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Ergodic Markov chains (sections 11.3 and 11.5)

Ergodicity

Definition  11.4: A  Markov  chain  is  called  an er godic

chain if  it  is  possible  to  go from  every  state  to  every

state  in a finite  number of  steps.   (Note  that  no absorb -

ing  Markov  chain  is  ergodic,  aside  from  the  trivial

absorbing  Markov  chains with  one absorbing  state  and

no transient  states.)

Example:  Random walk  on {1,2,3,4}  with  reflection  on

the  ends (1®2 with  probability  1 and 4®3 with  probabil -

ity  1) is ergodic.
Ref = 880, 1, 0, 0<, 81 � 2, 0, 1 � 2, 0<, 80, 1 � 2, 0, 1 � 2<, 80, 0, 1, 0<<
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We say a Markov  chain is  r egular  if  there  exists  an N

such that  for  all  i  and j  , it  is possible to  go from  si  to

sj  in  exactly  N   steps;  that  is,  the  Nth  power  of  the

transition  matrix  P has all its  entries  positive  (see Defi -

nition  11.5).  Note  that  every  regular  Markov  chain  is

er godic.
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We say a Markov  chain is  r egular  if  there  exists  an N

such that  for  all  i  and j  , it  is possible to  go from  si  to

sj  in  exactly  N   steps;  that  is,  the  Nth  power  of  the

transition  matrix  P has all its  entries  positive  (see Defi -

nition  11.5).  Note  that  every  regular  Markov  chain  is

er godic.

The  reflecting  random walk described  above is  ergodic

but  not  regular.   A slightly  different  reflecting  random

walk that  is regular  can be obtained  from  our  non-regu-

lar  example  by  changing the  behavior  at  the  ends so

that  reflection  is only partial:
ParRef = 881 � 2, 1 � 2, 0, 0<, 81 � 2, 0, 1 � 2, 0<, 80, 1 � 2, 0, 1 � 2<, 80, 0, 1 � 2, 1 � 2<<
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Recall that  a function  f  on the  state  space of  a Markov

chain with  transition  matrix  P = (pij )

is  called  harmonic  if  (numbering  the  states  1,...,n)  we

have

f (i) = Sj  pij  f (j )

for  all  i, or  equivalently,  Pf  = f  (where  f  denotes  the

column vector  with  entries  f (1),...,f (n)).
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Recall that  a function  f  on the  state  space of  a Markov

chain with  transition  matrix  P = (pij )

is  called  harmonic  if  (numbering  the  states  1,...,n)  we

have

f (i) = Sj  pij  f (j )

for  all  i, or  equivalently,  Pf  = f  (where  f  denotes  the

column vector  with  entries  f (1),...,f (n)).

Theorem:  If  the  Markov  chain with  transition  matrix  P

is  ergodic,  the  only  harmonic  functions  are  the  con-

stant  functions.

Proof:  Let  f  be a harmonic  function,  and let  M  be the

maximum value of  f , and take  x0  such that  f (x0)  = M.

By the  same reasoning that  we used in the  proof  of  the

Maximum  Principle  for  absorbing  Markov  chains,  we

can show that  every  successor  y of  x0  satisfies  f (y) =

M, and that  every  successor z of  every  successor of  x0

satisfies  f (z)  =  M,  and  so  on.   Since  the  chain  is

ergodic,  every  state  can be reached  from  x0, so we con-

clude that  f (s) = M for  EVERY state  s.  Hence f  is a con-

stant  function.  �

Since  the  only  harmonic  functions  are  the  constant

functions,  the  only column eigenvectors  for  P with  eigen-

value 1 are  the  multiples  of  the  all-1's  column vector.

It  follows  that  the  space of  row  eigenvectors  with

eigenvalue 1 is also 1-dimensional.
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Since  the  only  harmonic  functions  are  the  constant

functions,  the  only column eigenvectors  for  P with  eigen-

value 1 are  the  multiples  of  the  all-1's  column vector.

It  follows  that  the  space of  row  eigenvectors  with

eigenvalue 1 is also 1-dimensional.

It  turns  out  that  there  is a (necessarily  unique) row vec-

tor  w that  is both  a probability  vector  and a 1-eigenvec-

tor  for  P.

The components of  w are  all strictly  positive.

(It  is  a good exercise  to  prove  via general  linear  alge-

bra  that  if  1 is  a simple  eigenvalue of  the  stochastic

matrix  P, i.e. if  it  has multiplicity  1, then  the  product

of  a row-eigenvector  with  eigenvalue 1 and a column-

eigenvector  with  eigenvalue 1 is  non-zero.   So there  is

a unique row-eigenvector  whose entries  sum to  1.  But

proving  that  the  entries  are  positive  requires  more

than  simple linear  algebra.)

In  the  case where  the  chain is regular,  w admits  a natu -

ral  interpretation:  wj  is  the  limit  of  pij
HnL as n®¥.  That

is,  wj  is  the  limit,  as n®¥,  of  the  probability  that  a

Markov  chain  started  in  state  si  that  evolves via  the

transition  matrix  P will  be in state  sj  after  n steps.

It  is not  a priori  obvious that  this  limit  exists,  and ind-

eed, for  non-regular  chains it  does not.
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It  is not  a priori  obvious that  this  limit  exists,  and ind-

eed, for  non-regular  chains it  does not.

Regular Markov chains

Theorem  11.7: If  P is  the  transition  matrix  for  a regu-

lar  Markov  chain, then  as n®¥,  Pn ® W  where  W  is  a

square  matrix  whose rows  are  all  equal to  the  same

row-vector  w, where  w is both  a probability  vector  and

a solution  to  wP = w.  Two examples:
MatrixForm@N@MatrixPower@ParRef, 70DDD

0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

MatrixForm@N@MatrixPower@881 � 2, 1 � 2<, 82 � 3, 1 � 3<<, 10DDD

K
0.571429 0.428571
0.571429 0.428571

O

%@@1DD

80.571429, 0.428571<

%.881 � 2, 1 � 2<, 82 � 3, 1 � 3<<

80.571429, 0.428571<

Grinstead  and Snell  give  two  proofs  in  11.4 (which  we

will  not  have time  to  cover).   

One proof  looks at  how Pny  behaves as n®¥, where  y

is an arbitrary  column-vector.   

The  other  proof  looks  at  how uPn  behaves  as n®¥,

where u is an arbitrary  probability  row-vector.

Note  that  the  following  assertions  are  equivalent  for  a

non-zero  row-vector  w:

w is a left  1-eigenvector  for  P

w is a row 1-eigenvector  for  P

wP=w

w is a fixed  vector  for  P

w is invariant  under  P

wP- w = 0

w is in the  null-space of  P- I

w is in the  null-space of  I -P

(where  I  is  the  identity  matrix  of  the  appropriate

size).

When we run  the  Markov  chain starting  from  an initial

state  governed  by  the  probability  distribution  w,  its

state  at  each  later  time-step  is  also governed  by  w.

(That  is, if  

Pr ob(X0 = i) = wi  for  all i, 

with  Xn denoting  the  state  of  the  chain at  time  n, then

we also have 

Pr ob(X1 = i) = wi  for  all i,  

Pr ob(X2 = i) = wi  for  all i, 

etc.)   We call  this  a stationary  Markov  chain, and call  w

the  equilibrium  measure or  stationary  distribution .  
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Grinstead  and Snell  give  two  proofs  in  11.4 (which  we

will  not  have time  to  cover).   

One proof  looks at  how Pny  behaves as n®¥, where  y

is an arbitrary  column-vector.   

The  other  proof  looks  at  how uPn  behaves  as n®¥,

where u is an arbitrary  probability  row-vector.

Note  that  the  following  assertions  are  equivalent  for  a

non-zero  row-vector  w:

w is a left  1-eigenvector  for  P

w is a row 1-eigenvector  for  P

wP=w

w is a fixed  vector  for  P

w is invariant  under  P

wP- w = 0

w is in the  null-space of  P- I

w is in the  null-space of  I -P

(where  I  is  the  identity  matrix  of  the  appropriate

size).

When we run  the  Markov  chain starting  from  an initial

state  governed  by  the  probability  distribution  w,  its

state  at  each  later  time-step  is  also governed  by  w.

(That  is, if  

Pr ob(X0 = i) = wi  for  all i, 

with  Xn denoting  the  state  of  the  chain at  time  n, then

we also have 

Pr ob(X1 = i) = wi  for  all i,  

Pr ob(X2 = i) = wi  for  all i, 

etc.)   We call  this  a stationary  Markov  chain, and call  w

the  equilibrium  measure or  stationary  distribution .  

Theorem 11.9: Let  P be the  transition  matrix  for  a regu-

lar  Markov  chain and v an arbitrary

probability  vector.  Then vPn ® w as n®¥.

The content  of  Theorem  11.9 is that  w is a stable  equi-

librium  (everything  converges towards  it).

Non-regular ergodic chains
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Non-regular ergodic chains

If  an  ergodic  chain  is  non-regular  then  there  is  a

unique positive  integer  d  > 1 (called  the  period  of  the

chain)  and  an  essentially  unique (i.e.,  unique modulo

cyclic  relabelling)  partition  of  the  state-space  of  the

chain  into  disjoint  classes  C1,  C2,  ...,  Cd  such  that

states  in C1 can only be followed  by states  in C2, which

can only be followed  by states  in C3, etc.,  and states  in

Cd  can only be followed  by states  in C1.

There  is  still  a unique probability  measure w such that

wP=w, but  it  is best  thought  of  as 

(wH1L+wH2L+...+wHd L)/ d, where  wH1L,wH2L,...,wHd L  are  probabil -

ity  measures such that  wj
Hi L  is  positive  if  state  sj  is  in

class Ci  and is zero  otherwise,  and where

wH1LP = wH2L, wH2LP = wH3L, ..., and wHd LP = wH1L.

For  instance,  our  original  model  of  reflecting  random

walk  on {1,2,3,4}  has period  2,  with  classes {1,3}  and

{2,4};  the  uniform  distribution  on {1,2,3,4}  should  be

viewed as the  average of  the  uniform  distribution  on

{1,3} and the  uniform  distribution  on {2,4}.

The stationary distribution
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The stationary distribution

In  some cases, it's  easy to  solve for  w.

If  P is doubly-stochastic,  then  every  constant  row-vec -

tor  is  fixed  under  multiplication  on the  right  by  P.

Hence the  distribution  that  assigns probability  1/ n to

each of  the  n  states  of  the  chain is  the  unique invari -

ant  measure.

One way to  see this  is  with  mass flow:  if  we put  1 unit

of  mass on each site,  each site  sends out  total  mass 1

(the  ith  row-sum) and receives  total  mass 1 (the  ith  col-

umn-sum), so the  mass distribution  is  invariant.   Hence

the  all-1's  row-vector  is  invariant  under  P, and scaling

it  by  dividing  by  n turns  it  into  an invariant  probability

vect or .

Example: The matrix

P = 

1
2

1
3

1
6

1
3

1
6

1
2

1
6

1
2

1
3

satisfies  (1 1 1) P = (1 1 1) so ( 1
3

 1
3

 1
3

) P = ( 1
3

 1
3

 1
3

).

Claim: If  our  Markov  chain is a simple random walk on a

connected  graph  (where  vertices  are  connected  by

edges, with  parallel  edges and self-loops  allowed, and it

is  possible  to  get  from  any vertex  to  any other  by  a

chain of  edges, and at  each step  we move from  one ver -

tex  si  to  another  by  choosing a random edge incident

with  vertex  si ), then  the  vector  

(deg(s1), deg(s2), ... deg(sn)) 

is invariant,  where  deg(si ) is  the  number  of  edges inci -

dent  with  si .  (Proved below.)

Example  1:  Our  first  example  of  reflecting  random

walk on {1,2,3,4}  had edges joining  

1 to  2,  2  to  3,  and 3  to  4.   So deg(1) = 1, deg(2)  = 2,

deg(3)  = 2,  and deg(4)  = 1, and (1,2,2,1) is  an invariant

vector.   To  turn  it  into  a probability  vector,  divide  by

6.  Check:
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is  possible  to  get  from  any vertex  to  any other  by  a

chain of  edges, and at  each step  we move from  one ver -
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is invariant,  where  deg(si ) is  the  number  of  edges inci -
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Example  1:  Our  first  example  of  reflecting  random

walk on {1,2,3,4}  had edges joining  

1 to  2,  2  to  3,  and 3  to  4.   So deg(1) = 1, deg(2)  = 2,

deg(3)  = 2,  and deg(4)  = 1, and (1,2,2,1) is  an invariant
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6.  Check:
w = 81 � 6, 2 � 6, 2 � 6, 1 � 6<

:
1

6
,

1

3
,

1

3
,

1

6
>

w.Ref

:
1

6
,

1

3
,

1

3
,

1

6
>

MatrixForm@wD

1

6

1

3

1

3

1

6

H* If an array is not a list of lists but just a list,
Mathematica will treat it as a column-vector. *L

MatrixForm@8w<D

J
1

6

1

3

1

3

1

6
N

H* Compare: *L

MatrixForm@881 � 6, 1 � 3, 1 � 3, 1 � 6<<D

J
1

6

1

3

1

3

1

6
N

MatrixForm@881 � 6<, 81 � 3<, 81 � 3<, 81 � 6<<D

1

6

1

3

1

3

1

6

Example 2:  Our  example of  partially  reflecting  random

walk on {1,2,3,4}  had additional  edges joining  1 to  itself

and 4  to  itself.   So deg(1) = 2,  deg(2)  = 2,  deg(3)  = 2,

and deg(4)  = 2,  and (2,2,2,2)  is  an invariant  vector.   To

turn  it  into  a probability  vector,  divide  by 8.  Check:
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Example 2:  Our  example of  partially  reflecting  random

walk on {1,2,3,4}  had additional  edges joining  1 to  itself

and 4  to  itself.   So deg(1) = 2,  deg(2)  = 2,  deg(3)  = 2,

and deg(4)  = 2,  and (2,2,2,2)  is  an invariant  vector.   To

turn  it  into  a probability  vector,  divide  by 8.  Check:
81 � 4, 1 � 4, 1 � 4, 1 � 4<.ParRef

:
1

4
,

1

4
,

1

4
,

1

4
>

Note  also that  the  associated  transition  matrix  ParRef is

doubly stochastic:
ParRef

1

2

1

2
0 0

1

2
0

1

2
0

0
1

2
0

1

2

0 0
1

2

1

2

Proof  of  Claim: Use mass-flow.   If  we put  mass deg(si )

at  state  i  for  all  i, and let  it  flow,  then  1 unit  of  mass

flows  along every  edge in both  directions,  so the  total

mass at  each site  doesn't  change.

Sometimes  the  transition  matrix  P is  sparse  (many

entries  are  zeroes),  so we can find  a fixed  vector  of  P

by solving the  associated  system  of  linear  equations by

hand.

Example:
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Sometimes  the  transition  matrix  P is  sparse  (many

entries  are  zeroes),  so we can find  a fixed  vector  of  P

by solving the  associated  system  of  linear  equations by

hand.

Example:
Sparse = 880, 1 � 2, 1 � 2, 0<, 81 � 2, 0, 0, 1 � 2<, 80, 1 � 2, 1 � 2, 0<, 81, 0, 0, 0<<

0
1

2

1

2
0

1

2
0 0

1

2

0
1

2

1

2
0

1 0 0 0

Clear@a, b, c, dD

MatrixForm@88a, b, c, d<<.SparseD == MatrixForm@88a, b, c, d<<D

J b

2
+ d

a

2
+

c

2

a

2
+

c

2

b

2
N � H a b c d L

Now do "linear  algebra  Sudoku"  to  find  a fixed  vector

(don't  worry  about  it  being a probability  vector):
b
2

 + d = a
a
2

 + c
2

 = b
a
2

 + c
2

 = c
b
2

       = d

Set  d = 1.
b
2

 = d, so b = 2.
b
2

 + d  = a, so a = 2.
a
2

 + c
2

 = c, so a
2

 = c
2

, so a = c, so c = 2.

Consistency check:  a
2

 + c
2

 = b.

Hence the  invariant  probability  vector  is 

( 2
7

 2
7

 2
7

 1
7

 ).

Or  you can let  Mat hemat ica do it  for  you:
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Now do "linear  algebra  Sudoku"  to  find  a fixed  vector

(don't  worry  about  it  being a probability  vector):
b
2

 + d = a
a
2

 + c
2

 = b
a
2

 + c
2

 = c
b
2

       = d

Set  d = 1.
b
2

 = d, so b = 2.
b
2

 + d  = a, so a = 2.
a
2

 + c
2

 = c, so a
2

 = c
2

, so a = c, so c = 2.

Consistency check:  a
2

 + c
2

 = b.

Hence the  invariant  probability  vector  is 

( 2
7

 2
7

 2
7

 1
7

 ).

Or  you can let  Mat hemat ica do it  for  you:
NullSpace@Transpose@Sparse - IdentityMatrix@4DDD

H 2 2 2 1 L

The pinned stepping stone model

The  stepping  stone  model, an example of  an absorbing

Markov  chain, becomes an example of  a regular  Markov

chain if  we "pin"  some of  the  sites,  making at  least  one

site  permanently  black  and at  least  one site  perma-

nently  white.  

Here's  some code for  the  pinned stepping  stone  model

in  which  the  top  row  and bottom  row  of  a 20-by-20

grid  are  pinned to  opposite  colors:
Size := 20
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Board =

Table@Table@Which@i � 1, 0, i � Size, 1, True, RandomInteger@DD, 8j, 1, Size<D, 8i, 1, Size<D

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 1 1 0 0 0 1 0 1 1 1 0 1 1
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0
0 0 1 1 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1
0 1 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 1
1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 0 1 0 0
0 1 1 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 0 1
1 0 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 1
0 1 1 1 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1
0 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 0 1
0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1
1 0 0 1 0 0 0 1 1 0 1 1 1 1 1 0 1 1 0 1
0 0 1 1 1 0 1 0 1 0 1 0 0 0 1 1 0 1 1 1
1 0 1 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 1 0
1 1 1 1 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 1
0 0 1 1 1 0 1 0 0 0 1 1 1 1 0 1 1 0 1 0
0 1 1 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 0 0 0 1
1 1 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MatrixPlot@Board, ColorFunction ® "Monochrome"D

1 5 10 15 20

1

5

10

15

20

1 5 10 15 20

1

5

10

15

20

RandDir@D := H* random direction in grid *L
881, 0<, 80, 1<, 8-1, 0<, 80, -1<<@@RandomInteger@81, 4<DDD

Wrap@x_D := H* wrap coordinates *LWhich@x � 0, Size, x � Size + 1, 1, True, xD

Recolor@D := H* recolor board *LModule@8NewDir, a, b<,
NewDir = RandDir@D; a = 8RandomInteger@82, Size - 1<D, RandomInteger@81, Size<D<;
b = 8Wrap@a@@1DD + NewDir@@1DDD, Wrap@a@@2DD + NewDir@@2DDD<;
Board@@a@@1DD, a@@2DDDD = Board@@b@@1DD, b@@2DDDD; Return@BoardD;D

BoardHistory := Table@Recolor@D, 8n, 1, 1000<D;
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Animate@MatrixPlot@BoardHistory@@nDD, ColorFunction ® HIf@ð � 0, Red, BlueD &L,
ColorFunctionScaling ® FalseD, 8n, Range@1, 1000D<D

n

1 5 10 15 20

1

5

10

15

20

1 5 10 15 20

1

5

10

15

20
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N@Sum@BoardHistory@@nDD � 100, 8n, 1, 100<DD

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0.06 0.06 0.02 0.02 0.01 0.01 0.02 0.03 0.02 0.01 0.01 0.04 0.03 0.01 0.03 0.02 0.04 0.07 0.1 0.05
0.12 0.09 0.09 0.04 0.03 0.03 0.06 0.07 0.05 0.01 0.02 0.08 0.05 0.07 0.09 0.06 0.07 0.13 0.12 0.16
0.17 0.14 0.13 0.06 0.03 0.07 0.06 0.08 0.08 0.04 0.09 0.13 0.11 0.07 0.1 0.08 0.07 0.19 0.2 0.2
0.14 0.13 0.1 0.03 0.07 0.08 0.11 0.09 0.09 0.07 0.1 0.21 0.21 0.2 0.2 0.22 0.22 0.29 0.23 0.18
0.16 0.13 0.11 0.09 0.09 0.08 0.1 0.14 0.11 0.14 0.25 0.29 0.38 0.26 0.25 0.24 0.23 0.3 0.24 0.25
0.33 0.22 0.15 0.09 0.05 0.06 0.11 0.12 0.11 0.22 0.25 0.32 0.32 0.24 0.29 0.23 0.23 0.33 0.38 0.3
0.35 0.27 0.18 0.12 0.14 0.07 0.13 0.23 0.21 0.28 0.27 0.32 0.33 0.26 0.28 0.23 0.3 0.41 0.41 0.35
0.51 0.33 0.3 0.22 0.2 0.15 0.21 0.25 0.26 0.33 0.38 0.33 0.35 0.28 0.32 0.28 0.38 0.41 0.43 0.48
0.54 0.42 0.4 0.31 0.27 0.27 0.34 0.34 0.31 0.27 0.37 0.34 0.31 0.3 0.34 0.4 0.43 0.51 0.5 0.6
0.64 0.66 0.56 0.54 0.45 0.33 0.42 0.41 0.28 0.33 0.38 0.37 0.34 0.34 0.38 0.46 0.52 0.56 0.61 0.6
0.75 0.65 0.58 0.63 0.55 0.42 0.52 0.51 0.4 0.38 0.39 0.37 0.36 0.4 0.45 0.56 0.53 0.57 0.65 0.74
0.86 0.84 0.74 0.76 0.65 0.52 0.52 0.56 0.49 0.46 0.38 0.34 0.39 0.48 0.55 0.66 0.69 0.79 0.71 0.84
0.91 0.9 0.79 0.77 0.72 0.61 0.63 0.57 0.54 0.47 0.37 0.49 0.56 0.64 0.64 0.7 0.74 0.88 0.84 0.9
0.95 0.92 0.86 0.86 0.76 0.79 0.69 0.66 0.68 0.56 0.5 0.61 0.69 0.67 0.71 0.81 0.82 0.94 0.94 0.98
0.96 0.91 0.9 0.93 0.88 0.81 0.81 0.82 0.82 0.78 0.72 0.75 0.73 0.76 0.77 0.89 0.91 0.94 0.97 0.98
0.97 0.98 0.97 0.88 0.94 0.92 0.93 0.9 0.9 0.87 0.87 0.89 0.83 0.84 0.87 0.92 0.97 0.98 0.99 0.99
0.99 1. 0.96 0.97 0.96 0.97 0.93 0.94 0.95 0.92 0.94 0.96 0.96 0.96 0.97 0.97 0.97 0.99 1. 1.

1. 1. 1. 0.99 0.98 0.99 0.97 0.94 0.98 0.96 0.97 0.97 1. 0.99 0.99 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

MatrixPlot@Sum@BoardHistory@@nDD � 100, 8n, 1, 100<D, ColorFunction ® "Grayscale"D

ArrayPlot::cfun :

Value of option ColorFunction -> Grayscale is not a valid color function, or a gradient ColorData entity. �

1 5 10 15 20

1

5

10

15

20

1 5 10 15 20

1

5

10

15

20

H* Why is it so slow? And what should I use instead of "Grayscale"? *L
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Laws of large numbers

Theorem  11.12 (Weak  Law  of  Large  Numbers  for

Ergodic  Markov  Chains): Let  H j
HnL  be  the  proportion  of

times  in the  first  n steps  that  an ergodic  chain started

from  state  si  is in state  sj ; i.e., it's  1/ n times  the  num-

ber  of  visits  to  state  sj  in the  first  n steps  (assuming

the  chain started  in si ).  Then for  any  Ε > 0, 

Pr ob(| H j
HnL -  wj |  > Ε) ® 0

regardless  of  i.

Strong  Law of  Large  Numbers  for  Ergodic  Markov

Chains:  With  the  random  variable  H j
HnL  defined  as

above, we have H j
HnL

®wj  with  probability  1.

Special  case:  If  our  ergodic  Markov  chain  has  the

transition  matrix
1

2

1

2

1

2

1

2

then  this  is  just  the  strong  law of  large  numbers  for

coin-tossing:  if  you toss  a fair  coin forever,  then  with

probability  1, the  proportion  of  heads  up to  time  n

approaches 1
2

 as n®¥.

But  what  does this  really  mean?

For  simplicity,  let's  choose one particular  value of  j

and suppress it  from  the  notation,  writing  

H HnL®w.

Recall that  each H HnL  is  a random  variable,  that  is,  a

function  H HnL(Ω) for  Ω in W.

Recall that   H HnL(Ω) ®w  is defined  as the  assertion
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But  what  does this  really  mean?

For  simplicity,  let's  choose one particular  value of  j

and suppress it  from  the  notation,  writing  

H HnL®w.

Recall that  each H HnL  is  a random  variable,  that  is,  a

function  H HnL(Ω) for  Ω in W.

Recall that   H HnL(Ω) ®w  is defined  as the  assertion

For  all Ε > 0 

  there  exists   m  such that

    for  all  n ³  m,

      |  H HnL(Ω) -  w |  < Ε ,

which is equivalent  to

For  all k ³  1 

  there  exists   m  such that

    for  all  n ³  m,

      |  H HnL(Ω) -  w |  < 1/ k

(we'll  see in  a minute  why we want  to  restrict  to  Ε's

that  are  reciprocals  of  integers).   Hence we can write

the  event  {Ω: H HnL(Ω) ® w} as

Ýk =1
¥  Üm=1

¥  Ýn=m
¥  {Ω: |  H HnL(Ω) -  w |  < 1/ k } .

So  how  does  probability  theory  work  with  infinite

unions and infinite  intersections?

"Fact":  If  E1, E2, ... are  events  in W, 

(1) Prob( Ýn=1
¥  En ) = limN ®¥ Prob( Ýn=1

N En )

and

(2)  Prob( Ün=1
¥  En ) = limN ®¥ Prob( Ün=1

N En ).

(I  call  it  a "Fact"  with  quotation  marks  because in  a

sense it's  part  of  the  way we DEFINE  the  probabili -

ties  of  events  like  these.   Then  one needs a theorem

that  says that  using these  formulas  can never  lead to  a

cont r adict ion.)
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the  event  {Ω: H HnL(Ω) ® w} as

Ýk =1
¥  Üm=1
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So  how  does  probability  theory  work  with  infinite
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"Fact":  If  E1, E2, ... are  events  in W, 

(1) Prob( Ýn=1
¥  En ) = limN ®¥ Prob( Ýn=1

N En )

and

(2)  Prob( Ün=1
¥  En ) = limN ®¥ Prob( Ün=1

N En ).

(I  call  it  a "Fact"  with  quotation  marks  because in  a

sense it's  part  of  the  way we DEFINE  the  probabili -

ties  of  events  like  these.   Then  one needs a theorem

that  says that  using these  formulas  can never  lead to  a

cont r adict ion.)

In  a  sense we've  already  encountered  such  trouble -

some, "infinitary"  events  in  earlier  lectures.   For  ins-

tance,  when talking  about  absorbing  Markov  chains we

showed that

E(X H0L + X H1L + ... + X HnL) = qij
H0L + qij

H1L + ... + qij
HnL.

and deduced

E(X H0L + X H1L + ...) = qij
H0L + qij

H1L + ... = nij  .

Just  as it  takes  work  to  say how the  probability  of  an

event  like   H HnL(Ω)  ®  w  should  be  defined,  it  takes

work  to  say how the  expected  value of  a random vari -

able like  X H0L + X H1L + ... (an infinite  sum of  random vari -

ables) should be defined.

Note  that  for  some Ω's,  the  sum X H0L + X H1L + ... may be

infinite;  but  as long as the  set  of  such Ω's  has probabil -

ity  0, we won't  worry  about  it.

Example: Toss a coin until  it  comes up Tails.   This  is  a

Markov  chain with  transition  matrix  
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In  a  sense we've  already  encountered  such  trouble -

some, "infinitary"  events  in  earlier  lectures.   For  ins-

tance,  when talking  about  absorbing  Markov  chains we

showed that

E(X H0L + X H1L + ... + X HnL) = qij
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H1L + ... + qij
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and deduced
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Note  that  for  some Ω's,  the  sum X H0L + X H1L + ... may be

infinite;  but  as long as the  set  of  such Ω's  has probabil -

ity  0, we won't  worry  about  it.

Example: Toss a coin until  it  comes up Tails.   This  is  a

Markov  chain with  transition  matrix  
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work  to  say how the  expected  value of  a random vari -

able like  X H0L + X H1L + ... (an infinite  sum of  random vari -

ables) should be defined.

Note  that  for  some Ω's,  the  sum X H0L + X H1L + ... may be

infinite;  but  as long as the  set  of  such Ω's  has probabil -

ity  0, we won't  worry  about  it.

Example: Toss a coin until  it  comes up Tails.   This  is  a

Markov  chain with  transition  matrix  
1

2

1

2

0 1

Let  X(Ω)  be  the  time  until  the  first  occurrence  of

Tails.  X(Ω) is undefined  if  Ω is the  outcome

Heads, Heads, Heads, ...

but  this  outcome has probability  ( 1
2

)( 1
2

)( 1
2

)... = 0.

Why  did  we replace  ÝΕ>0 by Ýk =1
¥ ?

Because we want  to  have a COUNTABLE  intersection

so that  we can apply (1).

To  see how bad  things  can get  when we use uncount-

ably many events  at  once, note  that  the  event  W (a set

of  probability  1) can be written  as the  union of  events

{Ω}, each of  which  has probability  0.  So the  rule  "The

probability  of  the  union of  disjoint  events  is  the  sum

of  the  probabilities  of  the  individual  events"  definitely

doesn't  always work  when we've  got  more than  a count -

able infinity  of  events  to  deal with.

But  when there  are  only countably  many, life  is  good: a

countable  union of  events  of

probability  zero  still  has probability  zero.

We  saw an example of  this  in  the  first  lecture,  when

we set  up a correspondence  between  real  numbers  in

[0,1]  and infinite  sequences of  Heads  and Tails.   The

correspondence  breaks  down for  dyadic  rationals,  i.e.

rational  numbers  of  the  form  k  /  2n  ,  since  each of

these  numbers  has  two  binary  representations  and

hence  corresponds  to  two  differences  coin-toss

sequences; but  since the  number  of  dyadic  rationals  is

countably  infinite,  it  has Lebesgue measure 0,  and the

number  of  coin-tosses  ending in  infinitely  many Heads

or  infinitely  many Tails  is  likewise  countable,  so it  has

probability  0;  so if  we look  at  where  the  correspon -

dence  between  real  numbers  and  coin-toss  experi -

ments  fails,  we're  dealing with  a leftover  set  of  reals

of  measure 0 that  fails  to  correspond  to  a set  of  coin-

toss  outcomes with  probability  0.  For  purposes of  com-

puting  probabilities,  expectations,  etc.,  sets  of

measure or  probability  0 can be safely  ignored.

Probabilists  say  "For  a  set  of  Ω  of  probability  1,

H HnL(Ω)  ®w"  or  "For  almost  every  Ω,  H HnL(Ω)  ®w"  or

"H HnL(Ω) ®w  almost  surely",  often  abbreviating  "almost

every"  with  "a.e."  and "almost  surely"  with  "a.s.",  to

mean "outside  of  a set  of  Ω's  of  probability  0".
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of  measure 0 that  fails  to  correspond  to  a set  of  coin-
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puting  probabilities,  expectations,  etc.,  sets  of
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mean "outside  of  a set  of  Ω's  of  probability  0".

Central  Limit  Theorem  for  Markov  Chains: When  n is

large,  the  distribution  of  the  random  variable

S j
HnL

= nHj
HnL (the  number  of  times  state  j  occurs  in  the

first  n   steps  of  the  process)  is  increasingly  well-

approximated  by  a Gaussian with  mean nwj  and vari -

ance Σj
2n  (for  a suitable  constant  Σj  > 0 whose precise

value we will  not  compute),  in  the  following  sense: for

all r  < s,

Pr ob[r <
S j

HnL
- nwj

Σj n
< s]  

converges to
1
2 Π

Ùr
s e-x 2�2 dx

as n ® ¥ . 

Hence H j
HnL is increasingly  well-approximated  by a Gaus-

sian with  mean wj  and variance  Σj / n , in the  sense that

for  all r   < s,   

Pr ob[r <
H j

HnL
- wj

Σj � n
< s]  

converges to  that  same integral.
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value we will  not  compute),  in  the  following  sense: for

all r  < s,

Pr ob[r <
S j

HnL
- nwj

Σj n
< s]  

converges to
1
2 Π

Ùr
s e-x 2�2 dx

as n ® ¥ . 

Hence H j
HnL is increasingly  well-approximated  by a Gaus-

sian with  mean wj  and variance  Σj / n , in the  sense that

for  all r   < s,   

Pr ob[r <
H j

HnL
- wj

Σj � n
< s]  

converges to  that  same integral.
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Central  Limit  Theorem  for  Markov  Chains: When  n is

large,  the  distribution  of  the  random  variable

S j
HnL

= nHj
HnL (the  number  of  times  state  j  occurs  in  the

first  n   steps  of  the  process)  is  increasingly  well-

approximated  by  a Gaussian with  mean nwj  and vari -

ance Σj
2n  (for  a suitable  constant  Σj  > 0 whose precise

value we will  not  compute),  in  the  following  sense: for

all r  < s,

Pr ob[r <
S j

HnL
- nwj

Σj n
< s]  

converges to
1
2 Π

Ùr
s e-x 2�2 dx

as n ® ¥ . 

Hence H j
HnL is increasingly  well-approximated  by a Gaus-

sian with  mean wj  and variance  Σj / n , in the  sense that

for  all r   < s,   

Pr ob[r <
H j

HnL
- wj

Σj � n
< s]  

converges to  that  same integral.

If  we try  to  use the  random quantity  H j
HnL  as an esti -

mate  of  the  non-random but  unknown quantity  wj ,  we

expect  error  on the  order  of  C/sqrt( n) for  some C.
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First passage and recurrence times

Suppose P is the  stochastic  matrix  of  transition  proba -

bilities  for  an  ergodic  Markov  chain,  and  w  is  the

unique stationary  measure  in  vector  form,  satisfying

the  three  conditions

w > 0 (that  is, each component of  w is positive),  

Úi  wi  = 1 (that  is, w is a probability  vector),  and

wP = w (that  is, w is invariant  under  P).

Note  that  the  second condition  can also be written  as

w1  = 1, where  1  on the  left  side  of  the  equation  is  the

all-1's  column vector  (not  to  be  confused  with  the

scalar  1 on the  right  side of  the  equation).

Let  W  be the  square matrix  each of  whose rows  is  w.

Then wP = w implies  WP = W , and also WPn = W  for  all

n³ 1.
P = 881 � 2, 1 � 2<, 81 � 3, 2 � 3<<

1

2

1

2

1

3

2

3
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Eigenvalues@PD

:1,
1

6
>

Eigenvectors@PD

1 1

-
3

2
1

H* What Mathematica is trying to give us here is a list of vectors forming a basis
for the column eigenspaces. These vectors are 81,1< and 8-3�2,1< construed
as column vectors. Mathematica unhelpfully displays this list of vectors
as a matrix whose rows correspond to the desired column vectors! Check: *L

881 � 2, 1 � 2<, 81 � 3, 2 � 3<<.81, 1<

81, 1<

881 � 2, 1 � 2<, 81 � 3, 2 � 3<<.8-3 � 2, 1<

:-
1

4
,

1

6
>

H* If that last one doesn't scream "eigenvector" at you try this: *L

881 � 2, 1 � 2<, 81 � 3, 2 � 3<<.8-3 � 2, 1< � 8-3 � 2, 1<

:
1

6
,

1

6
>

H* Is there a way to force Mathematica to display

a list of lists as a list of lists like 981,1<,9-
3

2
,1==? *L

H* Anyway we want the row eigenvectors not the column eigenvectors. *L

Eigenvectors@Transpose@PDD
H* this is the one we want *L

2

3
1

-1 1

H* The first row is the one that corresponds to the eigenvalue 1,
and we rescale it by H2�3 + 1L to get a probability vector. *L

w = 82 � 5, 3 � 5<

:
2

5
,

3

5
>

w.P

:
2

5
,

3

5
>

W = 8w, w<; MatrixForm@WD

2

5

3

5

2

5

3

5
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MatrixForm@W.PD

2

5

3

5

2

5

3

5

MatrixForm@P.WD

2

5

3

5

2

5

3

5

Claim: MW  = W for  every  stochastic  matrix  M. 

Proof:  Every  column c of  W  is  a multiple  of  the  all  1's

vector  and hence satisfies  Mc = c.

Consequences: PW  = W  and WW  = W .

Claim: (P-W) n = Pn -  W .

Proof:  By induction.   It's  clearly  true  for  n=1, and if

it's  true  for  n, then  

(P-W) n+1 = (P-W)(P-W) n =  (P-W)(Pn-W)

= Pn+1 -  WPn -  PW  + WW  = Pn+1 -  W  -  W  + W  

= Pn+1 -  W ,  as was to  be proved.

The  first  passage time  from  i   to  j   is  a random vari -

able,  namely, the  time  it  takes  for  a chain  started  in

state  i   to  first  reach  state  j .  (If  i  =j , the  first  pas-

sage time  is taken  to  be 0.)

The  mean first  passage time  is  the  expected  value of

the  first  passage time,  and is  denoted  by  mi ,j  or  mij .

This  is always finite  (since we are  assuming in this  part

of  the  course  that  our  Markov  chain has finitely  many

st at es).

One way to  compute  the  mean first  passage time  is  to

turn  j   into  an absorbing  state  (by  giving the  transition

j ®j   probability  1 and every  other  transition  j ®k  proba -

bility  0)  and  then  compute  the  expected  absorption

time  starting  from  i.
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The  first  passage time  from  i   to  j   is  a random vari -

able,  namely, the  time  it  takes  for  a chain  started  in

state  i   to  first  reach  state  j .  (If  i  =j , the  first  pas-

sage time  is taken  to  be 0.)

The  mean first  passage time  is  the  expected  value of

the  first  passage time,  and is  denoted  by  mi ,j  or  mij .

This  is always finite  (since we are  assuming in this  part

of  the  course  that  our  Markov  chain has finitely  many

st at es).

One way to  compute  the  mean first  passage time  is  to

turn  j   into  an absorbing  state  (by  giving the  transition

j ®j   probability  1 and every  other  transition  j ®k  proba -

bility  0)  and  then  compute  the  expected  absorption

time  starting  from  i.

Example: Random walk on {1,2,3,4}  with  complete  reflec -

tion  at  the  ends (i.e.,  1®2  with  probability  1 and 4®3

with  probability  1).

What  is m2,1 (the  expected  time  from  2 to  1)?

Let  h(x)  be  the  expected  time  until  absorption  at  1.

We have 

h(1) = 0, h(2)  = a, h(3)  = b, and h(4)  = c.

Familiar  considerations  lead us to  the  equations

a  = 1 + (0+b)/ 2,

b  = 1 + (a+c)/ 2,

c  = 1 + b.
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Let  h(x)  be  the  expected  time  until  absorption  at  1.

We have 

h(1) = 0, h(2)  = a, h(3)  = b, and h(4)  = c.

Familiar  considerations  lead us to  the  equations

a  = 1 + (0+b)/ 2,

b  = 1 + (a+c)/ 2,

c  = 1 + b.
Solve@8a == 1 + H0 + bL � 2, b == 1 + Ha + cL � 2, c � 1 + b<, 8a, b, c<D

88a ® 5, b ® 8, c ® 9<<

Trick:  Note  that  the  expected  time  until  absorption

for  random walk  on {1,2,3,4}  with  absorption  at  1 and

reflection  at  4  is  the  same as the  expected  time  until

absorption  for  random  walk  on  {1,2,3,4,5,6,7}  with

absorption  at  1  and  7.   (A  random  walk  on

{1,2,3,4,5,6,7}  turns  into  a random walk  on {1,2,3,4}  if

we collapse  5  to  3,  6  to  2,  and 7  to  1.)  So  we can

reduce  this  problem  to  ordinary  gambler's  ruin  and use

the  formulas  you found  for  problem  11.2.26: a = 5 1́,  b

= 4 2́,  c = 3 3́.

Here's  the  Q-matrix  for  the  4-state  chain, if  we make

the  state  1 absorbing:
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Q = 880, 1 � 2, 0<, 81 � 2, 0, 1 � 2<, 80, 1, 0<<; MatrixForm@QD

0
1

2
0

1

2
0

1

2

0 1 0

Inverse@IdentityMatrix@3D - QD

2 2 1
2 4 2
2 4 3

%.881<, 81<, 81<<

5
8
9

If  an ergodic  chain  is  started  in  state  i,  the  r et ur n

t ime or  recurrence  time  is  the  time  it  takes  for  the

chain  to  return  to  state  i.  (This  should  not  be  con-

fused  with  the  first  passage time  from  i   to  itself,

which  is  always 0.)   The  mean recurrence  time  is  the

expected  value of  the  recurrence  time,  and is  denoted

by r i .  

This  mean recurrence  time  is  finite  when the  Markov

chain has finitely  many states.

One way to  see this  is to  show that

(11.4) r i  = 1 + Úk  pik  mki

(hint:  where  are  you after  1 step?)  and then  use the

fact  that  every  mean first  passage time  is finite.

A helpful  companion to  the  above formula  is

(11.2) mij  = 1 + Úk  pik  mkj

for  i ­  j.   

(Note  that  for  both  (11.4), when k=j   the  term  pik  mkj

vanishes since  mjj  = 0.   Likewise  for  (11.2), when k=i

the  term  pik  mki  vanishes since mjj  = 0.)

We  will  use  these  formulas  to  solve  for  r i  and

the mij 's,  using matrix  equations.
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chain  to  return  to  state  i.  (This  should  not  be  con-
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chain has finitely  many states.

One way to  see this  is to  show that

(11.4) r i  = 1 + Úk  pik  mki

(hint:  where  are  you after  1 step?)  and then  use the

fact  that  every  mean first  passage time  is finite.

A helpful  companion to  the  above formula  is

(11.2) mij  = 1 + Úk  pik  mkj

for  i ­  j.   

(Note  that  for  both  (11.4), when k=j   the  term  pik  mkj

vanishes since  mjj  = 0.   Likewise  for  (11.2), when k=i

the  term  pik  mki  vanishes since mjj  = 0.)

We  will  use  these  formulas  to  solve  for  r i  and

the mij 's,  using matrix  equations.

Mean first passage matrix and mean recurrence matrix

Let  the  mean first  passage matrix  M  be  the  matrix

whose ij th  entry  is mij  for  all  i,j  (recall  that  mii  = 0 for

all  i, by  definition);  let  the  mean recurrence  matrix  D

be the  matrix  whose iith  entry  is r i  for  all  i  and whose

off-diagonal  entries  are  all  0;  and let  C be the  matrix

of  all 1's.  Then the  equations 

mii  = 1 + Úk  pik  mki  -  r i

(both  sides equal zero!)  and

mij  = 1 + Úk  pik  mkj

are embodied in the  matrix  equation

M = C + PM -  D .

To solve, write  it  as

(11.6) (I  -  P) M = C -  D.

Theorem  11.15: For  an ergodic  Markov  chain, the  mean

recurrence  time  for  state  si  is r i  = 1/ wi  .

Proof:  Multiply  both  sides  of  Equation 11.6 by  w, using

the  fact  that  w=wP:

0 = (w-wP)M = w(I  -  P)M = w(C-D) = wC -  wD.

Hence wC (a row  vector  all  of  whose entries  are  equal

to  1)  equals  wD  (a  row  vector  whose  ith  entry  is

equal to wi r i ), so 1=wi r i  as claimed.

With  this  information  we can solve for  D, and then  we

can find  M = (I -P) -1(C-D).

Or  can we? ...

Is  I -P invertible,  for  every  ergodic   Markov  chain?

Quite  the  contrary:  (I -P)1  = 1-1  = 0   (where  1  is  the

column-eigenvector  for  the  eigenvalue 1), so  I -P has

non-trivial  kernel  and hence is not  invertible.

What  to  do?
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equal to wi r i ), so 1=wi r i  as claimed.

With  this  information  we can solve for  D, and then  we

can find  M = (I -P) -1(C-D).

Or  can we? ...

Is  I -P invertible,  for  every  ergodic   Markov  chain?

Quite  the  contrary:  (I -P)1  = 1-1  = 0   (where  1  is  the

column-eigenvector  for  the  eigenvalue 1), so  I -P has

non-trivial  kernel  and hence is not  invertible.

What  to  do?
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Let  the  mean first  passage matrix  M  be  the  matrix

whose ij th  entry  is mij  for  all  i,j  (recall  that  mii  = 0 for

all  i, by  definition);  let  the  mean recurrence  matrix  D

be the  matrix  whose iith  entry  is r i  for  all  i  and whose

off-diagonal  entries  are  all  0;  and let  C be the  matrix

of  all 1's.  Then the  equations 

mii  = 1 + Úk  pik  mki  -  r i

(both  sides equal zero!)  and

mij  = 1 + Úk  pik  mkj

are embodied in the  matrix  equation

M = C + PM -  D .

To solve, write  it  as

(11.6) (I  -  P) M = C -  D.

Theorem  11.15: For  an ergodic  Markov  chain, the  mean

recurrence  time  for  state  si  is r i  = 1/ wi  .

Proof:  Multiply  both  sides  of  Equation 11.6 by  w, using

the  fact  that  w=wP:

0 = (w-wP)M = w(I  -  P)M = w(C-D) = wC -  wD.

Hence wC (a row  vector  all  of  whose entries  are  equal

to  1)  equals  wD  (a  row  vector  whose  ith  entry  is

equal to wi r i ), so 1=wi r i  as claimed.

With  this  information  we can solve for  D, and then  we

can find  M = (I -P) -1(C-D).

Or  can we? ...

Is  I -P invertible,  for  every  ergodic   Markov  chain?

Quite  the  contrary:  (I -P)1  = 1-1  = 0   (where  1  is  the

column-eigenvector  for  the  eigenvalue 1), so  I -P has

non-trivial  kernel  and hence is not  invertible.

What  to  do?

The fundamental matrix for an ergodic chain

Claim: I  - P + W  is invertible.

Proof:  Suppose (I  -  P + W) x = 0.  We will  show that  x =

0.   Multiplying  the  equation  by  w and using the  fact

that  w (I  -  P) = 0 and wW  = w,

we have  0 = w (I  -  P + W) x = w x  .  Therefore,

W x  = 0  and  (I  -  P) x = 0  .  But  the  second of  these

implies that  x = Px, which  can only happen if  x is a con-

stant  vector  (the  space of  harmonic  functions  for  an

ergodic  Markov  chain with  finite  state-space  is 1-dimen-

sional).   Since  wx  =  0,  and  w  has  strictly  positive

entries,  we see that  x = 0. This  completes  the  proof.

We write  Z  = (I  -  P + W) -1 and call  it  the  fundamental

matrix  of  the  ergodic  Markov  chain.

Grinstead  and Snell  prove that

mij  = (z jj  -  zij ) r j

with  r j  = 1 /  wj  .

Our  two-state  example:
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Claim: I  - P + W  is invertible.

Proof:  Suppose (I  -  P + W) x = 0.  We will  show that  x =

0.   Multiplying  the  equation  by  w and using the  fact

that  w (I  -  P) = 0 and wW  = w,

we have  0 = w (I  -  P + W) x = w x  .  Therefore,

W x  = 0  and  (I  -  P) x = 0  .  But  the  second of  these

implies that  x = Px, which  can only happen if  x is a con-

stant  vector  (the  space of  harmonic  functions  for  an

ergodic  Markov  chain with  finite  state-space  is 1-dimen-

sional).   Since  wx  =  0,  and  w  has  strictly  positive

entries,  we see that  x = 0. This  completes  the  proof.

We write  Z  = (I  -  P + W) -1 and call  it  the  fundamental

matrix  of  the  ergodic  Markov  chain.

Grinstead  and Snell  prove that

mij  = (z jj  -  zij ) r j

with  r j  = 1 /  wj  .

Our  two-state  example:
MatrixForm@PD

1

2

1

2

1

3

2

3

MatrixForm@WD

2

5

3

5

2

5

3

5
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Z = Inverse@IdentityMatrix@2D - P + WD;
MatrixForm@ZD

28

25
-

3

25

-
2

25

27

25

r = 85 � 2, 5 � 3<

:
5

2
,

5

3
>

HZ@@2, 2DD - Z@@1, 2DDL r@@2DD

2

HZ@@1, 1DD - Z@@2, 1DDL r@@1DD

3

Check: The  transit  time  from  1 to  2  is  distributed  like

a  geometric  random  variable  with  p  =  1/2,  so  its

expected  value is 2.

Likewise,  the  transit  time  from  2  to  1 is  distributed

like  a geometric  random variable  with  p = 1/3,  so its

expected  value is 3.

Let's  return  to  random walk on {1,2,3,4}  and computing

the  mean transit  time  from  2 to  1 using Z:
P4 = 880, 1, 0, 0<, 81 � 2, 0, 1 � 2, 0<, 80, 1 � 2, 0, 1 � 2<, 80, 0, 1, 0<<; MatrixForm@P4D

0 1 0 0
1

2
0

1

2
0

0
1

2
0

1

2

0 0 1 0

Eigenvalues@P4D

:-1, 1, -
1

2
,

1

2
>

H* The second eigenvalue is 1 so the second eigenvector will be the one we want. *L
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Eigenvectors@Transpose@P4DD

-1 2 -2 1
1 2 2 1
1 -1 -1 1

-1 -1 1 1

H* That is the eigenvectors are
88-1,2,-2,1<,81,2,2,1<,81,-1,-1,1<,8-1,-1,1,1<< *L

w4 = %@@2DD � 6

:
1

6
,

1

3
,

1

3
,

1

6
>

W4 = 8w4, w4, w4, w4<; MatrixForm@W4D

1

6

1

3

1

3

1

6

1

6

1

3

1

3

1

6

1

6

1

3

1

3

1

6

1

6

1

3

1

3

1

6

Z4 = Inverse@IdentityMatrix@4D - P4 + W4D; MatrixForm@Z4D

41

36

11

18
-

7

18
-

13

36

11

36

17

18
-

1

18
-

7

36

-
7

36
-

1

18

17

18

11

36

-
13

36
-

7

18

11

18

41

36

HZ4@@1, 1DD - Z4@@2, 1DDL � w4@@1DD

5

Note:  For  some purposes a better  definition  of  the  fun -

damental matrix  is

Z = (I  - P + W) -1 -  W

  =  (I  -  W)  +  (P -  W)  +  ( P2 -  W) + ...

but  we won't  be  exploring  those  sorts  of  applications.

(With  this  definition,  zij  has a natural  interpretation:

it's  the  expected  excess  number  of  times  you visit  j

when you start  at  i, as compared with  starting  from

equilibrium.)   For  the  homework,  use the  definition  of

Z given in the  book.
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