
Discuss HW #2, solutions to problems H and I

Problem H (G&S, problem 11.2.24)

Conditions 

(a) wx  = p wx +1 + q wx -1 for  x  = 1, 2, ..., T-1 ,

(b)  w0 = 0

and 

(c) wT  = 1

determine  wx  because condition  (b)  tells  us that  the

function  w  is  harmonic  at  all  states  other  than  0  and

T, and conditions  (a)  and (c)  tell  us the  values that  w

takes  at  the  boundary;  as we saw in class (as an applica-

tion  of  the  maximum principle),  a harmonic  function  on

an absorbing  Markov  chain is  determined  by  its  values

on the  boundary.

Grinstead  and Snell  offer  the  following  explanation  for

why  conditions  (a),  (b),  and (c)  suffice  to  determine

the  values of  w:

"Let  P be  the  transition  matrix  for  our  absorbing

chain. Then these  equations state  that  Pw = w.  That  is,

the  column vector  w is  a fixed  vector  for  P.  Consider

the  transition  matrix  for  an arbitrary  Markov  chain in

canonical form  and assume that  we have a vector  w

such that  w = Pw. Multiplying  through  by P, we see that

P2w = w, and in general  Pnw = w.  But  

Pn ® 
0 B

0 I
 .

Thus

w = 
0 B

0 I
 w .

If  we write

w = 
wT

wA
 ,

where  T  is the  set  of  transient  states  and A  is the  set

of  absorbing  states,  then  by  the  argument  above we

have

w = 
wT

wA
 = 

BwA

wA
.

Thus for  an absorbing  Markov  chain, a column vector  w

satisfying  Bw = w is  determined  by  its  values on the

absorbing  states.  Since  in  our  example we know these

values are  0 and 1, we know that  w is completely  deter -

mined. The  solutions  given clearly  satisfy  (b)  and (c),

and a direct  calculation  shows that  they  also satisfy

(a)."



"Let  P be  the  transition  matrix  for  our  absorbing

chain. Then these  equations state  that  Pw = w.  That  is,

the  column vector  w is  a fixed  vector  for  P.  Consider

the  transition  matrix  for  an arbitrary  Markov  chain in

canonical form  and assume that  we have a vector  w

such that  w = Pw. Multiplying  through  by P, we see that

P2w = w, and in general  Pnw = w.  But  

Pn ® 
0 B

0 I
 .

Thus

w = 
0 B

0 I
 w .

If  we write

w = 
wT

wA
 ,

where  T  is the  set  of  transient  states  and A  is the  set

of  absorbing  states,  then  by  the  argument  above we

have

w = 
wT

wA
 = 

BwA

wA
.

Thus for  an absorbing  Markov  chain, a column vector  w

satisfying  Bw = w is  determined  by  its  values on the

absorbing  states.  Since  in  our  example we know these

values are  0 and 1, we know that  w is completely  deter -

mined. The  solutions  given clearly  satisfy  (b)  and (c),

and a direct  calculation  shows that  they  also satisfy

(a)."
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"Let  P be  the  transition  matrix  for  our  absorbing

chain. Then these  equations state  that  Pw = w.  That  is,

the  column vector  w is  a fixed  vector  for  P.  Consider

the  transition  matrix  for  an arbitrary  Markov  chain in

canonical form  and assume that  we have a vector  w

such that  w = Pw. Multiplying  through  by P, we see that

P2w = w, and in general  Pnw = w.  But  

Pn ® 
0 B

0 I
 .

Thus

w = 
0 B

0 I
 w .

If  we write

w = 
wT

wA
 ,

where  T  is the  set  of  transient  states  and A  is the  set

of  absorbing  states,  then  by  the  argument  above we

have

w = 
wT

wA
 = 

BwA

wA
.

Thus for  an absorbing  Markov  chain, a column vector  w

satisfying  Bw = w is  determined  by  its  values on the

absorbing  states.  Since  in  our  example we know these

values are  0 and 1, we know that  w is completely  deter -

mined. The  solutions  given clearly  satisfy  (b)  and (c),

and a direct  calculation  shows that  they  also satisfy

(a)."

Problem I (G&S, problem 11.2.26)

Here  is what  Grinstead  and Snell  say about  the  unique-

ness issue:

"Again,  it  is  easy to  check  that  the  proposed  solution

f (x) = x(n-x) satisfies  conditions  (a) and (b).  The  hard

part  is to  prove that  these  equations have a unique solu-

tion.  As  in the  case of  Exercise  23,  it  is  most  instruc -

tive  to  consider  this  problem  more  generally.  We  have

a special  case of  the  following  situation.  Consider  an

absorbing  Markov  chain  with  transition  matrix  P in

canonical form  and with  transient  states  T  and absorb -

ing states  A.  Let  f  and g be column vectors  that  sat -

isfy  the  system  of  equations
Q R

0 I
 

f T

0
 + 

gT

0
 = 

f T

0
 .

where  gT  is  given and it  is  desired  to  determine  f T . In

our  example, gT  has all  components equal to  1. To solve

for  f T  we note  that  these  equations are  equivalent  to

Q  f T  + gT  = f T  , 

or

(I  -  Q) f T  = gT  .

Solving for  f A, we obtain

f T  = N  gT

Thus f T  is uniquely determined  by gT  .
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"Again,  it  is  easy to  check  that  the  proposed  solution

f (x) = x(n-x) satisfies  conditions  (a) and (b).  The  hard

part  is to  prove that  these  equations have a unique solu-

tion.  As  in the  case of  Exercise  23,  it  is  most  instruc -

tive  to  consider  this  problem  more  generally.  We  have

a special  case of  the  following  situation.  Consider  an

absorbing  Markov  chain  with  transition  matrix  P in

canonical form  and with  transient  states  T  and absorb -

ing states  A.  Let  f  and g be column vectors  that  sat -

isfy  the  system  of  equations
Q R

0 I
 

f T

0
 + 

gT

0
 = 

f T

0
 .

where  gT  is  given and it  is  desired  to  determine  f T . In

our  example, gT  has all  components equal to  1. To solve

for  f T  we note  that  these  equations are  equivalent  to

Q  f T  + gT  = f T  , 

or

(I  -  Q) f T  = gT  .

Solving for  f A, we obtain

f T  = N  gT

Thus f T  is uniquely determined  by gT  .

HW #3 due 2 weeks from today

See ht t p:/ / j amespr opp.or g/ 584/ P3.pdf  .

Rotor-routing
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Rotor-routing

Disclaimer:  This  topic  is  NOT  standard  stochastic  pro-
cesses material.  It's mostly my own work, and while rotor-
routing  is  catching  on in  some circles,  it  remains  to  be
seen whether it'll have serious applications or come to be
viewed as a mere curiosity.  Time will tell!

Definition of rotor-routing

Executing  an  n-state  Markov  chain  with  transition

matrix  P by making random moves can be viewed as tak -

ing a random walk  on the  set  {s1,s2  ,..., sn},  where  the

walker  (or  particle),  when at  site  si , has probability  pij

of  going to  site  sj  at  the  next  step.   

That  is,  each time  the  particle  is  at  site  si ,  its  next

step  is  determined  by  making a random selection  from

the  probability  distribution  on {s1,s2  ,..., sn}  given  by

the  ith  row  of  P.  For  simplicity  let's  assume for  now

that  all  entries  of  P are  equal to  0  or  1/2,  so that

every  state  has two  successors.   It  may help  to  imag-

ine a coin associated  with  each site  si .

In  contrast,  with  rotor  walk, a particle  leaving site  si

goes to  whichever                successor                 of     si  it    didn' t  go     to     when

it   left        si  the       previous              time .  (When  the  particle  is leav-

ing si  for  the  first  time,  the  rotor  rule  doesn't  specify

its  behavior.)

Lec07.nb   5



In  contrast,  with  rotor  walk, a particle  leaving site  si

goes to  whichever                successor                 of     si  it    didn' t  go     to     when

it   left        si  the       previous              time .  (When  the  particle  is leav-

ing si  for  the  first  time,  the  rotor  rule  doesn't  specify

its  behavior.)

That  is, there  should be a way of  labelling  the  two  suc-

cessors of  si  as a and b such that

the  1st time  the  particle  leaves si ,

it  goes to  a;

the  2nd time  the  particles  leaves si ,

it  goes to  b;

the  3rd  time  the  particle  leaves si ,

it  goes to  a;

the  4th  time  the  particles  leaves si ,

it  goes to  b;

etc.  

See  ht t p:/ / www.cs.uml.edu/ ~j pr opp/ r ot or -r out er -

model/  in  its  "Walk  on  finite  graph  A"  mode

(derandomized  random walk on {0,1,2,3}).

If  we have a state  si  with  three  non-zero  entries  in

the  associated  row  of  P,  all  equal  to  1/3,  then  the

rotor-router  rule  is ...
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If  we have a state  si  with  three  non-zero  entries  in

the  associated  row  of  P,  all  equal  to  1/3,  then  the

rotor-router  rule  is ...

... the  particle  should  go to  whichever                successor                 of     si

it   went         to     the       least         recently .

That  is,  there  should  be  a way of  labelling  the  three

successors of  si  as a and b and c such that

the  1st time  the  particle  leaves si ,

it  goes to  a;

the  2nd time  the  particles  leaves si ,

it  goes to  b;

the  3rd  time  the  particle  leaves si ,

it  goes to  c;

the  4th  time  the  particles  leaves si ,

it  goes to  a;

etc.  

That  is, the  exit  sequence at  si  should be 

abcabcabc..., 

where  the  exit  sequence at  si  means the  sequence

whose kth  term  (for  all  k  ³  1) is  the  state  that  the

rotor  walk goes into  after  its  kth  transition  from  state

si .
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That  is, the  exit  sequence at  si  should be 

abcabcabc..., 

where  the  exit  sequence at  si  means the  sequence

whose kth  term  (for  all  k  ³  1) is  the  state  that  the

rotor  walk goes into  after  its  kth  transition  from  state

si .

We may imagine an arrow  at  si  that  successively points

to  a, to  b, to  c, to  a, to  b, to  c, etc.;  we call  this  arrow

the  r ot or  at  si .  At  any instant,  it  points  toward  the  suc-

cessor  of  si  that  the  particle/walker  went  to  after  its

most  recent  visit  to  si .   Note  that  at  the  start,  it

points  to  c.  The  rule  for  rotor  walk  is  "Update  the

arrow,  then  go where  the  arrow  tells  you to."

If  we have a state  si  with  two  non-zero  entries  in the

associated  row  of  P,  one equal to  2/3  and the  other

equal to  1/3,  then  the  rotor-router  rule  is ...

... the  exit  sequence from  si  should be

aabaabaab... or

abaabaaba... or

baabaabaa...,

where  pia = 2/3  and pib  = 1/3.   (See ht t p:/ / www.cs.uml.e-

du/ ~j pr opp/ r ot or -r out er -model/  in  its  "Walk  on finite

graph  B"  mode (derandomized  biased  random  walk  on

{0,1,2,3}).)
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... the  exit  sequence from  si  should be

aabaabaab... or

abaabaaba... or

baabaabaa...,

where  pia = 2/3  and pib  = 1/3.   (See ht t p:/ / www.cs.uml.e-

du/ ~j pr opp/ r ot or -r out er -model/  in  its  "Walk  on finite

graph  B"  mode (derandomized  biased  random  walk  on

{0,1,2,3}).)

More  generally,  if  all  the  transition  probabilities

pi 1,...,pin  are  rational  with  common denominator  D,  we

associate  with  state  si  some  specified  periodic

sequence with  period  D,  such  that  the  frequency  of

each sj  in  the  periodic  sequence is  pij , and we decree

that  the  exit  sequence at  si  should  be  the  specified

periodic  sequence.

Special  case: if  there  are  only two  non-zero  entries  in

the  ith  row of  P, then  there  is a natural  choice  for  the

exit  sequence.  Specifically,  suppose pi a = p and pi b  = 1-

p.  Then we can take  the  kth  term  of  the  exit  sequence

to  be  a or  b  according  to  whether  nint( pk)  -  nint( p-

(k-1)) is 1 or  0, where  nint( x) denotes  the  integer  near-

est  to  x .  Example: With  p = 2/3,  we get  the  sequence

abaabaaba... described  above.
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Special  case: if  there  are  only two  non-zero  entries  in

the  ith  row of  P, then  there  is a natural  choice  for  the

exit  sequence.  Specifically,  suppose pi a = p and pi b  = 1-

p.  Then we can take  the  kth  term  of  the  exit  sequence

to  be  a or  b  according  to  whether  nint( pk)  -  nint( p-

(k-1)) is 1 or  0, where  nint( x) denotes  the  integer  near-

est  to  x .  Example: With  p = 2/3,  we get  the  sequence

abaabaaba... described  above.
p = 2 � 3

2

3

Table@Round@p kD - Round@p Hk - 1LD, 8k, 1, 9<D

81, 0, 1, 1, 0, 1, 1, 0, 1<

For  next  week,  read  "The  Goldbug  Variations "  by

Michael  Kleber  (based on a puzzle  I  sent  him and some

follow-up  emails between  us).  This  example moves us

in the  direction  of  random walk on infinite  graphs,  and

Markov  chains with  infinitely  many states,  which  is one

of  our next  topics.
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Similarities between rotor-walk and random walk

Absorption probabilities

Consider  an absorbing  Markov  chain  with  a particular

transient  state  si  and a particular  absorbing  state  sj .

Assume all matrix  entries  are  rational.

  

Let  bij  be  the  probability  that  the  chain  will  be

absorbed  in  the  absorbing  state  sj  if  it  starts  in  the

transient  state  si .  

If  we  repeatedly  run  rotor  walk  from  state  si

(returning  to  si  after  each absorption,  and NOT  reset -

ting  the  rotors),  then  the  asymptotic  proportion  of  the

time  that  the  rotor-walk  from  si  gets  absorbed  at  sj  is

equal to  bij .

More  specifically,  if  N(t) denotes  the  number  of  times

that  the  rotor-walk  gets  absorbed  at  sj  in  the  first  t

runs,  then  | N(t)/ t  -  bij |  = O(1/ t),  so that  in  particular

N(t)/ t  ®  bij .   (Note  that  if  we  used  random  walk

instead  of  rotor-walk,  we'd  still  have N(t)/ t ® bij , but

with  | N(t)/ t -  bij |  = O(1/sqrt( t)).)

Lec07.nb   11



More  specifically,  if  N(t) denotes  the  number  of  times

that  the  rotor-walk  gets  absorbed  at  sj  in  the  first  t

runs,  then  | N(t)/ t  -  bij |  = O(1/ t),  so that  in  particular

N(t)/ t  ®  bij .   (Note  that  if  we  used  random  walk

instead  of  rotor-walk,  we'd  still  have N(t)/ t ® bij , but

with  | N(t)/ t -  bij |  = O(1/sqrt( t)).)

Expected time until absorption

Consider  an  absorbing  Markov  chain  with  particular

transient  states  si  and sj .

  

Let  nij  be the  expected  number of  times  that  the  chain

will  be in state  sj  if  it  starts  in state  si .  

If  we  repeatedly  run  rotor  walk  from  state  si

(returning  to  si  after  each absorption,  and NOT  reset -

ting  the  rotors),  then  the  asymptotic  average number

of  times  the  rotor-walk  from  si  visits  sj  is equal to  nij .

More  specifically,  if  N(t) denotes  the  number  of  times

that  the  rotor-walk  started  from  si  visits  sj  in  the

first  t runs, then  | N(t)/ t -  nij |  = O(1/ t), so that  in partic -

ular  N(t)/ t ® nij .
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More  specifically,  if  N(t) denotes  the  number  of  times

that  the  rotor-walk  started  from  si  visits  sj  in  the

first  t runs, then  | N(t)/ t -  nij |  = O(1/ t), so that  in partic -

ular  N(t)/ t ® nij .

Summing over  all  transient  states  sj , we find  that  the

asymptotic  average  number  of  steps  the  rotor-walk

from  si  takes  until  it  is  absorbed  is  equal  to  the

expected  number  of  steps  random walk  from  si  takes

until  it  is absorbed.

Stationary probabilities

Now consider  an ergodic  Markov  chain with  a particular

states  si .  Let  wi  be the  stationary  probability  of  si .

If  we run  rotor  walk (from  an arbitrary  initial  state),

then  the  asymptotic  proportion  of  the  time  the  rotor-

walk visits  si  is equal to  wi .

More  specifically,  if  N(t) denotes  the  number  of  times

that  the  rotor-walk  visits  si  in  the  first  t steps,  then

| N(t)/ t -  wi |  = O(1/ t), so that  in particular  N(t)/ t ® wi .

Example 1: Consider  the  Markov  chain associated  with

random  walk  on  {1,2,3,4}  with  reflecting  boundaries.

Then  a  rotor-walk  for  this  Markov  chain  eventually

just  goes ...,1,2,3,4,3,2,1,2,3,4,3,2,...  (period  6),  which

visits  the  states  1,2,3,4  with  frequency  1/6,  2/6,  2/6,

and 1/6,  respectively.
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Example 1: Consider  the  Markov  chain associated  with

random  walk  on  {1,2,3,4}  with  reflecting  boundaries.

Then  a  rotor-walk  for  this  Markov  chain  eventually

just  goes ...,1,2,3,4,3,2,1,2,3,4,3,2,...  (period  6),  which

visits  the  states  1,2,3,4  with  frequency  1/6,  2/6,  2/6,

and 1/6,  respectively.

Example 2:  Consider  the  Markov  chain associated  with

random  walk  on {1,2,3,4}  with  semi-reflecting  bound-

aries.   Then a rotor-walk  for  this  Markov  chain eventu -

ally  just  goes ...,1,2,3,4,4,3,2,1,1,2,3,4,4,3,2,1,...  (period

8),  which  visits  the  states  1,2,3,4  with  frequency  2/8,

2/8,  2/8,  and 2/8,  respectively.

Explaining the similarities: the harmonic functions perspective

I'll  explain  the  situation  for  stationary  probabilities;

the  explanation  for  absorption  probabilities  and  for

expected  time  until  absorption  goes along the  same

lines.

For  each state  si , let  Vi (t) be the  number of  times  that

the  rotor-walk  has been in state  si  in the  first  t time-

steps,  and let  Vij (t)  be  the  number  of  times  (in  the

first  t  time-steps)  that  the  rotor-walk  has  been  in

state  si  and then  gone immediately  to  state  sj , so that

for  all  j , Vj (t)  differs  from  Úi  Vij (t)  by  either  0  or  1

(depending  on whether  the  first  state  visited  by  the

rotor-walk  was sj ).  Also  note  that  Vij (t)  differs  from

pij  Vi (t) by  at  most  a constant  Cij  that  does not  depend

on t.  Combining these  constants,  we have

Vj (t) = (Úi  pij  Vi (t)) ± C

for  some single  constant  C that  does not  depend on t.

Dividing  this  by t, we get

Vj (t) /  t = (Úi  pij  Vi (t) /  t) ± C /  t

If  we take  the  limit  as t goes to  infinity,  the  C /  t goes

away, and we are  left  with

(* ) vj  = Úi  pij  vi

where  vi  = limt®¥ Vi (t) /  t is  the  asymptotic  proportion

of  time  that  the  rotor  walk is  in  state  vi  (technically,

one has to  show that  the  limit  exists,  but  this  is taken

care  of  by  an easy combinatorial  side-argument  that

I'll  omit).

However,  there  is only one probability  vector  v satisfy -

ing (*),  and it's  the  stationary  probability  vector  w!

(Recall: If  a Markov  chain is ergodic,  then  1 is a simple

eigenvalue, so the  space of  row-vectors  v satisfying  vP

= v is  one-dimensional, and it  contains  only one vector

with  components summing to  1, namely w.)

For  absorption  probabilities  and  for  expected  time

until  absorption,  the  arguments  are  similar;  use  the

fact  that  for  an absorbing  Markov  chain,  a harmonic

function  f  (i.e. a function  f  satisfying  Pf  = f ) is uniquely

determined  by  its  values  on  the  boundary  of  the

Markov  chain.
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For  each state  si , let  Vi (t) be the  number of  times  that

the  rotor-walk  has been in state  si  in the  first  t time-

steps,  and let  Vij (t)  be  the  number  of  times  (in  the

first  t  time-steps)  that  the  rotor-walk  has  been  in

state  si  and then  gone immediately  to  state  sj , so that

for  all  j , Vj (t)  differs  from  Úi  Vij (t)  by  either  0  or  1

(depending  on whether  the  first  state  visited  by  the

rotor-walk  was sj ).  Also  note  that  Vij (t)  differs  from

pij  Vi (t) by  at  most  a constant  Cij  that  does not  depend

on t.  Combining these  constants,  we have

Vj (t) = (Úi  pij  Vi (t)) ± C

for  some single  constant  C that  does not  depend on t.

Dividing  this  by t, we get

Vj (t) /  t = (Úi  pij  Vi (t) /  t) ± C /  t

If  we take  the  limit  as t goes to  infinity,  the  C /  t goes

away, and we are  left  with

(* ) vj  = Úi  pij  vi

where  vi  = limt®¥ Vi (t) /  t is  the  asymptotic  proportion

of  time  that  the  rotor  walk is  in  state  vi  (technically,

one has to  show that  the  limit  exists,  but  this  is taken

care  of  by  an easy combinatorial  side-argument  that

I'll  omit).

However,  there  is only one probability  vector  v satisfy -

ing (*),  and it's  the  stationary  probability  vector  w!

(Recall: If  a Markov  chain is ergodic,  then  1 is a simple

eigenvalue, so the  space of  row-vectors  v satisfying  vP

= v is  one-dimensional, and it  contains  only one vector

with  components summing to  1, namely w.)

For  absorption  probabilities  and  for  expected  time

until  absorption,  the  arguments  are  similar;  use  the

fact  that  for  an absorbing  Markov  chain,  a harmonic

function  f  (i.e. a function  f  satisfying  Pf  = f ) is uniquely

determined  by  its  values  on  the  boundary  of  the

Markov  chain.
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For  each state  si , let  Vi (t) be the  number of  times  that

the  rotor-walk  has been in state  si  in the  first  t time-

steps,  and let  Vij (t)  be  the  number  of  times  (in  the

first  t  time-steps)  that  the  rotor-walk  has  been  in

state  si  and then  gone immediately  to  state  sj , so that

for  all  j , Vj (t)  differs  from  Úi  Vij (t)  by  either  0  or  1

(depending  on whether  the  first  state  visited  by  the

rotor-walk  was sj ).  Also  note  that  Vij (t)  differs  from

pij  Vi (t) by  at  most  a constant  Cij  that  does not  depend

on t.  Combining these  constants,  we have

Vj (t) = (Úi  pij  Vi (t)) ± C

for  some single  constant  C that  does not  depend on t.

Dividing  this  by t, we get

Vj (t) /  t = (Úi  pij  Vi (t) /  t) ± C /  t

If  we take  the  limit  as t goes to  infinity,  the  C /  t goes

away, and we are  left  with

(* ) vj  = Úi  pij  vi

where  vi  = limt®¥ Vi (t) /  t is  the  asymptotic  proportion

of  time  that  the  rotor  walk is  in  state  vi  (technically,

one has to  show that  the  limit  exists,  but  this  is taken

care  of  by  an easy combinatorial  side-argument  that

I'll  omit).

However,  there  is only one probability  vector  v satisfy -

ing (*),  and it's  the  stationary  probability  vector  w!

(Recall: If  a Markov  chain is ergodic,  then  1 is a simple

eigenvalue, so the  space of  row-vectors  v satisfying  vP

= v is  one-dimensional, and it  contains  only one vector

with  components summing to  1, namely w.)

For  absorption  probabilities  and  for  expected  time

until  absorption,  the  arguments  are  similar;  use  the

fact  that  for  an absorbing  Markov  chain,  a harmonic

function  f  (i.e. a function  f  satisfying  Pf  = f ) is uniquely

determined  by  its  values  on  the  boundary  of  the

Markov  chain.
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Markov  chain.

Your final project

In  this  class, you will  encounter  a variety  of  random sys-

tems  whose long-term  behavior  is  captured  by  various

numbers (absorption  probabilities,  stationary  probabili -

ties,  mean first  passage times,  etc.).   

One can sometimes calculate  these  numbers exactly.  

One can always estimate  these  numbers by random sim-

ulation,  although  the  simulation  will  have inherent  statis -

tical  error  (whose magnitude  may or  may not  be  easy

to  estimate  or  bound),  assuming you have access to  a

source  of  random  bits  (e.g.  clicks  from  a  Geiger

counter).   

Likewise,  one can always estimate  these  numbers  by

pseudorandom simulation,  if  one trusts  one's  pseudoran-

dom number generator.   

Additionally,  one can sometimes estimate  these  num-

bers  by  quasir andom simulation.   In  the  ideal  case, the

exact  answer  would  be  difficult  to  compute  exactly

(making some sort  of  simulation  necessary),  and quasir-

andom simulation  would efficiently  give good approxima-

tions  with  provably  small error  (smaller  than  the  typi -

cal error  for  pseudorandom simulation).
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bers  by  quasir andom simulation.   In  the  ideal  case, the

exact  answer  would  be  difficult  to  compute  exactly

(making some sort  of  simulation  necessary),  and quasir-

andom simulation  would efficiently  give good approxima-

tions  with  provably  small error  (smaller  than  the  typi -

cal error  for  pseudorandom simulation).

In  this  class, the  goal of  your  final  project  is  to  take

some probabilistic  problem,  study  it  by  at  least  two of

the  following  three  sorts  of  methods:

A) Rigorous analysis (possibly  computer-aided)

B) Pseudorandom simulation

C) Quasirandom  simulation  (e.g., rotor-routing  or  chip-

f ir ing)
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In  this  class, the  goal of  your  final  project  is  to  take

some probabilistic  problem,  study  it  by  at  least  two of

the  following  three  sorts  of  methods:

A) Rigorous analysis (possibly  computer-aided)

B) Pseudorandom simulation

C) Quasirandom  simulation  (e.g., rotor-routing  or  chip-

f ir ing)

So, reconsider  the  different  sorts  of  discrete  stochas -

tic  processes we've  seen in the  past  few  weeks (in  the

homework  and  elsewhere),  and  start  thinking  about

how you'd  pseudorandomly  or  quasirandomly  simulate

them.  

Or,  take  some problem  you like  from  the  voluminous lit -

erature  on fun  probability  problems.

Fifty  Challenging Problems in Probability,  by  Frederick

Most eller

Duelling Idiots  and Other  Probability  Puzzlers,  by  Paul

Nahin (e.g., #9  and #18)

Digital  Dice:  Computational  Solutions  to  Practical  Proba-

bility  Problems, by Paul Nahin (e.g. #4  and #18)
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Sampling from a specified distribution

Markov chain Monte Carlo

To  sample  from  some probability  distribution,  con-

struct  a Markov  chain for  which it  is the  stationary  dis-

tribution,  and then  run it!

Typically  this  is  done for  probability  distributions  on

huge sets,  but  here's  a toy  example: Consider the  prob -

ability  distribution  on {1,2,3,4}  with  m(1) = .1, m(2)  = .2,

m(3)  = .3, and m(4)  = .4.  Put
w = 8.1, .2, .3, .4<

80.1, 0.2, 0.3, 0.4<

We have wP = w for
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P = 880, 0, 0, 1<, 80, 0, 1 � 2, 1 � 2<, 80, 1 � 3, 1 � 3, 1 � 3<, 81 � 4, 1 � 4, 1 � 4, 1 � 4<<
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1

2

1

2

0
1

3

1

3

1

3

1

4

1

4

1

4

1

4

Check:
w.P

80.1, 0.2, 0.3, 0.4<

So,  if  we run  the  Markov  chain  associated  with  the

matrix  P for  many steps,  and see what  proportion  of

the  time  the  respective  states  are  visited,  we will  get

convergence to  w,  by  the  Law of  Large  Numbers  for

ergodic  Markov  chains.  There'll  be two  sources of  dis-

crepancy:  general  statistical  error,  and  "burn-in"  or

"initialization"  error.

In  more realistic  applications,  we have a probability  dis-

tribution  on some huge set  S,  and often  it  isn't  even

given  by  an  exact  formula;  we  know  the  ratios

w(s)/ w(s')  for  so  many pairs  s,s'  that  these  ratios

determine  the  vector  w uniquely up to  a normalizing  con-

stant  Z;  but  we aren't  given Z  (and often  can't  even

compute it  after  the  fact,  or  even estimate  it).
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Rejection sampling

(also known as acceptance-rejection  sampling)

Suppose we want  to  sample from  a distribution  Π on {

1,2,...,n } that's  not  too  far  from  the  uniform  distribu -

tion,  in the  sense that  Π(k) lies  between  0
n

 and 2
n

 for  all

1 ²  k ²  n. Then we can use the  following  iterative  proce -

dur e:

(1) Generate  an element  k  of  { 1,2,...,n } uniformly  (the

"pr oposal").

(2)  With  probability  1
2

Π(k)n,  accept  this  element  (and

output  it);  otherwise,  r ej ect  it  and go back to  step  1.

Each time  we  go  back  to  step  1, our  new proposal

should be independent  of  all previous proposals.

(Note:  elements  that  have  been  rejected  can  be

accepted  in a later  iteration.)

Step  2 makes sense, since 1
2

Π(k)n ²  1
2

2
n

n = 1.

Since our  probability  of  accepting  k  is  proportional  to

Π(k) as k varies  from  1 to  n, it's  plausible  that  the  out -

come of  this  sampling scheme is an element  of  { 1,2,...,n

} distributed  according  to  Π.

More  rigorously:  We  first  argue  that  the  probability

of  the  algorithm  succeeding on the  first  try  is
1
n
( 1

2
Π(1)n) + 1

n
( 1

2
Π(2)n) + ... + 1

n
( 1

2
Π(n)n)

= 1
2

(Π(1) + Π(2)  + ... + Π(n))  = 1
2

, and that  the  conditional

probability  of  k   being  accepted  on the  first  round  is
1
n
( 1

2
Π(k)n) /  1

2
 = Π(k).  

For  subsequent  rounds,  the  distribution  is  exactly  the

same.

In  particular,  if  the  algorithm  has run  for  m-1 rounds

without  terminating,  the  probability  that  it  terminates

on the  next  round (the  mth)  is 1
2

.

This  is true  for  all m.

Since  the  the  algorithm  always has a probability  of  1
2

of  terminating  on the  current  round,  the  number  of

rounds until  termination  is a geometric  random variable

of  parameter  1
2

, so the  algorithm  terminates  in a finite

number of  rounds  with  probability  1, and the  expected

number of  rounds is 2.

(If  you've  forgotten  the  formula  for  the  expected

value of  a geometric  random variable  with  parameter  p

is  1/ p,  but  you  remember  that  it's  finite,  here's  a

quick way to  derive  the  formula:  Write  E(X) = 1 + (p)(0)

+ (1-p)E(Y), where  X and Y are  both  distributed  accord -

ing to  Geometric( p).  Since E(X) = E(Y), we get  E(X) = 1

+ (1-p)E(X),  so pE(X)  = 1, so E(X)  = 1/ p.  Technically

this  only proves  that  E(X) is  either  infinity  or  1/ p, but

it's  still  worth  something.)

Furthermore,  when the  algorithm  terminates,  it  is  gov-

erned  by the  distribution  Π: 

Let  N  be the  (random)  number of  rounds,  and let  O be

the  (random) output  returned  by the  procedure.

P(O = k) = Úm=1
¥  P(O = k and N = m)

 = Úm=1
¥  P(N = m) P(O = k |  N = m)

 = Úm=1
¥  P(N = m) Π(k)

 =  Π(k) Úm=1
¥  P(N = m)

 = Π(k) P(N is finite)

 = Π(k).
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ing to  Geometric( p).  Since E(X) = E(Y), we get  E(X) = 1

+ (1-p)E(X),  so pE(X)  = 1, so E(X)  = 1/ p.  Technically

this  only proves  that  E(X) is  either  infinity  or  1/ p, but

it's  still  worth  something.)

Furthermore,  when the  algorithm  terminates,  it  is  gov-

erned  by the  distribution  Π: 

Let  N  be the  (random)  number of  rounds,  and let  O be

the  (random) output  returned  by the  procedure.

P(O = k) = Úm=1
¥  P(O = k and N = m)

 = Úm=1
¥  P(N = m) P(O = k |  N = m)

 = Úm=1
¥  P(N = m) Π(k)

 =  Π(k) Úm=1
¥  P(N = m)

 = Π(k) P(N is finite)

 = Π(k).

More  generally,  if  we have the  ability  to  sample from  a

certain  distribution  Π0 on a set  S  (in the  preceding  dis-

cussion the  set  S  was {  1,2,...,n }  and Π0  was the  uni-

form  distribution  on S)  and we want  to  sample from  a

different  distribution  Π on the  set  S, with  Π satisfying

the  bound Π(s) ²  MΠ0(s) for  all  s in S (in the  preceding

discussion  the  coefficient  M  was 2),  we  can sample

from  Π as follows:

(1) Generate  an element  s of  S governed by Π0.

(2)  With  probability  1
M

Π(s)/ Π0(s),   accept  this  element

(and  output  it);  otherwise,  r ej ect  it  and go back  to

step  1. 

The  number  of  Π0-samples  required  on  average  to

obtain  one Π-sample is  M, so when Π(s)/ Π0(s)  takes  on

large  values, this  method  takes  a prohibitively  long num-

ber  of  iterations.

Lec07.nb   25
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different  distribution  Π on the  set  S, with  Π satisfying
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from  Π as follows:

(1) Generate  an element  s of  S governed by Π0.

(2)  With  probability  1
M

Π(s)/ Π0(s),   accept  this  element

(and  output  it);  otherwise,  r ej ect  it  and go back  to

step  1. 

The  number  of  Π0-samples  required  on  average  to

obtain  one Π-sample is  M, so when Π(s)/ Π0(s)  takes  on

large  values, this  method  takes  a prohibitively  long num-

ber  of  iterations.

Metropolis chains

What  if  Π(s)/ Π0(s)  takes  on very  large  values, but  it's

in some sense "continuous"  as a function  of  s?

That  is,  suppose we have some notion  of  "closeness"

such that  if  s and s¢ are  close, Π(s¢)/ Π0(s¢) can't  be too

much bigger  than  Π(s)/ Π0(s)?

Then  we  might  combine  rejection  sampling  with  a

Mar kov-chain-on-S approach, where  we only move from

a state  s   to  a nearby  state  s¢.  We  still  sometimes

reject  such  moves after  considering  them,  and stick

with  s,  but  we typically  reject  only  when Π(s¢)/ Π(s)  is

small.

If  Π(s¢)/ Π(s) isn't  too  small, then  we should accept  the

move from  s  to  s',  even if  Π(s)/ Π0(s)  and Π(s¢)/ Π0(s¢)

are tiny.

So what  we get  is a new Markov  chain, in which  a single

step  consists  of  first  proposing  a  step  in  the  old

Markov  chain  and then  either  accepting  the  proposal

(and moving to  a new state)  or  rejecting  the  proposal

(and staying  put).

If  we set  up the  revised  transition  probabilities  cor -

rectly,  then  our  new Markov  chain  will  have Π  as its

unique stationary  measure.  Even if  Π0 is very  different

from  Π, so that  the  starting  state  of  our  old underlying

Markov  chain (governed  by  Π0) is  far  from  equilibrium,

the  new  derived  Markov  chain  may  be  sufficiently

"rapidly  mixing"  that  the  distribution  governing  the

state  of  the  derived  Markov  chain at  time  n quickly  con-

verges toward  Π.
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What  if  Π(s)/ Π0(s)  takes  on very  large  values, but  it's

in some sense "continuous"  as a function  of  s?

That  is,  suppose we have some notion  of  "closeness"

such that  if  s and s¢ are  close, Π(s¢)/ Π0(s¢) can't  be too

much bigger  than  Π(s)/ Π0(s)?

Then  we  might  combine  rejection  sampling  with  a

Mar kov-chain-on-S approach, where  we only move from

a state  s   to  a nearby  state  s¢.  We  still  sometimes

reject  such  moves after  considering  them,  and stick

with  s,  but  we typically  reject  only  when Π(s¢)/ Π(s)  is

small.

If  Π(s¢)/ Π(s) isn't  too  small, then  we should accept  the

move from  s  to  s',  even if  Π(s)/ Π0(s)  and Π(s¢)/ Π0(s¢)

are tiny.

So what  we get  is a new Markov  chain, in which  a single

step  consists  of  first  proposing  a  step  in  the  old

Markov  chain  and then  either  accepting  the  proposal

(and moving to  a new state)  or  rejecting  the  proposal

(and staying  put).

If  we set  up the  revised  transition  probabilities  cor -

rectly,  then  our  new Markov  chain  will  have Π  as its

unique stationary  measure.  Even if  Π0 is very  different

from  Π, so that  the  starting  state  of  our  old underlying

Markov  chain (governed  by  Π0) is  far  from  equilibrium,

the  new  derived  Markov  chain  may  be  sufficiently

"rapidly  mixing"  that  the  distribution  governing  the

state  of  the  derived  Markov  chain at  time  n quickly  con-

verges toward  Π.
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What  if  Π(s)/ Π0(s)  takes  on very  large  values, but  it's

in some sense "continuous"  as a function  of  s?

That  is,  suppose we have some notion  of  "closeness"

such that  if  s and s¢ are  close, Π(s¢)/ Π0(s¢) can't  be too

much bigger  than  Π(s)/ Π0(s)?

Then  we  might  combine  rejection  sampling  with  a

Mar kov-chain-on-S approach, where  we only move from

a state  s   to  a nearby  state  s¢.  We  still  sometimes

reject  such  moves after  considering  them,  and stick

with  s,  but  we typically  reject  only  when Π(s¢)/ Π(s)  is

small.

If  Π(s¢)/ Π(s) isn't  too  small, then  we should accept  the

move from  s  to  s',  even if  Π(s)/ Π0(s)  and Π(s¢)/ Π0(s¢)

are tiny.

So what  we get  is a new Markov  chain, in which  a single

step  consists  of  first  proposing  a  step  in  the  old

Markov  chain  and then  either  accepting  the  proposal

(and moving to  a new state)  or  rejecting  the  proposal

(and staying  put).

If  we set  up the  revised  transition  probabilities  cor -

rectly,  then  our  new Markov  chain  will  have Π  as its

unique stationary  measure.  Even if  Π0 is very  different

from  Π, so that  the  starting  state  of  our  old underlying

Markov  chain (governed  by  Π0) is  far  from  equilibrium,

the  new  derived  Markov  chain  may  be  sufficiently

"rapidly  mixing"  that  the  distribution  governing  the

state  of  the  derived  Markov  chain at  time  n quickly  con-

verges toward  Π.

We  will  choose our  transition  probabilities  so that  the

new Markov  chain  is  r ever sible.  This  will  give  us an

easy way to  verify  that  Π is indeed the  stationary  distri -

bution  for  the  chain, but  it  also gives us a lot  of  free -

dom.

Recall that  a Markov  chain  is  reversible  with  station -

ary  distribution  Π (some say: "Π is a reversible  measure

for  the  Markov  chain")

iff  it  satisfies  the  detailed  balance condition

Π(i) pi ,j  = Π(j ) pj ,i

for  all states  i,j .  It  suffices  to  consider  i ­ j .

Suppose we have some other  Markov  chain on S   with

stationary  distribution  Π0.  Just  as the  i.i.d. process dis-

tributed  according  to  Π0  was a source  of  candidates

for  rejection  sampling, our  Markov  chain with  station -

ary  distribution  Π0  (henceforth  the  "Π0-chain")  is  a

source  of  candidate  moves s ® s¢  for  our  acceptance-

rejection  Markov  chain (henceforth  the  "Π-chain").

Let  pi ,j
H0L  denote  the  transition  probability  from  i   to  j

for  the  Π0-chain.

Assume that  our  transition  rule  is  of  the  form  "If  a

move from  i   to  j   is  proposed,  accept  with  probability

Αi ,j , otherwise  reject."   That  is, 

pi ,j  = pi ,j
H0L Αi ,j  for  j ­ i, 

where  Αi ,j  is  our  acceptance  threshhold  for  moving

from  i  to  j .  So we can write  the  detailed  balance condi-

tion  for  the  Π-chain as

(1) Π(i) pi ,j
H0L

Αi ,j  = Π(j ) pj ,i
H0L

Αj ,i  .

How about  taking

Αi ,j  = Π(j ) pj ,i
H0L and Αj ,i  = Π(i) pi ,j

H0L ? ...

..?..

These acceptance  probabilities  are  way too  small, since

in typical  applications  S is  huge and each individual  Π(i)

or  Π(j ) is tiny.

Okay, how about  taking

Αi ,j  = C Π(j ) pj ,i
H0L and Αj ,i  = C Π(i) pi ,j

H0L

with  C  really  big? ...

..?..

That's  helpful;  making C bigger  increases  the  probabil -

ity  of  acceptance (and unless acceptance happens, tran -

sitions  are  rejected  and we make no progress).

But:  we'd  better  not  take  C  so  large  that  the

"acceptance  probability"  Αi ,j  (or  Αj ,i  for  that  matter)  is

bigger  than  1!

Note  that  in many applications,  we don't  know Π(i) and

Π(j ); we only know their  ratio.

(Fortunately,  the  ratio  is  all  we need to  know, as we'll

see shortly.)

Idea:  We  can always make C  bigger  until  one of  the

acceptance threshholds  Αi ,j , Αj ,i  hits  1.  So we can take

one of  them  to  equal 1 (and the  other  will  be at  most  1).

But  which?

For  any choice of  C, we have

Αi ,j  /  Αj ,i  = (Π(j )/ Π(i)) (pj ,i
H0L/ pi ,j

H0L).

If  the  RHS is ²  1, then  we can put  

Αj ,i  = 1 and Αi ,j  = RHS = (Π(j )/ Π(i)) (pj ,i
H0L/ pi ,j

H0L).

Otherwise,  we put

Αi ,j  = 1 and Αj ,i  = (Π(i)/ Π(j )) (pi ,j
H0L/ pj ,i

H0L).

That  is, we put

Αi ,j  = min(1, (Π(j )/ Π(i)) (pj ,i
H0L/ pi ,j

H0L)).

This  is the  Metropolis  algorithm  for  sampling from  the

distribution  Π.

If  our  original  Markov  chain has stationary  measure Π0,

then  the  associated  Metropolis  algorithm  Markov  chain

has stationary  measure Π,  and if  the  ratios  (Π(j )/ Π(i))

and (pj ,i
H0L/ pi ,j

H0L)  stay  close  to  1 for  all  i,j  with  pi ,j
H0L  > 0,

then  a significant  fraction  of  the  proposed  moves are

accepted,  and  the  Metropolis  chain  converges  to  Π

almost as quickly  as the  original  chain converges to  Π0.

If  Π0 is a reversible  measure for  the  transition  probabil -

ities  pi ,j
H0L, then  pj ,i

H0L/ pi ,j
H0L = Π0(i)/ Π0(j ),

so that  we can also write  the  formula  as

Αi ,j  = min(1, (Π(j )/ Π(i)) (Π0(i)/ Π0(j ))).
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We  will  choose our  transition  probabilities  so that  the

new Markov  chain  is  r ever sible.  This  will  give  us an

easy way to  verify  that  Π is indeed the  stationary  distri -

bution  for  the  chain, but  it  also gives us a lot  of  free -

dom.

Recall that  a Markov  chain  is  reversible  with  station -

ary  distribution  Π (some say: "Π is a reversible  measure

for  the  Markov  chain")

iff  it  satisfies  the  detailed  balance condition

Π(i) pi ,j  = Π(j ) pj ,i

for  all states  i,j .  It  suffices  to  consider  i ­ j .

Suppose we have some other  Markov  chain on S   with

stationary  distribution  Π0.  Just  as the  i.i.d. process dis-

tributed  according  to  Π0  was a source  of  candidates

for  rejection  sampling, our  Markov  chain with  station -

ary  distribution  Π0  (henceforth  the  "Π0-chain")  is  a

source  of  candidate  moves s ® s¢  for  our  acceptance-

rejection  Markov  chain (henceforth  the  "Π-chain").

Let  pi ,j
H0L  denote  the  transition  probability  from  i   to  j

for  the  Π0-chain.

Assume that  our  transition  rule  is  of  the  form  "If  a

move from  i   to  j   is  proposed,  accept  with  probability

Αi ,j , otherwise  reject."   That  is, 

pi ,j  = pi ,j
H0L Αi ,j  for  j ­ i, 

where  Αi ,j  is  our  acceptance  threshhold  for  moving

from  i  to  j .  So we can write  the  detailed  balance condi-

tion  for  the  Π-chain as

(1) Π(i) pi ,j
H0L

Αi ,j  = Π(j ) pj ,i
H0L

Αj ,i  .

How about  taking

Αi ,j  = Π(j ) pj ,i
H0L and Αj ,i  = Π(i) pi ,j

H0L ? ...

..?..

These acceptance  probabilities  are  way too  small, since

in typical  applications  S is  huge and each individual  Π(i)

or  Π(j ) is tiny.

Okay, how about  taking

Αi ,j  = C Π(j ) pj ,i
H0L and Αj ,i  = C Π(i) pi ,j

H0L

with  C  really  big? ...

..?..

That's  helpful;  making C bigger  increases  the  probabil -

ity  of  acceptance (and unless acceptance happens, tran -

sitions  are  rejected  and we make no progress).

But:  we'd  better  not  take  C  so  large  that  the

"acceptance  probability"  Αi ,j  (or  Αj ,i  for  that  matter)  is

bigger  than  1!

Note  that  in many applications,  we don't  know Π(i) and

Π(j ); we only know their  ratio.

(Fortunately,  the  ratio  is  all  we need to  know, as we'll

see shortly.)

Idea:  We  can always make C  bigger  until  one of  the

acceptance threshholds  Αi ,j , Αj ,i  hits  1.  So we can take

one of  them  to  equal 1 (and the  other  will  be at  most  1).

But  which?

For  any choice of  C, we have

Αi ,j  /  Αj ,i  = (Π(j )/ Π(i)) (pj ,i
H0L/ pi ,j

H0L).

If  the  RHS is ²  1, then  we can put  

Αj ,i  = 1 and Αi ,j  = RHS = (Π(j )/ Π(i)) (pj ,i
H0L/ pi ,j

H0L).

Otherwise,  we put

Αi ,j  = 1 and Αj ,i  = (Π(i)/ Π(j )) (pi ,j
H0L/ pj ,i

H0L).

That  is, we put

Αi ,j  = min(1, (Π(j )/ Π(i)) (pj ,i
H0L/ pi ,j

H0L)).

This  is the  Metropolis  algorithm  for  sampling from  the

distribution  Π.

If  our  original  Markov  chain has stationary  measure Π0,

then  the  associated  Metropolis  algorithm  Markov  chain

has stationary  measure Π,  and if  the  ratios  (Π(j )/ Π(i))

and (pj ,i
H0L/ pi ,j

H0L)  stay  close  to  1 for  all  i,j  with  pi ,j
H0L  > 0,

then  a significant  fraction  of  the  proposed  moves are

accepted,  and  the  Metropolis  chain  converges  to  Π

almost as quickly  as the  original  chain converges to  Π0.

If  Π0 is a reversible  measure for  the  transition  probabil -

ities  pi ,j
H0L, then  pj ,i

H0L/ pi ,j
H0L = Π0(i)/ Π0(j ),

so that  we can also write  the  formula  as

Αi ,j  = min(1, (Π(j )/ Π(i)) (Π0(i)/ Π0(j ))).
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We  will  choose our  transition  probabilities  so that  the

new Markov  chain  is  r ever sible.  This  will  give  us an

easy way to  verify  that  Π is indeed the  stationary  distri -

bution  for  the  chain, but  it  also gives us a lot  of  free -

dom.

Recall that  a Markov  chain  is  reversible  with  station -

ary  distribution  Π (some say: "Π is a reversible  measure

for  the  Markov  chain")

iff  it  satisfies  the  detailed  balance condition

Π(i) pi ,j  = Π(j ) pj ,i

for  all states  i,j .  It  suffices  to  consider  i ­ j .

Suppose we have some other  Markov  chain on S   with

stationary  distribution  Π0.  Just  as the  i.i.d. process dis-

tributed  according  to  Π0  was a source  of  candidates

for  rejection  sampling, our  Markov  chain with  station -

ary  distribution  Π0  (henceforth  the  "Π0-chain")  is  a

source  of  candidate  moves s ® s¢  for  our  acceptance-

rejection  Markov  chain (henceforth  the  "Π-chain").

Let  pi ,j
H0L  denote  the  transition  probability  from  i   to  j

for  the  Π0-chain.

Assume that  our  transition  rule  is  of  the  form  "If  a

move from  i   to  j   is  proposed,  accept  with  probability

Αi ,j , otherwise  reject."   That  is, 

pi ,j  = pi ,j
H0L Αi ,j  for  j ­ i, 

where  Αi ,j  is  our  acceptance  threshhold  for  moving

from  i  to  j .  So we can write  the  detailed  balance condi-

tion  for  the  Π-chain as

(1) Π(i) pi ,j
H0L

Αi ,j  = Π(j ) pj ,i
H0L

Αj ,i  .

How about  taking

Αi ,j  = Π(j ) pj ,i
H0L and Αj ,i  = Π(i) pi ,j

H0L ? ...

..?..

These acceptance  probabilities  are  way too  small, since

in typical  applications  S is  huge and each individual  Π(i)

or  Π(j ) is tiny.

Okay, how about  taking

Αi ,j  = C Π(j ) pj ,i
H0L and Αj ,i  = C Π(i) pi ,j

H0L

with  C  really  big? ...

..?..

That's  helpful;  making C bigger  increases  the  probabil -

ity  of  acceptance (and unless acceptance happens, tran -

sitions  are  rejected  and we make no progress).

But:  we'd  better  not  take  C  so  large  that  the

"acceptance  probability"  Αi ,j  (or  Αj ,i  for  that  matter)  is

bigger  than  1!

Note  that  in many applications,  we don't  know Π(i) and

Π(j ); we only know their  ratio.

(Fortunately,  the  ratio  is  all  we need to  know, as we'll

see shortly.)

Idea:  We  can always make C  bigger  until  one of  the

acceptance threshholds  Αi ,j , Αj ,i  hits  1.  So we can take

one of  them  to  equal 1 (and the  other  will  be at  most  1).

But  which?

For  any choice of  C, we have

Αi ,j  /  Αj ,i  = (Π(j )/ Π(i)) (pj ,i
H0L/ pi ,j

H0L).

If  the  RHS is ²  1, then  we can put  

Αj ,i  = 1 and Αi ,j  = RHS = (Π(j )/ Π(i)) (pj ,i
H0L/ pi ,j

H0L).

Otherwise,  we put

Αi ,j  = 1 and Αj ,i  = (Π(i)/ Π(j )) (pi ,j
H0L/ pj ,i

H0L).

That  is, we put

Αi ,j  = min(1, (Π(j )/ Π(i)) (pj ,i
H0L/ pi ,j

H0L)).

This  is the  Metropolis  algorithm  for  sampling from  the

distribution  Π.

If  our  original  Markov  chain has stationary  measure Π0,

then  the  associated  Metropolis  algorithm  Markov  chain

has stationary  measure Π,  and if  the  ratios  (Π(j )/ Π(i))

and (pj ,i
H0L/ pi ,j

H0L)  stay  close  to  1 for  all  i,j  with  pi ,j
H0L  > 0,

then  a significant  fraction  of  the  proposed  moves are

accepted,  and  the  Metropolis  chain  converges  to  Π

almost as quickly  as the  original  chain converges to  Π0.

If  Π0 is a reversible  measure for  the  transition  probabil -

ities  pi ,j
H0L, then  pj ,i

H0L/ pi ,j
H0L = Π0(i)/ Π0(j ),

so that  we can also write  the  formula  as

Αi ,j  = min(1, (Π(j )/ Π(i)) (Π0(i)/ Π0(j ))).
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We  will  choose our  transition  probabilities  so that  the

new Markov  chain  is  r ever sible.  This  will  give  us an

easy way to  verify  that  Π is indeed the  stationary  distri -

bution  for  the  chain, but  it  also gives us a lot  of  free -

dom.

Recall that  a Markov  chain  is  reversible  with  station -

ary  distribution  Π (some say: "Π is a reversible  measure

for  the  Markov  chain")

iff  it  satisfies  the  detailed  balance condition

Π(i) pi ,j  = Π(j ) pj ,i

for  all states  i,j .  It  suffices  to  consider  i ­ j .

Suppose we have some other  Markov  chain on S   with

stationary  distribution  Π0.  Just  as the  i.i.d. process dis-

tributed  according  to  Π0  was a source  of  candidates

for  rejection  sampling, our  Markov  chain with  station -

ary  distribution  Π0  (henceforth  the  "Π0-chain")  is  a

source  of  candidate  moves s ® s¢  for  our  acceptance-

rejection  Markov  chain (henceforth  the  "Π-chain").

Let  pi ,j
H0L  denote  the  transition  probability  from  i   to  j

for  the  Π0-chain.

Assume that  our  transition  rule  is  of  the  form  "If  a

move from  i   to  j   is  proposed,  accept  with  probability

Αi ,j , otherwise  reject."   That  is, 

pi ,j  = pi ,j
H0L Αi ,j  for  j ­ i, 

where  Αi ,j  is  our  acceptance  threshhold  for  moving

from  i  to  j .  So we can write  the  detailed  balance condi-

tion  for  the  Π-chain as

(1) Π(i) pi ,j
H0L

Αi ,j  = Π(j ) pj ,i
H0L

Αj ,i  .

How about  taking

Αi ,j  = Π(j ) pj ,i
H0L and Αj ,i  = Π(i) pi ,j

H0L ? ...

..?..

These acceptance  probabilities  are  way too  small, since

in typical  applications  S is  huge and each individual  Π(i)

or  Π(j ) is tiny.

Okay, how about  taking

Αi ,j  = C Π(j ) pj ,i
H0L and Αj ,i  = C Π(i) pi ,j

H0L

with  C  really  big? ...

..?..

That's  helpful;  making C bigger  increases  the  probabil -

ity  of  acceptance (and unless acceptance happens, tran -

sitions  are  rejected  and we make no progress).

But:  we'd  better  not  take  C  so  large  that  the

"acceptance  probability"  Αi ,j  (or  Αj ,i  for  that  matter)  is

bigger  than  1!

Note  that  in many applications,  we don't  know Π(i) and

Π(j ); we only know their  ratio.

(Fortunately,  the  ratio  is  all  we need to  know, as we'll

see shortly.)

Idea:  We  can always make C  bigger  until  one of  the

acceptance threshholds  Αi ,j , Αj ,i  hits  1.  So we can take

one of  them  to  equal 1 (and the  other  will  be at  most  1).

But  which?

For  any choice of  C, we have

Αi ,j  /  Αj ,i  = (Π(j )/ Π(i)) (pj ,i
H0L/ pi ,j

H0L).

If  the  RHS is ²  1, then  we can put  

Αj ,i  = 1 and Αi ,j  = RHS = (Π(j )/ Π(i)) (pj ,i
H0L/ pi ,j

H0L).

Otherwise,  we put

Αi ,j  = 1 and Αj ,i  = (Π(i)/ Π(j )) (pi ,j
H0L/ pj ,i

H0L).

That  is, we put

Αi ,j  = min(1, (Π(j )/ Π(i)) (pj ,i
H0L/ pi ,j

H0L)).

This  is the  Metropolis  algorithm  for  sampling from  the

distribution  Π.

If  our  original  Markov  chain has stationary  measure Π0,

then  the  associated  Metropolis  algorithm  Markov  chain

has stationary  measure Π,  and if  the  ratios  (Π(j )/ Π(i))

and (pj ,i
H0L/ pi ,j

H0L)  stay  close  to  1 for  all  i,j  with  pi ,j
H0L  > 0,

then  a significant  fraction  of  the  proposed  moves are

accepted,  and  the  Metropolis  chain  converges  to  Π

almost as quickly  as the  original  chain converges to  Π0.

If  Π0 is a reversible  measure for  the  transition  probabil -

ities  pi ,j
H0L, then  pj ,i

H0L/ pi ,j
H0L = Π0(i)/ Π0(j ),

so that  we can also write  the  formula  as

Αi ,j  = min(1, (Π(j )/ Π(i)) (Π0(i)/ Π0(j ))).
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We  will  choose our  transition  probabilities  so that  the

new Markov  chain  is  r ever sible.  This  will  give  us an

easy way to  verify  that  Π is indeed the  stationary  distri -

bution  for  the  chain, but  it  also gives us a lot  of  free -

dom.

Recall that  a Markov  chain  is  reversible  with  station -

ary  distribution  Π (some say: "Π is a reversible  measure

for  the  Markov  chain")

iff  it  satisfies  the  detailed  balance condition

Π(i) pi ,j  = Π(j ) pj ,i

for  all states  i,j .  It  suffices  to  consider  i ­ j .

Suppose we have some other  Markov  chain on S   with

stationary  distribution  Π0.  Just  as the  i.i.d. process dis-

tributed  according  to  Π0  was a source  of  candidates

for  rejection  sampling, our  Markov  chain with  station -

ary  distribution  Π0  (henceforth  the  "Π0-chain")  is  a

source  of  candidate  moves s ® s¢  for  our  acceptance-

rejection  Markov  chain (henceforth  the  "Π-chain").

Let  pi ,j
H0L  denote  the  transition  probability  from  i   to  j

for  the  Π0-chain.

Assume that  our  transition  rule  is  of  the  form  "If  a

move from  i   to  j   is  proposed,  accept  with  probability

Αi ,j , otherwise  reject."   That  is, 

pi ,j  = pi ,j
H0L Αi ,j  for  j ­ i, 

where  Αi ,j  is  our  acceptance  threshhold  for  moving

from  i  to  j .  So we can write  the  detailed  balance condi-

tion  for  the  Π-chain as

(1) Π(i) pi ,j
H0L

Αi ,j  = Π(j ) pj ,i
H0L

Αj ,i  .

How about  taking

Αi ,j  = Π(j ) pj ,i
H0L and Αj ,i  = Π(i) pi ,j

H0L ? ...

..?..

These acceptance  probabilities  are  way too  small, since

in typical  applications  S is  huge and each individual  Π(i)

or  Π(j ) is tiny.

Okay, how about  taking

Αi ,j  = C Π(j ) pj ,i
H0L and Αj ,i  = C Π(i) pi ,j

H0L

with  C  really  big? ...

..?..

That's  helpful;  making C bigger  increases  the  probabil -

ity  of  acceptance (and unless acceptance happens, tran -

sitions  are  rejected  and we make no progress).

But:  we'd  better  not  take  C  so  large  that  the

"acceptance  probability"  Αi ,j  (or  Αj ,i  for  that  matter)  is

bigger  than  1!

Note  that  in many applications,  we don't  know Π(i) and

Π(j ); we only know their  ratio.

(Fortunately,  the  ratio  is  all  we need to  know, as we'll

see shortly.)

Idea:  We  can always make C  bigger  until  one of  the

acceptance threshholds  Αi ,j , Αj ,i  hits  1.  So we can take

one of  them  to  equal 1 (and the  other  will  be at  most  1).

But  which?

For  any choice of  C, we have

Αi ,j  /  Αj ,i  = (Π(j )/ Π(i)) (pj ,i
H0L/ pi ,j

H0L).

If  the  RHS is ²  1, then  we can put  

Αj ,i  = 1 and Αi ,j  = RHS = (Π(j )/ Π(i)) (pj ,i
H0L/ pi ,j

H0L).

Otherwise,  we put

Αi ,j  = 1 and Αj ,i  = (Π(i)/ Π(j )) (pi ,j
H0L/ pj ,i

H0L).

That  is, we put

Αi ,j  = min(1, (Π(j )/ Π(i)) (pj ,i
H0L/ pi ,j

H0L)).

This  is the  Metropolis  algorithm  for  sampling from  the

distribution  Π.

If  our  original  Markov  chain has stationary  measure Π0,

then  the  associated  Metropolis  algorithm  Markov  chain

has stationary  measure Π,  and if  the  ratios  (Π(j )/ Π(i))

and (pj ,i
H0L/ pi ,j

H0L)  stay  close  to  1 for  all  i,j  with  pi ,j
H0L  > 0,

then  a significant  fraction  of  the  proposed  moves are

accepted,  and  the  Metropolis  chain  converges  to  Π

almost as quickly  as the  original  chain converges to  Π0.

If  Π0 is a reversible  measure for  the  transition  probabil -

ities  pi ,j
H0L, then  pj ,i

H0L/ pi ,j
H0L = Π0(i)/ Π0(j ),

so that  we can also write  the  formula  as

Αi ,j  = min(1, (Π(j )/ Π(i)) (Π0(i)/ Π0(j ))).
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We  will  choose our  transition  probabilities  so that  the

new Markov  chain  is  r ever sible.  This  will  give  us an

easy way to  verify  that  Π is indeed the  stationary  distri -

bution  for  the  chain, but  it  also gives us a lot  of  free -

dom.

Recall that  a Markov  chain  is  reversible  with  station -

ary  distribution  Π (some say: "Π is a reversible  measure

for  the  Markov  chain")

iff  it  satisfies  the  detailed  balance condition

Π(i) pi ,j  = Π(j ) pj ,i

for  all states  i,j .  It  suffices  to  consider  i ­ j .

Suppose we have some other  Markov  chain on S   with

stationary  distribution  Π0.  Just  as the  i.i.d. process dis-

tributed  according  to  Π0  was a source  of  candidates

for  rejection  sampling, our  Markov  chain with  station -

ary  distribution  Π0  (henceforth  the  "Π0-chain")  is  a

source  of  candidate  moves s ® s¢  for  our  acceptance-

rejection  Markov  chain (henceforth  the  "Π-chain").

Let  pi ,j
H0L  denote  the  transition  probability  from  i   to  j

for  the  Π0-chain.

Assume that  our  transition  rule  is  of  the  form  "If  a

move from  i   to  j   is  proposed,  accept  with  probability

Αi ,j , otherwise  reject."   That  is, 

pi ,j  = pi ,j
H0L Αi ,j  for  j ­ i, 

where  Αi ,j  is  our  acceptance  threshhold  for  moving

from  i  to  j .  So we can write  the  detailed  balance condi-

tion  for  the  Π-chain as

(1) Π(i) pi ,j
H0L

Αi ,j  = Π(j ) pj ,i
H0L

Αj ,i  .

How about  taking

Αi ,j  = Π(j ) pj ,i
H0L and Αj ,i  = Π(i) pi ,j

H0L ? ...

..?..

These acceptance  probabilities  are  way too  small, since

in typical  applications  S is  huge and each individual  Π(i)

or  Π(j ) is tiny.

Okay, how about  taking

Αi ,j  = C Π(j ) pj ,i
H0L and Αj ,i  = C Π(i) pi ,j

H0L

with  C  really  big? ...

..?..

That's  helpful;  making C bigger  increases  the  probabil -

ity  of  acceptance (and unless acceptance happens, tran -

sitions  are  rejected  and we make no progress).

But:  we'd  better  not  take  C  so  large  that  the

"acceptance  probability"  Αi ,j  (or  Αj ,i  for  that  matter)  is

bigger  than  1!

Note  that  in many applications,  we don't  know Π(i) and

Π(j ); we only know their  ratio.

(Fortunately,  the  ratio  is  all  we need to  know, as we'll

see shortly.)

Idea:  We  can always make C  bigger  until  one of  the

acceptance threshholds  Αi ,j , Αj ,i  hits  1.  So we can take

one of  them  to  equal 1 (and the  other  will  be at  most  1).

But  which?

For  any choice of  C, we have

Αi ,j  /  Αj ,i  = (Π(j )/ Π(i)) (pj ,i
H0L/ pi ,j

H0L).

If  the  RHS is ²  1, then  we can put  

Αj ,i  = 1 and Αi ,j  = RHS = (Π(j )/ Π(i)) (pj ,i
H0L/ pi ,j

H0L).

Otherwise,  we put

Αi ,j  = 1 and Αj ,i  = (Π(i)/ Π(j )) (pi ,j
H0L/ pj ,i

H0L).

That  is, we put

Αi ,j  = min(1, (Π(j )/ Π(i)) (pj ,i
H0L/ pi ,j

H0L)).

This  is the  Metropolis  algorithm  for  sampling from  the

distribution  Π.

If  our  original  Markov  chain has stationary  measure Π0,

then  the  associated  Metropolis  algorithm  Markov  chain

has stationary  measure Π,  and if  the  ratios  (Π(j )/ Π(i))

and (pj ,i
H0L/ pi ,j

H0L)  stay  close  to  1 for  all  i,j  with  pi ,j
H0L  > 0,

then  a significant  fraction  of  the  proposed  moves are

accepted,  and  the  Metropolis  chain  converges  to  Π

almost as quickly  as the  original  chain converges to  Π0.

If  Π0 is a reversible  measure for  the  transition  probabil -

ities  pi ,j
H0L, then  pj ,i

H0L/ pi ,j
H0L = Π0(i)/ Π0(j ),

so that  we can also write  the  formula  as

Αi ,j  = min(1, (Π(j )/ Π(i)) (Π0(i)/ Π0(j ))).
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We  will  choose our  transition  probabilities  so that  the

new Markov  chain  is  r ever sible.  This  will  give  us an

easy way to  verify  that  Π is indeed the  stationary  distri -

bution  for  the  chain, but  it  also gives us a lot  of  free -

dom.

Recall that  a Markov  chain  is  reversible  with  station -

ary  distribution  Π (some say: "Π is a reversible  measure

for  the  Markov  chain")

iff  it  satisfies  the  detailed  balance condition

Π(i) pi ,j  = Π(j ) pj ,i

for  all states  i,j .  It  suffices  to  consider  i ­ j .

Suppose we have some other  Markov  chain on S   with

stationary  distribution  Π0.  Just  as the  i.i.d. process dis-

tributed  according  to  Π0  was a source  of  candidates

for  rejection  sampling, our  Markov  chain with  station -

ary  distribution  Π0  (henceforth  the  "Π0-chain")  is  a

source  of  candidate  moves s ® s¢  for  our  acceptance-

rejection  Markov  chain (henceforth  the  "Π-chain").

Let  pi ,j
H0L  denote  the  transition  probability  from  i   to  j

for  the  Π0-chain.

Assume that  our  transition  rule  is  of  the  form  "If  a

move from  i   to  j   is  proposed,  accept  with  probability

Αi ,j , otherwise  reject."   That  is, 

pi ,j  = pi ,j
H0L Αi ,j  for  j ­ i, 

where  Αi ,j  is  our  acceptance  threshhold  for  moving

from  i  to  j .  So we can write  the  detailed  balance condi-

tion  for  the  Π-chain as

(1) Π(i) pi ,j
H0L

Αi ,j  = Π(j ) pj ,i
H0L

Αj ,i  .

How about  taking

Αi ,j  = Π(j ) pj ,i
H0L and Αj ,i  = Π(i) pi ,j

H0L ? ...

..?..

These acceptance  probabilities  are  way too  small, since

in typical  applications  S is  huge and each individual  Π(i)

or  Π(j ) is tiny.

Okay, how about  taking

Αi ,j  = C Π(j ) pj ,i
H0L and Αj ,i  = C Π(i) pi ,j

H0L

with  C  really  big? ...

..?..

That's  helpful;  making C bigger  increases  the  probabil -

ity  of  acceptance (and unless acceptance happens, tran -

sitions  are  rejected  and we make no progress).

But:  we'd  better  not  take  C  so  large  that  the

"acceptance  probability"  Αi ,j  (or  Αj ,i  for  that  matter)  is

bigger  than  1!

Note  that  in many applications,  we don't  know Π(i) and

Π(j ); we only know their  ratio.

(Fortunately,  the  ratio  is  all  we need to  know, as we'll

see shortly.)

Idea:  We  can always make C  bigger  until  one of  the

acceptance threshholds  Αi ,j , Αj ,i  hits  1.  So we can take

one of  them  to  equal 1 (and the  other  will  be at  most  1).

But  which?

For  any choice of  C, we have

Αi ,j  /  Αj ,i  = (Π(j )/ Π(i)) (pj ,i
H0L/ pi ,j

H0L).

If  the  RHS is ²  1, then  we can put  

Αj ,i  = 1 and Αi ,j  = RHS = (Π(j )/ Π(i)) (pj ,i
H0L/ pi ,j

H0L).

Otherwise,  we put

Αi ,j  = 1 and Αj ,i  = (Π(i)/ Π(j )) (pi ,j
H0L/ pj ,i

H0L).

That  is, we put

Αi ,j  = min(1, (Π(j )/ Π(i)) (pj ,i
H0L/ pi ,j

H0L)).

This  is the  Metropolis  algorithm  for  sampling from  the

distribution  Π.

If  our  original  Markov  chain has stationary  measure Π0,

then  the  associated  Metropolis  algorithm  Markov  chain

has stationary  measure Π,  and if  the  ratios  (Π(j )/ Π(i))

and (pj ,i
H0L/ pi ,j

H0L)  stay  close  to  1 for  all  i,j  with  pi ,j
H0L  > 0,

then  a significant  fraction  of  the  proposed  moves are

accepted,  and  the  Metropolis  chain  converges  to  Π

almost as quickly  as the  original  chain converges to  Π0.

If  Π0 is a reversible  measure for  the  transition  probabil -

ities  pi ,j
H0L, then  pj ,i

H0L/ pi ,j
H0L = Π0(i)/ Π0(j ),

so that  we can also write  the  formula  as

Αi ,j  = min(1, (Π(j )/ Π(i)) (Π0(i)/ Π0(j ))).

Let's  try  this  in a simple 3-state  case, with

S = {1,2,3},  Π0=( 1
4

, 1
2

, 1
4

), and using simple random walk on

{1,2,3} as our Π0-chain,  with  transition  matrix
0 1 0
1

2
0

1

2

0 1 0

You can check  that  Π0  is  not  just  a stationary  measure

for  this  Markov  chain; it's  a reversible  measure.

We want  to  sample from  Π=( 1
3

, 1
3

, 1
3

), the  uniform  distri -

bution  on {1,2,3},  by  hitching  a ride  on the  transition

probabilities  for  simple random walk.  We get

Α1,2 = min(1, 1�3
1�3

1�4
1�2

) = 1
2

 (= Α3,2 by symmetry)  and

Α2,1 = min(1, 1�3
1�3

1�2
1�4

) = 1  (= Α2,3 by symmetry),  so

p1,2 = p1,2
H0L Α1,2 = (1)( 1

2
) = 1

2
 = p3,2 and

p2,1 = p2,1
H0L Α2,1 = ( 1

2
)(1) = 1

2
 = p2,3.

We get  the  transition  matrix
1

2

1

2
0

1

2
0

1

2

0
1

2

1

2

and we can see that  Π  is  stationary  for  this  matrix.

(So the  semi-absorbent-barrier  trick  is  a special  case

of  Metropolis.)

More  generally,  the  Metropolis  algorithm

can modify  simple random walk on any finite  connected

graph  to  achieve  a uniform  stationary  distribution  on

the  vertices  of  the  graph.   The  acceptance  probability

reduces  in  this  case to  min(1, deg(vi )/ deg(vj )),   which

biases the  walk against  moving to  high-degree  vertices.

Note  that  we need to  know next  to  nothing  about  the

global structure  of  a graph  to  implement  this  (although

if  the  graph  isn't  connected,  the  procedure  won't  con-

verge  to  the  desired  distribution,  and if  the  graph  is

really  big  and/or  loosely connected,  the  procedure  may

not  converge quickly).
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and we can see that  Π  is  stationary  for  this  matrix.

(So the  semi-absorbent-barrier  trick  is  a special  case

of  Metropolis.)

More  generally,  the  Metropolis  algorithm

can modify  simple random walk on any finite  connected

graph  to  achieve  a uniform  stationary  distribution  on

the  vertices  of  the  graph.   The  acceptance  probability

reduces  in  this  case to  min(1, deg(vi )/ deg(vj )),   which

biases the  walk against  moving to  high-degree  vertices.

Note  that  we need to  know next  to  nothing  about  the

global structure  of  a graph  to  implement  this  (although

if  the  graph  isn't  connected,  the  procedure  won't  con-

verge  to  the  desired  distribution,  and if  the  graph  is

really  big  and/or  loosely connected,  the  procedure  may

not  converge quickly).

In  many applications  to  physics,  we have Π(i)  given by

f (i)/ Z  for  all  i, where  the  non-negative  function  f (i)  is

of  the  form  e-E Hi L�T  for  some energy  function  E(i)  and

some temperature  T,  and where  the  partition  function

Z  equals Úi  f (i)  (called  a "function"  because it  depends

on T).  In  this  case, the  probability  ratio  Π(j )/ Π(i) is  of

the  form  e-DE �T  where  DE = E(j ) -  E(i).
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In  many applications  to  physics,  we have Π(i)  given by

f (i)/ Z  for  all  i, where  the  non-negative  function  f (i)  is

of  the  form  e-E Hi L�T  for  some energy  function  E(i)  and

some temperature  T,  and where  the  partition  function

Z  equals Úi  f (i)  (called  a "function"  because it  depends

on T).  In  this  case, the  probability  ratio  Π(j )/ Π(i) is  of

the  form  e-DE �T  where  DE = E(j ) -  E(i).
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