
Ergodic Markov chains

Blocks

Suppose we play  a coin-toss  game where  I  win if  the

coin  comes up Heads  three  times  in  a row  before  it

comes up Tails  three  times  in a row,  and you win in the

reverse  case.

Then  we  would  want  to  model  this  with  an 8-state

Markov  chain with  states  HHH,  HHT,  ..., TTT.

More  generally,  if  we  have  a  Markov  chain  with  n

states,  we can build  a derived  Markov  chain  whose nk

states  keep track  of  where  the  first  Markov  chain has

been for  the  last  k steps.

E.g., for  k = 2,  if  we have an ergodic  Markov  chain with

states  1,2,...,n, we can build  a "2-block"  version  of  the

chain whose states  are  pairs  (i,j ) (intuition:  j  is the  cur -

rent  state  of  the  original  chain  and i  is  the  previous

st at e).

The  transition  probability  pHi ,j L,Ii ' ,j ' M  for  this  derived

chain,  in  terms  of  the  transition  probability  for  the

original  chain, is pjk  if  

j  = i  '  and 0  otherwise).   The  stationary  measure of

(i,j ) in this  chain is just  wi  pij .

Likewise,  if  our  derived  Markov  chain  keeps track  of

the  last  three  states  of  the  original  Markov  chain,

then  the  stationary  measure of  (i,j ,k) is wi  pij  pjk .

Et c.
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Reversibility

Up till  now we've  written  the  stationary  distribution  as

the  vector  w with  components w1, w2, ... but  the  most

common notation  in  the  probabilistic  literature  is  to

write  it  as a function  Π with  values Π(s1), Π(s2), ...

We also see Π(si ) written  as Π(i ) or  Πi .

In  terms  of  mass-flow,  the  distribution  that  has mass

Πi  at  each vertex  i   is  invariant  under  P if  it  remains

the  same when Πi  pij  units  of  mass flow  along each edge

i®j .  We write  this  as the  balance equation

Új  Πi  pij  = Új  Πj  pji

since the  LHS is the  total  mass flowing  out  of  i

and the  RHS is the  total  mass flowing  int o i.

One way the  balance equation can hold  for  all  i is if  the

detailed  balance equation

Πi  pij  = Πj  pji

holds for  all  i  and j  ; that  is, the  amount of  mass flow -

ing from  i  to  j  equals the  amount of  mass flowing  from

j   to  i.   In  this  case,  we  say  our  Markov  chain  is

r ever sible.

The detailed  balance condition

Πi  pij  = Πj  pji   for  all i, j

should not  be confused  with  the  "self-transpose  condi-

t ion"

pij  = pji   for  all i, j

which  says that  the  pr opor t ion of  the  mass at  i  that

goes to  j  equals the  proportion  of  the  mass at  j  that

goes to  i . 

If  the  self-transpose  condition  holds,  then  P is  doubly

stochastic,  and  the  uniform  distribution  is  invariant

under  P, so that  Πi  = Πj  for  all  i,j , so that  the  reversibil -

ity  conditions  holds as well.

However,  most  reversible  Markov  chains are  not  self-

transpose,  as the  following  claim illustrates:

Claim: Every  2-state  Markov  chain is reversible.

Let's  check  that  this  is  true  for  the  2-state  Markov

chain with  transition  matrix
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Why  is every  2-state  Markov  chain reversible?

Proof  1: Direct  computation.

Proof  2:  Mass flow  interpretation:  If  total  mass is con-

served,  and there  are  only  two  sites,  then  the  flow

from  1 to  2 must  equal the  flow  from  2 to  1.

Proof  3:  Probabilistic  interpretation:  Πi  pij  is  the

probability  of  seeing an i   at  time  n followed  by  a j   at

time  n + 1, when the  Markov  chain is  run  in  its  steady

state  (with  initial  distribution  Π).   The  law  of  large

numbers  for  Markov  chains,  applied  to  the  "2-step

version"  of  this  Markov  chain  (whose states  are  pairs

of  states  (i,j ),  with  transition  probabilities  pHi ,j L,Ij ' ,k M

equal to  pjk  if  j =j '  and equal to  0  otherwise),  tells  us

that  if  you run  the  chain long enough, the  frequency  of

the  two-letter-word  " ij  "  (i.e.,  the  state  (i,j ))  should

approach  Πi  pij  .   That  is,  in  n  steps  you should  see

about   n Πi  pij   occurrences  of  " ij ".  But  in any block  of

length  n  consisting  of  1's  and  2's,  the  number  of

occurrences  of  "12"  differs  from  the  number  of

occurrences  of  "21"  by at  most  1.  So  

n Π1 p12  and  n Π2  p21  remain  close as n®¥, implying

that   Π1 p12 = Π2 p21 .

Example: Random walk on a graph  is reversible.   (Recall

that  taking  a random  step  means choosing a random

edge at  the  current  vertex  and travelling  along it  to

its  other  endpoint.)

Check: I  claim that  a stationary  measure for  the  walk

has Πi  is proportional  to  degree  di  of  vertex  i  (defined

as  the  number  of  edges  with  an  endpoint  at  i  );

specifically,  Πi  = di  /  D, where  

D = Úi  di   is  the  sum of  all  the  degrees  of  all  the  ver -

tices  (it's  also  equal to  twice  the  number  of  edges,

where  each self-loop  counts  as half  an edge).   Check

detailed  balance:

Πi  pij  = (di / D) (nij / di ) = (d j / D) (nji / d j ) = Πj  pji

where nij  is the  number of  edges joining  states  i and j .
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Examples of Markov chains

(adapted  from  chapters  3  and 4  of  Levin,  Peres, and

Wilmer's  "Markov  Chains and Mixing  Times")

Terminology and notation
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Terminology and notation

Note  that  LP&W use different  notation  than  Grinstead

and Snell  do:

LP&W use W  for  the  set  of  states  of  the  Markov

chain,  whereas  G&S use S  for  the  set  of  states  and

reserve  W for  the  probability  space whose elements  Ω

are finite  or  infinite  sequences of  elements  of  S.

LP&W write  P(x ,y) where  G&S write  pxy .

LP&W write  

Μt=Μ0 Pt

to  denote  the  distribution  after  t steps  (starting  from

the  distribution  Μ0 at  time  0)  and they  write

PΜ(E) = the  probability  of  the  event  E

given that  Μ0 = Μ

and

EΜ(X) = the  expected  value of  the

random variable  X given that  

Μ0 = Μ.

An important  special  case is  where  the  starting  proba -

bility  distribution  Μ assigns probability  1 to  one state,

x , and probability  0  to  every  other  state;  in that  case,

LP&W write  PΜ  and  EΜ  as  Px  and  Ex ,  respectively.

(These notations  are  quite  standard.)

What  G&S call  an "ergodic"  Markov  chain, LP&W call  an

"irreducible"  Markov  chain.

What  G&S call  a first  passage time,  LP&W call  a hit -

ting  time.
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Coupon collecting

How many times,  on average, do you have to  roll  a die

until  you've  seen all six  faces?

Let  Xt be the  number of  different  faces  of  the  die you-

've  seen from  time  1 to  time  t.

E.g., X1 = 1, and X2 = either  1 or  2.

If  Xt = k < 6, then  Xt+1= either  k or  k + 1.

More  precisely,  if  Xt = k, then  Xt+1= k  with  probability
k
6

 and Xt+1= k + 1  with  probability  6-k
6

, since there  are

k  ways to  roll  a face  you've  seen before  and 6- k  ways

to  roll  a face  that's  new to  you.

So we could model this  as a 7-state  Markov  chain with

state  space {0,1,2,3,4,5,6}  with  

pij  equal to   i
6

 if  j  = i,  6-i
6

 if  j  = i + 1, and 

0 otherwise,  and apply the  Grinstead  and Snell  method

to  compute the  expected  time  to  get  from  the  state  0

to  the  absorbing  state  6.

But  we will  do it  another  way.

To compute the  expected  value of  the  random variable

T  :=  the  first  time  t for  which Xt = 6 ,

we break  it  up as T1 + T2 + ... + T6, where

T1  =  the  number of  rolls  required  to  bring

         X  up to  1,

T2  =  the  number of  rolls  after  that  required  

          to  bring  X  up to  2, 

etc.   Each  Tk  is  geometrically  distributed  with

expected  value 6
6-k +1

, since the  chance of  rolling  a face

you haven't  seen yet  is 6-k +1
6

 when you've  seen k-1 dif -

ferent  faces  so far.   So

E(T) = Úk =1
6 E HTk L = Úk =1

6  6
6-k +1

 = Úk =1
6  6

k
 = 6 Úk =1

6  1
k

.
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0 otherwise,  and apply the  Grinstead  and Snell  method

to  compute the  expected  time  to  get  from  the  state  0

to  the  absorbing  state  6.

But  we will  do it  another  way.

To compute the  expected  value of  the  random variable

T  :=  the  first  time  t for  which Xt = 6 ,

we break  it  up as T1 + T2 + ... + T6, where

T1  =  the  number of  rolls  required  to  bring

         X  up to  1,

T2  =  the  number of  rolls  after  that  required  

          to  bring  X  up to  2, 

etc.   Each  Tk  is  geometrically  distributed  with

expected  value 6
6-k +1

, since the  chance of  rolling  a face

you haven't  seen yet  is 6-k +1
6

 when you've  seen k-1 dif -

ferent  faces  so far.   So

E(T) = Úk =1
6 E HTk L = Úk =1

6  6
6-k +1

 = Úk =1
6  6

k
 = 6 Úk =1

6  1
k

.
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Let  Xt be the  number of  different  faces  of  the  die you-

've  seen from  time  1 to  time  t.

E.g., X1 = 1, and X2 = either  1 or  2.

If  Xt = k < 6, then  Xt+1= either  k or  k + 1.

More  precisely,  if  Xt = k, then  Xt+1= k  with  probability
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6

 and Xt+1= k + 1  with  probability  6-k
6
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state  space {0,1,2,3,4,5,6}  with  
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6
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6

 if  j  = i + 1, and 

0 otherwise,  and apply the  Grinstead  and Snell  method

to  compute the  expected  time  to  get  from  the  state  0

to  the  absorbing  state  6.

But  we will  do it  another  way.

To compute the  expected  value of  the  random variable

T  :=  the  first  time  t for  which Xt = 6 ,

we break  it  up as T1 + T2 + ... + T6, where

T1  =  the  number of  rolls  required  to  bring

         X  up to  1,

T2  =  the  number of  rolls  after  that  required  

          to  bring  X  up to  2, 

etc.   Each  Tk  is  geometrically  distributed  with

expected  value 6
6-k +1

, since the  chance of  rolling  a face

you haven't  seen yet  is 6-k +1
6

 when you've  seen k-1 dif -

ferent  faces  so far.   So

E(T) = Úk =1
6 E HTk L = Úk =1

6  6
6-k +1

 = Úk =1
6  6

k
 = 6 Úk =1

6  1
k

.
6 Sum@1 � k, 8k, 6<D

147

10

N@%D

14.7

More  generally,  if  we have a die  each of  whose n faces

has an equal chance of  landing facing  up, the  expected

value of  the  time  Τ until  all faces  have been seen is

n Úk =1
n  1

k
Å  n Ù1

n 1
x

 dx  = n ln n

(for  large  n).

Let's  test  this  with  Mat hemat ica.

Note: Mat hemat ica uses the  "shifted"  geometric  distri -

bution,  which  takes  the  values 0,1,2,... instead  of  the

values 1,2,3,...; thus,  the  average value of
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More  generally,  if  we have a die  each of  whose n faces

has an equal chance of  landing facing  up, the  expected

value of  the  time  Τ until  all faces  have been seen is

n Úk =1
n  1

k
Å  n Ù1

n 1
x

 dx  = n ln n

(for  large  n).

Let's  test  this  with  Mat hemat ica.

Note: Mat hemat ica uses the  "shifted"  geometric  distri -

bution,  which  takes  the  values 0,1,2,... instead  of  the

values 1,2,3,...; thus,  the  average value of
RandomInteger@GeometricDistribution@pDD

is not  1
p
, but  1-p

p
 = 1

p
- 1.  

Mean@GeometricDistribution@pDD

1

p
- 1

To get  an "unshifted"  geometric  random variable,  you

must add 1.
Sum@1 + RandomInteger@GeometricDistribution@k � 100DD, 8k, 100<D

580

table = Table@Sum@1 + RandomInteger@GeometricDistribution@k � 100DD, 8k, 100<D, 81000<D;

N@Mean@tableDD

516.989

N@100 Sum@1 � k, 8k, 100<DD

518.738
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Histogram@tableD
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Claim: Prob(Τ > n ln n + cn) ²  e-c.  (That  is,  Τ is  unlikely

to  be much more than  its  expected  value.)

Proof:  Let  Ek  be the  event  that  the  kth  face  does not

appear among the  first  n ln n + cn rolls.   Then Prob(Τ >

n  ln  n  + cn)  = Prob(Ük =1
n Ek )  ²  Úk =1

n Pr ob(Ek )  = Úk =1
n (1-

1
n
) n ln n + cn 

= n ((1- 1
n
) n) ln n + c ²  n (e-1) ln n + c 

= n (e-ln n) (e-c) = n (1/ n) e-c = e-c .

Note:  Hereafter,  if  I  ever  write  "log"  instead  of  "ln",  I

always mean "ln".
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The Ehrenfest urn

Suppose n  balls  are  distributed  among two  urns,  A and

B.  At  each move, a ball  is selected  at  random and trans -

ferred  from  its  current  urn  to  the  other  urn.   If  Xt is

the  number  of  balls  in urn  A  at  time  t, then  X0, X1, ...

is a Markov  chain with  transition  probabilities

{ n-j
n

 if  k = j +1,

pjk   = { j
n
    if  k = j -1,

{ 0    otherwise.

Note  that  this  is  biased  towards  the  middle:  when Xt

is bigger  than  n
2

,

         Xt+1tends  to  be smaller  than  Xt, and

when Xt is smaller  than  n
2

,

         Xt+1tends  to  be bigger  than  Xt. 

Let's  simulate  this  pseudorandomly, with  n = 100, X 0  =

50:
RandomReal@D

0.359172

c = Table@0, 8100<D; k = 50; For@m = 1; k = 50, m £ 1000, m++, r = RandomReal@D;
If@r < H100 - kL � 100, k++, k--D; c@@kDD++D

c

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 2, 3, 10, 23, 34, 44, 53, 55, 53, 52, 62, 84, 93, 85, 65, 51, 46, 40, 36, 32, 35, 28, 11,
3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<
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ListLinePlot@cD
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ListLinePlot@c, PlotRange ® AllD
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c = Table@0, 81000<D; k = 50; For@m = 1; k = 50, m £ 100 000, m++, r = RandomReal@D;
If@r < H1000 - kL � 1000, k++, k--D; c@@kDD++D

ListLinePlot@c, PlotRange ® AllD

200 400 600 800 1000

500

1000

1500

2000

2500

Is  this  approaching a Gaussian? ...

On the  homework, you will  check directly  that  the  bino-

mial distribution  wk  = 
n

k
 /  2n is an invariant  probabil -

ity  measure for  this  chain.
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On the  homework, you will  check directly  that  the  bino-

mial distribution  wk  = 
n

k
 /  2n is an invariant  probabil -

ity  measure for  this  chain.

Another  way to  see this  is to  number the  balls  and rep -

resent  each state  of  the  urn  model  by  a string  of  n

bits,  where  the  ith  bit  is 1 if  the  ith  ball  is in urn A and

0 otherwise.

Then  the  operation  of  moving a  random  ball  corre -

sponds to  the  operation  of  flipping  a random bit.

This  Markov  chain  on bit-strings  of  length  n is  just  a

random walk on an n-regular  graph,  so the  uniform  dis-

tribution  on bit-strings  is  an invariant  measure for  the

walk.

Each bit-string  has  probability  1 /  2n,  and  
n

k
 of

them  correspond  to  ball-configurations  with  k  balls  in

bin A, so 

Pr ob[k balls  in urn A]  = 
n

k
 /  2n .

16   Lec06.nb



Another  way to  see this  is to  number the  balls  and rep -

resent  each state  of  the  urn  model  by  a string  of  n

bits,  where  the  ith  bit  is 1 if  the  ith  ball  is in urn A and

0 otherwise.

Then  the  operation  of  moving a  random  ball  corre -

sponds to  the  operation  of  flipping  a random bit.

This  Markov  chain  on bit-strings  of  length  n is  just  a

random walk on an n-regular  graph,  so the  uniform  dis-

tribution  on bit-strings  is  an invariant  measure for  the

walk.

Each bit-string  has  probability  1 /  2n,  and  
n

k
 of

them  correspond  to  ball-configurations  with  k  balls  in

bin A, so 

Pr ob[k balls  in urn A]  = 
n

k
 /  2n .

The birthday problem

Markov  chain version:  If  people come into  a room one

at  a time,  how long do we have to  wait  until  someone

who comes in has the  same birthday  as someone else in

the  room?

Assume that  there  are  N  days in a year,  and that  a per -

son is equally likely  to  be born  on any of  them.

If  the  first  k  -  1 people have distinct  birthdays,  the

probability  that  the  kth  person  has  a  different

birthday  from  all of  the  first  

k -1 people is N -k +1
N

.

So the  probability  that  the  first  n people have distinct

birthdays  is  pn  =  N -1
N

N -2
N

...N -Hn-1L
N

.   Approximating
N -k

N
= 1 -  k

N
  by e-k �N , we get

pn Å  (e-1�N ) 1+2+...+Hn-1L = (e-1�N ) nHn-1L�2, which for

n Å  N  gives pn Å  e-1�2  Å  0.6.   So the  value of  n  for

which pn crosses from  [ 1
2

,1] to  [0, 1
2

]  

is  slightly  larger  than  N .  E.g., when N  = 365,  the

cross-over  point  is from  n=22 to  n=23. 
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If  the  first  k  -  1 people have distinct  birthdays,  the

probability  that  the  kth  person  has  a  different

birthday  from  all of  the  first  

k -1 people is N -k +1
N

.

So the  probability  that  the  first  n people have distinct

birthdays  is  pn  =  N -1
N

N -2
N

...N -Hn-1L
N

.   Approximating
N -k

N
= 1 -  k

N
  by e-k �N , we get

pn Å  (e-1�N ) 1+2+...+Hn-1L = (e-1�N ) nHn-1L�2, which for

n Å  N  gives pn Å  e-1�2  Å  0.6.   So the  value of  n  for

which pn crosses from  [ 1
2

,1] to  [0, 1
2

]  

is  slightly  larger  than  N .  E.g., when N  = 365,  the

cross-over  point  is from  n=22 to  n=23. 

N@Product@1 - Hk - 1L � 365, 8k, 22<DD

0.524305

N@Product@1 - Hk - 1L � 365, 8k, 23<DD

0.492703

We  can  model  the  process  as  an absorbing  Markov

chain with  transient  states  1,2,...,N   and an absorbing

state  ©, where  pk ,k +1 = N -k
N

, pk ,© = k
N

, p©,© = 1, and other -

wise pi ,j  = 0.
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The Polya urn

Start  with  an urn  (just  one this  time!)  containing  some

black  balls  and some white  balls  (at  least  one of  each).

Choose a ball  at  random from  those  already  in the  urn;

return  the  chosen ball  to  the  urn  along with  another

(new) ball  of  the  same color.   Repeat.

If  there  are  a white  balls  and b black  balls  in the  urn,

then  with  probability  a
a+b

 a white  ball  will  be  added,

and with  probability  b
a+b

 a black  balls  will  be added.

The  (random)  sequence of  pairs  (a,b)  resulting  from

these  choices is a Markov  chain.

Example: Start  with  (a,b)=(2,2),  and run  the  chain for

two  steps.   With  probability  2
4

,  a  white  ball  will  be

added,  and if  that  happens, then  with  probability  3
5

,

another  white  ball  will  be  added.   Hence  we go from

(2,2)  to  (4,2)  (in  two  steps)  with  probability  ( 2
4

)( 3
5

)  =

0.3.  Likewise  in two  steps  we go to  (2,4)  with  probabil -

ity  0.3,  and we go to  (3,3)  with  probability  1 -  0.3  -  0.3

= 0.4.
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Example: Start  with  (a,b)=(2,2),  and run  the  chain for

two  steps.   With  probability  2
4

,  a  white  ball  will  be

added,  and if  that  happens, then  with  probability  3
5

,

another  white  ball  will  be  added.   Hence  we go from

(2,2)  to  (4,2)  (in  two  steps)  with  probability  ( 2
4

)( 3
5

)  =

0.3.  Likewise  in two  steps  we go to  (2,4)  with  probabil -

ity  0.3,  and we go to  (3,3)  with  probability  1 -  0.3  -  0.3

= 0.4.

Let's  run  the  Polya urn  model  for  10 steps  starting

from  (2,2),  to  see where  we end up; let's  do this  simula-

tion  repeatedly  (enough times  so that  a smooth distribu -

tion  appears).
c = Table@0, 812<D; For@n = 1, n £ 10 000, n++,
For@8m, a, b< = 81, 2, 2<, m £ 10, m++, If@RandomReal@D < a � Ha + bL, a++, b++DD; c@@aDD++D

c

80, 357, 689, 968, 1064, 1232, 1293, 1215, 1160, 925, 708, 389<

ListLinePlot@c, PlotRange ® AllD
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What  about  starting  from  (1,1) instead  of  (2,2)?
c = Table@0, 811<D; For@n = 1, n £ 10 000, n++,
For@8m, a, b< = 81, 1, 1<, m £ 10, m++, If@RandomReal@D < a � Ha + bL, a++, b++DD; c@@aDD++D
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ListLinePlot@c, PlotRange ® AllD
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The  reason  this  graph  isn't  stabilizing  should  become

clear  if  you look at  the  markings on the  y-axis:  the  func -

tion  being plotted  stays  within  a fairly  narrow  range.

Let's  force  the  plot  to  include the  x-axis.

ListLinePlot@c, PlotRange ® All, AxesOrigin ® 80, 0<D
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400

600

800

It  looks  like  the  distribution  of  the  number  of  white

balls at  time  10 is uniform  on {1,...,11} !

Claim: If  we start  from  (1,1), then  the  number of  white

balls  after  n steps  is  uniform  on {1,...,n+1}.  That  is,  if

P(a,b)  denotes  the  probability  of  being  in  state  (a,b)

after  

a + b -  2  steps,  then  P(a,b)  = 1
a+b-1

 for  all  a,b³ 1  (and

P(a,b) = 0 for  all other  a,b).
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Claim: If  we start  from  (1,1), then  the  number of  white

balls  after  n steps  is  uniform  on {1,...,n+1}.  That  is,  if

P(a,b)  denotes  the  probability  of  being  in  state  (a,b)

after  

a + b -  2  steps,  then  P(a,b)  = 1
a+b-1

 for  all  a,b³ 1  (and

P(a,b) = 0 for  all other  a,b).

Proof  #1  (by induction  on a + b): 

The claim is trivially  true  for  (1,1).

Suppose it's  true  for  (a-1,b) and (a,b-1).  Then 

P(a,b) = a-1
a+b-1

P(a-1,b) + b-1
a+b-1

P(a,b-1) 

= a-1
a+b-1

 1
a+b-2

 + b-1
a+b-1

 1
a+b-2

= a+b-2
a+b-1

1
a+b-2

= 1
a+b-1

.

Proof  #2:  Think  about  a different  process,  where  we

repeatedly  add  a new card  at  a random  position  in  a

growing  stack  of  cards  (starting  from  a 1-card  stack

that  contains  just  the  joker).

Let  a (resp.  b)  be  1 more  than  the  number  of  cards

above (resp.  below) the  joker.  

The chance of  adding the  next  card  above the  joker  is
a

a+b
, and the  chance of  adding the  next  card  below the

joker  is  b
a+b

,  so the  (a,b)-process  for  the  cards  is  a

Markov  chain with  the  same transition  probabilities  as

the  Polya urn.

Since  the  stack  we build  in  this  fashion  is  perfectly

shuffled  (each  permutation  has the  same probability

as every  other),  the  joker  is as likely  to  be in any posi-

tion  as any other;  hence the  distribution  of  the  (a,b)

pairs  is uniform.

Note  that  this  uniformity  result  is  very  specific  to

starting  the  chain in  the  state  (1,1).  If  we start  it  in

the  state  (1,2),  or  the  state  (2,1),  we get  slightly  lop-

sided  distributions  (try  it!);  but  if  we average the  two

lopsided  distributions,  we get  something  flat.   Likewise

for  the  n-ball  distribution  (n > 4)

that  we get  starting  from  (1,3),  (2,2)  and (3,1);  these

distributions  are  not  flat,  but  a suitable  weighted  aver -

age is flat.
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repeatedly  add  a new card  at  a random  position  in  a

growing  stack  of  cards  (starting  from  a 1-card  stack

that  contains  just  the  joker).

Let  a (resp.  b)  be  1 more  than  the  number  of  cards

above (resp.  below) the  joker.  
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as every  other),  the  joker  is as likely  to  be in any posi-

tion  as any other;  hence the  distribution  of  the  (a,b)
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Note  that  this  uniformity  result  is  very  specific  to

starting  the  chain in  the  state  (1,1).  If  we start  it  in

the  state  (1,2),  or  the  state  (2,1),  we get  slightly  lop-

sided  distributions  (try  it!);  but  if  we average the  two

lopsided  distributions,  we get  something  flat.   Likewise

for  the  n-ball  distribution  (n > 4)

that  we get  starting  from  (1,3),  (2,2)  and (3,1);  these

distributions  are  not  flat,  but  a suitable  weighted  aver -

age is flat.

A variant of biased gambler's ruin

Fix  some 0 < p < 1, and take  q = 1-p.

Fix  some positive  integer  n.

Consider the  biased random walk on 

{ 1, 2, ..., n } with  semiabsorbent  barriers  

at  1 and n  that  goes 1 step  to  the  right  with  probabil -

ity  p  and 1 step  to  the  left  with  probability  q, with  the

special  proviso  that  "going  1 step  to  the  right  of  n "

means "staying  at  n " and "going 1 step  to  the  left  of  1"

means "staying  at  1".

Consider the  mass distribution  that  puts  mass 

(p / q) k  at  state  k.  You will  check  (in  the  next  home-

work  assignment)  that  this  distribution  is  invariant

under mass-flow.

So the  stationary  probability  distribution  has Π(k ) = (p

/ q) k  /  Z, where  the  normalizing  constant  Z   is  Úk =1
n (p

/ q) k .

(This  is  typical  of  many situations  in which  the  explicit

form  of  the  stationary  probability  distribution  is  a

nice expression  times  some possibly  very  nasty  normaliz -

ing constant.   In  this  case, the  normalizing  constant  is

easy to  compute,  since  it's  just  a geometric  sum; in

other  cases,  especially  those  arising  in  statistical

mechanics, the  sum can be extremely  hard  to  compute

or  even estimate.)
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work  assignment)  that  this  distribution  is  invariant

under mass-flow.

So the  stationary  probability  distribution  has Π(k ) = (p

/ q) k  /  Z, where  the  normalizing  constant  Z   is  Úk =1
n (p

/ q) k .

(This  is  typical  of  many situations  in which  the  explicit

form  of  the  stationary  probability  distribution  is  a

nice expression  times  some possibly  very  nasty  normaliz -

ing constant.   In  this  case, the  normalizing  constant  is

easy to  compute,  since  it's  just  a geometric  sum; in

other  cases,  especially  those  arising  in  statistical

mechanics, the  sum can be extremely  hard  to  compute

or  even estimate.)

Put n = 8,  p = 2/5,   q = 3/5,   p / q = 2/3.
Z = Sum@H2 � 3L^k, 8k, 8<D

12 610

6561
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w = Table@HH2 � 3L^kL � Z, 8k, 8<D

:
2187

6305
,

1458

6305
,

972

6305
,

648

6305
,

432

6305
,

288

6305
,

192

6305
,

128

6305
>

Local equilibration

Clear@A, B, CD

Clear::wrsym : Symbol C is Protected. �

Let  A, B, C be probabilities  summing to  1, and let  P1 and

P2 be the  respective  stochastic  matrices
P1 = 88A � HA + BL, B � HA + BL, 0<, 8A � HA + BL, B � HA + BL, 0<, 80, 0, 1<<;
P2 = 881, 0, 0<, 80, B � HB + CL, C � HB + CL<, 80, B � HB + CL, C � HB + CL<<;
8MatrixForm@P1D, MatrixForm@P2D<

:

A

A+B

B

A+B
0

A

A+B

B

A+B
0

0 0 1

,

1 0 0

0
B

B+C

C

B+C

0
B

B+C

C

B+C

>

Then the  row-vector
w = 88A, B, C<<; MatrixForm@wD

H A B C L

is  a stationary  probability  vector  for  the  matrices  P1,

P2, P1P2, P2P1, 
1
2

P1 + 1
2

P2, and more generally  p P1 + (1-p)

P2 for  any 0 < p < 1.

Check:
w.P1

J
A2

A+B
+

B A

A+B

B2

A+B
+

A B

A+B
C N

Simplify@%D

H A B C L

Simplify@w.P2D

H A B C L

Since wP1 = w = wP2, the  other  claims follow:

w(P1P2) = (wP1)P2 = wP2 = w

w(P2P1) = (wP2)P1 = wP1 = w

w(p P1 + (1-p) P2) = p(wP1)+(1-p)(wP2)

= pw + (1-p)w = w
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Since wP1 = w = wP2, the  other  claims follow:

w(P1P2) = (wP1)P2 = wP2 = w

w(P2P1) = (wP2)P1 = wP1 = w

w(p P1 + (1-p) P2) = p(wP1)+(1-p)(wP2)

= pw + (1-p)w = w

The  Markov  chains  with  transition  matrices  P1 and P2

are  not  ergodic,  but  the  others  (P1P2, P2P1, and linear

combinations  of  P1 and P2) ar e.

We  say  that  the  stochastic  matrix  P1 locally           equili -

br at es  states  1 and  2,  while  P2  locally  equilibrates

states  2 and 3.

In  terms  of  mass-flow,  P1 takes  all  the  mass at  states

1 and 2  and redistributes  it  between  states  1 and 2  in

the  proportion  A:B,  while  P2  takes  all  the  mass at

states  2  and 3  and redistributes  it  between  states  2

and 3 in the  proportion  B:C.

The  ergodic  Markov  chain  with  transition  matrix  P1P2

works  by  first  (locally)  equilibrating  {1,2},  then  equili -

brating  {2,3},  then  equilibrating  {1,2} again, then  equili -

brating  {2,3}  again, etc.

P2P1 is  similar,  except  that  it  starts  by  equilibrating

{2,3}.

1
2

P1 + 1
2

P2  works  by  repeatedly  tossing  a fair  coin:  if

the  coin comes up heads, you equilibrate  {1,2}, and if  it

comes up tails  you equilibrate  {2,3}.  

Note  that  we never  really  used the  fact  that  A+B+C =

1.  So,  given general  positive  numbers  A,B,C,  we have

constructed  several  ergodic  Markov  chains that  all  pre -

serve the  probability  vector  ( A
A+B+C

, B
A+B+C

, C
A+B+C

 ).

Lec06.nb   27



We  say  that  the  stochastic  matrix  P1 locally           equili -

br at es  states  1 and  2,  while  P2  locally  equilibrates

states  2 and 3.

In  terms  of  mass-flow,  P1 takes  all  the  mass at  states

1 and 2  and redistributes  it  between  states  1 and 2  in

the  proportion  A:B,  while  P2  takes  all  the  mass at

states  2  and 3  and redistributes  it  between  states  2

and 3 in the  proportion  B:C.

The  ergodic  Markov  chain  with  transition  matrix  P1P2

works  by  first  (locally)  equilibrating  {1,2},  then  equili -

brating  {2,3},  then  equilibrating  {1,2} again, then  equili -
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P2P1 is  similar,  except  that  it  starts  by  equilibrating

{2,3}.

1
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P1 + 1
2

P2  works  by  repeatedly  tossing  a fair  coin:  if

the  coin comes up heads, you equilibrate  {1,2}, and if  it

comes up tails  you equilibrate  {2,3}.  

Note  that  we never  really  used the  fact  that  A+B+C =

1.  So,  given general  positive  numbers  A,B,C,  we have

constructed  several  ergodic  Markov  chains that  all  pre -

serve the  probability  vector  ( A
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, B
A+B+C

, C
A+B+C

 ).
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We  say  that  the  stochastic  matrix  P1 locally           equili -

br at es  states  1 and  2,  while  P2  locally  equilibrates

states  2 and 3.

In  terms  of  mass-flow,  P1 takes  all  the  mass at  states

1 and 2  and redistributes  it  between  states  1 and 2  in

the  proportion  A:B,  while  P2  takes  all  the  mass at

states  2  and 3  and redistributes  it  between  states  2

and 3 in the  proportion  B:C.

The  ergodic  Markov  chain  with  transition  matrix  P1P2

works  by  first  (locally)  equilibrating  {1,2},  then  equili -

brating  {2,3},  then  equilibrating  {1,2} again, then  equili -

brating  {2,3}  again, etc.

P2P1 is  similar,  except  that  it  starts  by  equilibrating

{2,3}.

1
2

P1 + 1
2

P2  works  by  repeatedly  tossing  a fair  coin:  if

the  coin comes up heads, you equilibrate  {1,2}, and if  it

comes up tails  you equilibrate  {2,3}.  

Note  that  we never  really  used the  fact  that  A+B+C =

1.  So,  given general  positive  numbers  A,B,C,  we have

constructed  several  ergodic  Markov  chains that  all  pre -

serve the  probability  vector  ( A
A+B+C

, B
A+B+C

, C
A+B+C

 ).

More  generally,  suppose we have positive  numbers  A1,

..., An.  Let  P1 be the  transition  matrix  for  the  opera-

tion  that  simultaneously  equilibrates  {1,2},  {3,4},  ...;

that  is,  P1 consists  of  2-by-2  stochastic  blocks,  each

of  rank  1 (that  is,  the  two  rows  of  the  block  are  the

same), possibly  with  a 1-by-1 block  consisting  of  just  a

1 left  over  at  the  end (in  the  case when n is  odd).  Let

P2 be the  transition  matrix  for  the  operation  that  simul-

taneously  equilibrates  {2,3},  {4,5},  ... .  Then P1P2, P2P1,

and p P1 + (1-p) P2  (for  any 0  < p < 1) are  all  transition

matrices  for  ergodic  Markov  chains with  unique station -

ary  probability  measure (A1,  ..., An),  where  A i  = A i / Z

with  the  normalizing  constant  Z=A1+...+An.

(This  ties  in  with  the  general  theme  in  statistical

mechanics  mentioned  above:  we  often  know  the

"weights"  A i  without  knowing  the  probabilities  A i

because we can't  compute  Z,  even though  it's  "just"

the  sum of  the  A i ' s.)

More  generally,  if  we  have  a  Markov  chain  with  n

states,  and a partition  P of  the  state  space S into  dis-

joint  subsets  S1, ..., Sk  (k  > 1), then  we can do a local

equilibration  on each of  the  subsets,  relative  to  some

positive  weight-function  A  on the  state-space;  this  will

be a non-ergodic  Markov  chain that  preserves  A.

To get  an ergodic  Markov  chain  that  preserves  A,  we

perform  a succession of  such Markov-updates,  with  a

succession of  different  partitions  P.
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More  generally,  if  we  have  a  Markov  chain  with  n

states,  and a partition  P of  the  state  space S into  dis-

joint  subsets  S1, ..., Sk  (k  > 1), then  we can do a local

equilibration  on each of  the  subsets,  relative  to  some

positive  weight-function  A  on the  state-space;  this  will

be a non-ergodic  Markov  chain that  preserves  A.

To get  an ergodic  Markov  chain  that  preserves  A,  we

perform  a succession of  such Markov-updates,  with  a

succession of  different  partitions  P.

In  order  for  the  resulting  Markov  chain to  be ergodic,

we need a collection  P1,..., Pm of  such partitions  of  S,

with  the  property  that  every  state  y  of  S  can  be

reached  from  every  other  state  x  of  S  via  a  chain

x=x0, x1, ..., x r =y  such that  for  all  k, xk  and xk +1 are  in

the  same block  of  one of  the  partitions  Pi  in  our

collect ion.

Given such  a  collection  of  partitions,  we  could  just

cycle  through  them  in some fixed  order;  or  we could at

each stage  roll  an m-sided  die  and choose one at  ran-

dom. 

Either  way,  we  get  an  ergodic  Markov  chain  whose

unique stationary  probability  vector  is the  original  speci-

fied  weight-vector,  scaled so that  its  entries  sum to  1.
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Given such  a  collection  of  partitions,  we  could  just

cycle  through  them  in some fixed  order;  or  we could at

each stage  roll  an m-sided  die  and choose one at  ran-

dom. 

Either  way,  we  get  an  ergodic  Markov  chain  whose

unique stationary  probability  vector  is the  original  speci-

fied  weight-vector,  scaled so that  its  entries  sum to  1.

Later  we'll  see  this  in  the  context  of  statistical

mechanics models  where  the  weights  are  "Boltzmann

weights",  determined  by  the  energies  of  the  states;

the  rescaled  weight-distribution  is  called  the  Boltz -

mann distribution,  and this  scheme for  converging  to

the  Boltzmann  distribution  is  called  heat -bat h  or

Glauber             dynamics.

Side  note:  If  an ergodic  Markov  chain  with  transition

matrix  P has some periodicity  (typically  period  2),  peo-

ple doing simulations  will  often  replace  P by  1
2

(I +P),  or

more  generally  pI +(1-p)P for  some 0<p<1, because this

gets  rid  of  periodicity  (by  allowing  "no-ops"  to  occur

with  some positive  probability)  while  ensuring  that  the

stationary  probability  distribution  w  for  P  is  still

stationary  for  the  new version  of  P.  The  price  we pay

is that  our  new Markov  chain converges more slowly to

stationarity  (e.g., twice  as slowly in the  case of  1
2

(I +P)).
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mechanics models  where  the  weights  are  "Boltzmann

weights",  determined  by  the  energies  of  the  states;

the  rescaled  weight-distribution  is  called  the  Boltz -

mann distribution,  and this  scheme for  converging  to

the  Boltzmann  distribution  is  called  heat -bat h  or

Glauber             dynamics.

Side  note:  If  an ergodic  Markov  chain  with  transition

matrix  P has some periodicity  (typically  period  2),  peo-

ple doing simulations  will  often  replace  P by  1
2

(I +P),  or

more  generally  pI +(1-p)P for  some 0<p<1, because this

gets  rid  of  periodicity  (by  allowing  "no-ops"  to  occur

with  some positive  probability)  while  ensuring  that  the

stationary  probability  distribution  w  for  P  is  still

stationary  for  the  new version  of  P.  The  price  we pay

is that  our  new Markov  chain converges more slowly to

stationarity  (e.g., twice  as slowly in the  case of  1
2

(I +P)).

Discuss HW solutions (esp. H and I)
Feedback requested!
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