note  that  (using the  terminology  introduced  in the  sec-

ond  lecture),  things  like  (2,3,4,4,4,4,...)  are  not

"states"  but  out comes, or  element s of  the  probability

space.

We have an (infinite)  probability  space

W = {Ω1, Ω2, Ω3, Ω4, ...}

wit h

Ω1 = (2,1,1,1,1,1,...),

Ω2 = (2,3,4,4,4,4,...),

Ω3 = (2,3,2,1,1,1,...),

Ω4 = (2,3,2,3,4,4,...),

...

and a probability  measure m satisfying  

m(Ωi ) = 1� 2 i  for  all i.

If  you  want,  you  can  include  the  outcome

(2,3,2,3,2,3,...),  which has probability  0.

Or  you can leave it  out.   Either  way, we get  a set  of  out -

comes, and an assignment of  probabilities  to  those  outc -

omes such that  every  outcome has non-negative  proba -

bility  and the  sum of  the  probabilities  of  all  the  outc -

omes equals 1, which  is  precisely  what  we mean by  a

probability  space.
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omes equals 1, which  is  precisely  what  we mean by  a

probability  space.

Sometimes  it's  more  handy  to  index  time  starting

from  0 rather  than  1; that  is, we use (x0, x1, x2, ...) ins-

tead  of  (x1, x2, x3, ...).

We formalize  the  notion  of  an n-state  Markov  chain by

defining  the  set  

W = {(x0, x1, x2, ...): 1 ²  x i  ²  n for  all i ³  0}  

and turning  it  into  the  probability  space by  giving  it

the  probability  measure 

m((x0, x1, x2, ...)) = qx0
 px0 x1

 px1 x2
 px2 x3

 ...

This  prescription  for  building  a probability  space does-

n't  make sense for  all Markov  chains; e.g., if  P is the  2-

by-2  matrix
1
2

1
2

1
2

1
2

then  for  every  (x0, x1, x2, ...) we get  an infinite  product

with  infinitely  many factors  equal to  1/2,  which  con-

verges  to  0.   So each individual  outcome Ω has m(Ω)  =

0!   Later  on I'll  say a little  bit  about  how we make

sense of  Markov  chains in such cases.

But  for  absor bing Markov  chains, it  turns  out  we don't

have to  worry  about  such things.

Fact :  If  the  Markov  chain associated  with  the  matrix

P is  absorbing,  then  the  sum of  m(Ω) over  all  Ω in W is

1.  So we have a well-defined  discrete  probability  space.

(Note:  For  some sequences Ω we have m(Ω) = 0 because

one of  the  transitions  in Ω corresponds  to  an entry  of

the  transition  matrix  that  equals 0.

E.g.,  for  our  standard  4-state  example,

m((2,3,2,2,1,1,1,...)) because p22  = 0.

And for  other  sequences Ω we have m(Ω) = 0   because

the  infinite  product  vanishes, even if  none of  the  fac -

tors  vanish.

E.g.,  for  our  standard  4-state  example,

m((2,3,2,3,2,3,...))  = (1/2)(1/2)(1/2)...  = 0.

But  because every  absorbing  Markov  chain  has states

x  with  pxx  = 1, we have many outcomes Ω with  m(Ω) > 0.

And indeed  if  we sum m(Ω) over  all  Ω we get  1, as long

as our Markov  chain is an absorbing  Markov  chain.
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This  means that  to  compute  the  probability  of  some

event  E Í W we just  need to  compute the  (possibly  infi -

nite)  sum SΩ in E  m(Ω).

E.g., returning  to  our  favorite  example, to  compute the

probability  of  the  event  "The  Markov  chain eventually

gets  to  state  4",  we compute  Prob({Ω2,Ω4,...} = m(Ω2) +

m(Ω4) + ... = 

1/4  + 1/16 + ... = 1/3.

For  most  absorbing  Markov  chains, the  space of  outc -

omes has a much more  complicated  structure,  so we

can't  answer  questions  like  this  by  just  summing geo-

metric  series.   Instead,  we use linear  algebra.   

For  instance,  returning  to  our  favorite  4-state  Markov

chain,  the  probability  the  chain  enters  state  4  within

10 steps  can be  computed  as the  2,4th  entry  of  the

matrix  P10, and the  probability  that  the  chain event u-

ally enters  state  4 can be computed  as the  2,4th  entry

of  the  matrix  

P¥ := limn®¥ Pn.
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For  instance,  returning  to  our  favorite  4-state  Markov

chain,  the  probability  the  chain  enters  state  4  within

10 steps  can be  computed  as the  2,4th  entry  of  the

matrix  P10, and the  probability  that  the  chain event u-

ally enters  state  4 can be computed  as the  2,4th  entry

of  the  matrix  

P¥ := limn®¥ Pn.

Mat hemat ica caveat:  don't  confuse  P^n with  MatrixPower[P,n]!:
P = 881, 0, 0, 0<, 81 � 2, 0, 1 � 2, 0<, 80, 1 � 2, 0, 1 � 2<, 80, 0, 0, 1<<

P^2

MatrixPower@P, 2D

N@MatrixPower@P, 10D@@2, 4DDD

Limit@MatrixPower@P, mD, m ® ¥D@@2, 4DD

But  don't  make the  mistake  of  confusing  these  kinds

of  calculat ions  with  simulat ions,  and don't  mistake  a

Markov  chain  (a  probability  distribution  on sequences

of  states)  with  the  associated  matrix.   

The matrix
1 0 0 0
1

2
0 1

2
0

0 1

2
0 1

2

0 0 0 1

is just  a matrix,  not  a Markov  chain; its  entries  deter -

mine a probability  measure on the  space of  sequences

of  1's,  2's,  3's  and 4's,  and this  probability  measure is

what  we mean by a Markov  chain.

More  generally,  a  probability  space whose outcomes

are  sequences is  called  a  discrete-time  stochastic

process.
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More  generally,  a  probability  space whose outcomes

are  sequences is  called  a  discrete-time  stochastic

process.

(Note  that  a sequence Ω  = (x0, x1, x2, ...) can also be

thought  of  as a function  whose domain is  the  set  of

non-negative  integers.   Later  we'll  see  probability

spaces whose outcomes are  functions  on {t in R: t ³  0}

rather  than  on {0,1,2,...};  such  a probability  space is

called a continuous-time stochastic process.) 

When  the  elements  of  W  are  sequences of  the  form

(x0,  x1,  x2,  ...)  (where  x0,  x1,  x2,  ... are  elements  of

{1,2,3,...,n}),  it's  natural  to  define  random variables  X0,

X1, X2, ... on W.  Remember that  a random variable  is

just  a function  on W.  We define

X0(x0, x1, x2, ...) = x0,

X1(x0, x1, x2, ...) = x1,

X2(x0, x1, x2, ...) = x2,

et c.

So a random element  of  W  can (somewhat  circularly!)

be written  as the  sequence

(X0(Ω), X1(Ω), X2(Ω), ...)
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So a random element  of  W  can (somewhat  circularly!)

be written  as the  sequence

(X0(Ω), X1(Ω), X2(Ω), ...)

Note  that  we've  been taking  the  x 's  to  be elements  of

{1,2,...,n}  where  n is  the  number  of  states.   This  is  a

good choice  when the  states  ARE just  the  numbers

1,2,...,n;  but  when the  state  si  is  different  from  the

number  i, it's  often  handy to  use (sx0
, sx1

, sx2
, ...) ins-

tead  of  (x0, x1, x2, ...). 

Simulating a generic absorbing Markov chain

Simulating  a Markov  chain means generating  a particu -

lar  sequence x1, x2, x3, ... in accordance with  the  transi -

tion  probabilities  pij .  More  specifically,  suppose you've

already  picked  x1, x2, ..., xm, and you chose xm = i, and

now it's  time  to  choose xm+1.  Then your  selection  proce -

dure  must  have the  property  that  your  chance of  choos-

ing xm+1 = j  should be pij , regardless  of  what  x1, x2, ...,

xm-1 were.

That  is, the  probability  of  the  compound event  

X1 = x1, X2 = x2, X3 = x3, ..., Xm = xm 

should be of  the  form  

qx1
 px1 x2

 px2 x3
 px3 x4

 ... pxm-1 xm

where qx1
 is the  probability  Prob(X1 = x1).
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That  is, the  probability  of  the  compound event  

X1 = x1, X2 = x2, X3 = x3, ..., Xm = xm 

should be of  the  form  

qx1
 px1 x2

 px2 x3
 px3 x4

 ... pxm-1 xm

where qx1
 is the  probability  Prob(X1 = x1).

Let's  write  code  to  simulate  one step  of  the  Markov

chain  associated  with  an n-by-n  transition  matrix  P,

starting  from  state  i.

First  let's  solve the  sub-problem  of  simulating  a dis-

crete  random variable  that  takes  its  values on the  set

{1,2,...,n},  so  that  the  probabilities  of  the  outcomes

1,2,...,n are  precisely  the  entries  of  a specified  probabil -

ity  vector  v.

To  do  this,  we divide  the  interval  [0,1]  from  left  to

right  into  subintervals  of  lengths  v1, v2, v3, ... and pick

a random real  number  r  in  [0,1];  our  output  should  be

the  unique i such that  r  is in vi .  Note  that  the  subinter -

vals are

[0,v1],  [v1,v1+v2],  [v1+v2,v1+v2+v3],  ...,  so  we  can  also

describe  the  output  as  the  smallest  i  such  that

v1+v2+...+vi  exceeds r.
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DRV@v_D := H* sample from the discrete random variable associated with the vector v *L
Module@8i, sum, r<,
r = RandomReal@D; i = 1; sum = v@@1DD;
While@sum < r, i++; sum += v@@iDDD;
Return@iDD

H* If we wanted more efficiency,
we could use a bisection method to find the smallest such i. *L

Table@DRV@81 � 2, 1 � 4, 1 � 4<D, 8n, 1, 100<D

Tally@%D

Tally@Table@DRV@81 � 2, 1 � 4, 1 � 4<D, 8n, 1, 1000<DD

Now it's  easy to  write  code to  simulate  a single step  of

the  Markov  chain  with  transition  matrix  P,  starting

from  state  i.
MarkovStep@P_, i_D := DRV@P@@iDDD

Using this  we can simulate  n steps  of  the  Markov  chain:
MarkovMultiStep@P_, i_, n_D := Module@8State = i, k<,

Print@StateD;
For@k = 1, k £ n, k++,
State = MarkovStep@P, StateD;
Print@StateDDD

H* Note that ";" takes precedence over "," in For@...D and If@...D statements! *L

P = 881, 0, 0, 0<, 81 � 2, 0, 1 � 2, 0<, 80, 1 � 2, 0, 1 � 2<, 80, 0, 0, 1<<

MarkovMultiStep@P, 2, 10D

Now  let's  write  code  to  simulate  the  chain  starting

from  state  until  it  enters  a transient  state.
MarkovAbsorb@P_, i_D := Module@8State = i, k<,

Print@StateD;
For@k = 0, P@@State, StateDD < 1, k++,
State = MarkovStep@P, StateD;
Print@StateDD; Return@kDD

MarkovAbsorb@P, 2D

MarkovAbsorb@P_, i_D := Module@8State = i, k<,
For@k = 0, P@@State, StateDD < 1, k++,
State = MarkovStep@P, StateDD; Return@kDD

Let's  see what  sorts  of  things  we get  if  we run this  pro -

cess 1000 times.

Lec04.nb   11



Let's  see what  sorts  of  things  we get  if  we run this  pro -

cess 1000 times.
Histogram@Table@MarkovAbsorb@P, 2D, 8n, 1, 1000<DD

For  comparison, let's  see what  sorts  of  things  we get

if  we sample from  a geometric  random variable  (with

parameter  p = 1/2)  1000 times:
Histogram@Table@RandomInteger@GeometricDistribution@1 � 2DD, 8n, 1, 1000<DD

The  histograms  look  similar,  which  makes  sense,

because the  time  it  takes  to  get  from  state  2  to  an

absorbing  state  is  a  geometric  random  variable  with

parameter  p = 1/2:

Canonical form (review)

We  renumber  the  states  so that  the  transient  states

come first.  

Suppose the  chain has t   transient  states  and 

r   absorbing  states.   Then  we can write  the  canonical

matrix  in block-form  as

Q R
0 I

where 

Q  is a t -by- t  square matrix,

R is a non-zero  t -by-r  matrix,

0 is the  all-zeroes  r -by- t  matrix,  and

I  is the  r -by-r  identity  matrix.

We say such a transition  matrix  is in canonical              form .
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where 

Q  is a t -by- t  square matrix,

R is a non-zero  t -by-r  matrix,

0 is the  all-zeroes  r -by- t  matrix,  and

I  is the  r -by-r  identity  matrix.

We say such a transition  matrix  is in canonical              form .

Number of visits and the fundamental matrix (review)

The matrix  I  -  Q  is invertible  (where  I  here  stands  for

the  t -by- t  identity  matrix),  and its  inverse  can be writ -

ten  as the  convergent  infinite  sum N  = I  + Q  + Q2 + ... .

The matrix  N  is  called  the  fundamental                    matrix  for  the

absorbing  Markov  chain.

Claim: The  ij -entry  nij  of  the  matrix  N  is the  expected

number  of  times  the  chain is  in  state  sj , given that  it

starts  in state  si . The  initial  state  is  counted  (as part

of  "the  number of  times...")  if  i = j .

Claim: Let  t i  be the  expected  number  of  steps  before

the  chain is absorbed,

given that  the  chain starts  in state  si , and let  t  be the

column vector  whose ith  entry  is t i . Then t  = Nc, where

c is the  column vector  all of  whose entries  are  1.
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Claim: Let  t i  be the  expected  number  of  steps  before

the  chain is absorbed,

given that  the  chain starts  in state  si , and let  t  be the

column vector  whose ith  entry  is t i . Then t  = Nc, where

c is the  column vector  all of  whose entries  are  1.

Absorption probabilities

Let  B = NR (with  N ,R as in the  canonical form).

Claim: The  ij -entry  bij  of  the  matrix  B is  the  probabil -

ity  that  an absorbing  chain  started  in  the  transient

state  si  will  be absorbed  in the  absorbing  state  sj  .

Proof  1: The probability  in question  is equal to

Ún³0  Úk  qik
HnL r kj  = Úk  Ún³0  qik

HnL r kj  = Úk  nik  r kj  , which  is

bij .  (Here  n denotes  the  number  of  steps  the  Markov

chain  takes  before  it  leaves  the  set  of  transient

states,  and  k  denotes  the  last  transient  state  the

chain visits.)

before  it  hits  the  absorbing  state  i,  and n denotes  the

number of  steps  the  chain takes  
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Let  B = NR (with  N ,R as in the  canonical form).

Claim: The  ij -entry  bij  of  the  matrix  B is  the  probabil -

ity  that  an absorbing  chain  started  in  the  transient

state  si  will  be absorbed  in the  absorbing  state  sj  .

Proof  1: The probability  in question  is equal to

Ún³0  Úk  qik
HnL r kj  = Úk  Ún³0  qik

HnL r kj  = Úk  nik  r kj  , which  is

bij .  (Here  n denotes  the  number  of  steps  the  Markov

chain  takes  before  it  leaves  the  set  of  transient

states,  and  k  denotes  the  last  transient  state  the

chain visits.)

before  it  hits  the  absorbing  state  i,  and n denotes  the

number of  steps  the  chain takes  

Proof  2:  Let  cij  be  the  probability  that  an absorbing

chain started  in the  transient  state  si  will  be absorbed

in the  absorbing  state  sj .  If  we compute  cij  in  terms

of  the  possibilities  on the  outcome  of  the  first  step,

we have

cij  = pij  + Úk  pik  ckj  ,

where  k   ranges over  all  the  transient  states.   This  is

true  for  all  i,j .  This  family  of  equations  is  equivalent

to  the  single matrix  equation  C = R + QC, which  we can

successively rewrite  as C -  QC = R, (I  -  Q)C = R, and 

C = (I  -  Q) -1 R = NR = B.
MatrixForm@FM.RD

This  agrees with  what  we proved  before  (P = 1/3).

Questions about the homework?

Lec04.nb   15



Questions about the homework?

Hint for A:

See the  discussion  "Can we construct  a Geometric( p)

random variable  from  a Uniform(0,1)  random variable?"

from  near the  end of  Lecture  2.

Hint for B:

P = 88.5, .5, 0<, 8.25, .5, .25<, 80, .5, .5<<

N@MatrixPower@P, 1 000 000 000DD

Limit@MatrixPower@P, kD, k ® ¥D

H* What's going on here? *L

P = 881 � 2, 1 � 2, 0<, 81 � 4, 1 � 2, 1 � 4<, 80, 1 � 2, 1 � 2<<

H* Moral: Don't trust Mathematica's built-

in ideas about handling limits in conjunction with decimal constants! *L

Mathematica reimbursement

Please hand in  your  Expense Approval  forms  (for  pur -

chase of  copies  of  Mat hemat ica).   Next  Tuesday  will

be  your  last  chance to  do  this  if  you want  to  reim -

bursed  anytime  soon.

Name of  Person or  Business To  Be Reimbursed:  <your

name>

Date:  <today's  date >

Department:  Mathematical  Sciences

Remit To Address:  <your address >

Purpose for  Incurring  the  Expense: Purchase of  soft -

ware related  to  PI's  research

Total:  [make  entries  on separate  lines  for  purchase

price,  sales tax,  and total]

Signature  (Person Incurring  Expense): <your signature>
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Name of  Person or  Business To  Be Reimbursed:  <your

name>

Date:  <today's  date >

Department:  Mathematical  Sciences

Remit To Address:  <your address >

Purpose for  Incurring  the  Expense: Purchase of  soft -

ware related  to  PI's  research

Total:  [make  entries  on separate  lines  for  purchase

price,  sales tax,  and total]

Signature  (Person Incurring  Expense): <your signature>

Ergodic Markov chains (sections 11.3 and 11.5)

Ergodicity

Definition  11.4: A  Markov  chain  is  called  an er godic

chain if  it  is  possible  to  go from  every  state  to  every

state  in a finite  number of  steps.   (Note  that  no absorb -

ing  Markov  chain  is  ergodic,  aside  from  the  trivial

absorbing  Markov  chains  with  zero  or  one absorbing

states  and no transient  states.)

Example:  Random walk  on {1,2,3,4}  with  reflection  on

the  ends (1®2 with  probability  1 and 4®3 with  probabil -

ity  1) is ergodic.
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Definition  11.4: A  Markov  chain  is  called  an er godic

chain if  it  is  possible  to  go from  every  state  to  every

state  in a finite  number of  steps.   (Note  that  no absorb -

ing  Markov  chain  is  ergodic,  aside  from  the  trivial

absorbing  Markov  chains  with  zero  or  one absorbing

states  and no transient  states.)

Example:  Random walk  on {1,2,3,4}  with  reflection  on

the  ends (1®2 with  probability  1 and 4®3 with  probabil -

ity  1) is ergodic.
Ref = 880, 1, 0, 0<, 81 � 2, 0, 1 � 2, 0<, 80, 1 � 2, 0, 1 � 2<, 80, 0, 1, 0<<;

MatrixForm@MatrixPower@Ref, 4DD

Note  that  for  this  example,  it  is  possible  to  go from

every  state  si to  every  state  sj  in a finite  number N(i,j )

of  steps,  but  it  is  impossible  to  remove  the  depen-

dence of  N(i,j ) on i  and j ; that  is,  there  does not  exist

N   such that  for  all  i  and j  , it  is possible to  go from  si

to  sj  in  exactly  N   steps.   That  is  because N(i,j ) must

have the  same parity  as i- j .

We  say a Markov  chain is  r egular  if  there  exists  an N

such that  for  all  i  and j  , it  is possible to  go from  si  to

sj  in  exactly  N   steps;  that  is,  the  Nth  power  of  the

transition  matrix  P has all its  entries  positive  (see Defi -

nition  11.5).  Note  that  every  regular  Markov  chain  is

er godic.
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We say a Markov  chain is  r egular  if  there  exists  an N

such that  for  all  i  and j  , it  is possible to  go from  si  to

sj  in  exactly  N   steps;  that  is,  the  Nth  power  of  the

transition  matrix  P has all its  entries  positive  (see Defi -

nition  11.5).  Note  that  every  regular  Markov  chain  is

er godic.

The  reflecting  random walk described  above is  ergodic

but  not  regular.   A slightly  different  reflecting  random

walk that  is regular  can be obtained  from  our  non-regu-

lar  example  by  changing the  behavior  at  the  ends so

that  reflection  is only partial:
ParRef = 881 � 2, 1 � 2, 0, 0<, 81 � 2, 0, 1 � 2, 0<, 80, 1 � 2, 0, 1 � 2<, 80, 0, 1 � 2, 1 � 2<<;

MatrixForm@MatrixPower@ParRef, 3DD
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