
Filling a gap from last time

Back in Lec07,  I  wrote  "... Also  note  that  Vij (t) differs

from  pij  Vi (t)  by  at  most  a constant  Cij  that  does not

depend on t,"  where  for  each state  si , Vi (t) is  the  num-

ber  of  times  that  the  rotor-walk  has been in state  si  in

the  first  t time-steps,  andVij (t) is  the  number  of  times

(in the  first  t time-steps)  that  the  rotor-walk  has been

in state  si  and then  gone immediately  to  state  sj .  Now

I  want to  explain  that.

Suppose first  that  pij  is  1
2

.   Then  every  time  Vi (t)

increases  by  2,  Vij (t) goes up by  1, so that  the  differ -

ence Vij (t)  -  1
2

Vi (t)  doesn't  change at  all.   This  implies

that  Vij (t)  -  1
2

Vi (t)  takes  on just  two  different  values,

in alternation,  as t goes to  infinity:  one value for  Vi (t)

odd, and one value for  Vi (t) even.

More  generally,  suppose that  the  rotor  at  i  has period

m.  Then every  time  Vi (t) increases  by  m, Vij (t) goes up

by  pij  m, so that  Vij (t)  -  pij  Vi (t)  doesn't  change at  all.

So Vij (t) -  pij  Vi (t) takes  on at  most  m different  values,

repeating  with  period  m.   In  particular,  the  values

taken  on by Vij (t) -  pij  Vi (t) are  bounded.
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Random walks in one dimension

Walk on N

Suppose we do a biased  random walk  on N  = {0,1,2,...}

with  absorption  at  0,  where  a walker  at  position  k   > 0

moves to  position  k + 1 with  probability  p  and moves to

position  k - 1 with  probability  q = 1 -  p.

(This  is  a  Markov  chain  with  infinitely  many states:

p00=1 (state  0  is  an absorbing  state),  and for  all  i  > 0,

pij  = p  if  j  = i+1,  pij  = q  if  j  = i-1,  and pij  = 0   other -

wise.)

What  is  the  probability  that  a walker  who starts  at  k

eventually  gets  absorbed  at  0?

Let  pk  be this  absorption  probability.   We have the  rela -

tion  

(1) pk  = p pk +1 + q pk -1

for  all  k  > 0,  i.e., pk +1 = [pk  -  q pk -1] / p, so we can com-

pute  p2  from  p1 and p0, compute p3  from  p2  and p1, etc.

Hence it's  enough to  know p0 and p1.

Clearly p0 = 1; what  about  p1?

Claim: p2 = p1
2.

Proof:  Let  P(x ,y)  be  the  probability,  if  you start  at  x ,

that  you eventually  hit  y.  Then

p2 = P(2,0) = P(2,1) P(1,0) = P(1,0) P(1,0) = p1
2.

Remark #1:  The  second "="  is  a consequence of  two

facts:  in order  to  get  from  2 to  0, the  walker  must  get

to  1 first;  and once the  walker  has arrived  at  1 for  the

first  time,  the  chance  of  eventually  getting  to  0  is

P(1,0), since the  walk has no memory.

Remark #2:  The  third  "="  is a consequence of  the  fact

that  our  transition  probabilities  are  translation-invari -

ant:  that  is,  P(i+1,j +1) = P(i,j ) for  all  i,j  because  pi +1,j +1

= pi ,j  for  all i,j .

Likewise, pk  = p1
k  for  all k > 1.

Consequence: Plugging p2 = p1
2 

into  

 p1 = p p2 + q p0

(the  case k = 1 of  (1)) and recalling  that  p0 = 1, we get

p1 = p p2 + q p0 = p p1
2 + q 1,

i.e.,

p p1
2 + (-1) p1 + (1-p) = 0

i.e., (p p1 -  (1-p))(p1 -  1) = 0.  

This  quadratic  equation  in  p1 has two  roots:  p1=1 and

p1=(1-p)/ p = q/ p.

Which  root  is p1 equal to?
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Leftward bias

If  p < 1
2

 (that  is,  if  our  walk has leftward  drift),  then

we can't  have p1 = q/ p  > 1, since  p1 is  a probability.

Hence p1 = 1, and it  follows  that  p2 = 1, etc.

Another  way to  see that  p1 = 1 in this  case is to  look at

the  corresponding  walk on { 0,1,2,...,n }:

If  the  walker  on N never  gets  absorbed  at  0,  then  for

all n, the  walker  hits  n before  hitting  0.  (We're  taking

it  for  granted  here  that  the  walker  must  eventually  hit

either  0  or  n with  probability  1; but  we already  know

this  for  walk  on {  0,1,2,...,n },  and the  fact  for  N fol -

lows.)

Hence, for  all  n, the  probability  that  the  walker  on N

who starts  at  1 never  hits  0  is  at  most  the  probability

that  the  walker  on N who starts  at  1 hits  n  before  0,

which  is  equal to  the  probability  that  the  walker  on {

0,1,2,...,n }  who starts  at  1 hits  n  before  0,  which  is

(Hq � pL1 - 1)/ (Hq � pLn - 1),  which  goes to  0  as n®¥  since

q/ p > 1.  Hence the  probability  of  never  hitting  0  on N

is 0, i.e., the  probability  of  eventually  hitting  0 is 1.
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How long  does  it  take  on average  for  a  walker  who

starts  at  k  to  get  absorbed  at  0?

Let  ak  be this  mean absorption  time.   We have the  rela -

tion  

(2) ak  = 1 + p ak +1 + q ak -1

for  all k > 0, i.e., ak +1 = [ak  -  q ak -1 -  1]/ p, 

so as before  it's  enough to  know a0 and a1.

Clearly  a0  = 0;  what  about  a1?  It's  not  so clear.   But

we can say something  about  the  relationship  between

a1  and  a2,  just  as  we  found  earlier  a  relationship

between  p1 and p2, specifically  p2 = p1
2.

What  is this  relationship?  ...

..?..

Claim: a2 = 2 a1.

Proof:  Write  the  (random)  time  T2,0   it  takes  the

walker  to  get  from  2  to  0  as a sum of  two  times:  the

time  T2,1 it  takes  until  the  walker  first  hits  1, and the

time  T1,0  it  takes  after  that  for  the  walker  to  hit  0.

Since  a Markov  chain  doesn't  remember  its  past,  the

random variables  T2,1  and T1,0  are  independent,  but  we

actually  don't  need  that  fact;  all  we  need  is  that

Exp(T2,0) = Exp(T2,1) + Exp(T1,0).  Clearly  Exp(T1,0) = a1,

and the  translation-invariance  of  the  transition  proba -

bilities  tells  us that  Exp(T2,1) = Exp(T1,0) = a1.  So a2  =

Exp(T2,0) =

a1 + a1 .

Likewise ak  = k a1 for  all k > 1.

Consequence: Plugging a2 = 2 a1 

into  

a1 = 1 + p a2 + q a0

((2)  in the  case k = 1) and recalling  that  a0 = 0, we get

a1 = 1 + p a2 + (1-p) a0 = 1 + 2 p a1,

so

(1 -  2p) a1 = 1,

and a1 = 1/(1-2 p).

So, when p < 1
2

, we get

pk  = 1

ak  = k
1-2 p

 = k
q-p

for  all k ³  0.
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Rightward bias

If  p > 1
2

 (that  is,  if  our  walk has rightward  drift),  then

q/ p < 1, so both  possibilities  p1 = 1 and p1 = q/ p  are

conceivable.

To see which  is correct,  look at  the  corresponding  walk

on { 0,1,2,...,n }.

Before,  we showed that  the  nonabsorption  probability

1-p1 is  bounded above by  (Hq � pL1 - 1)/ (Hq � pLn - 1).  Now

that  q/ p < 1, this  goes to  (Hq � pL - 1)/ (0 - 1)  = 1 -  q/ p.

So 1-p1 ²  1 -  q/ p.  This  tells  us that  p1 is  at  least  q/ p.

But  how do we know it  isn't  1?

Let  W be the  probability  space for  the  walker  starting

at  1.

Let  E Ì W be the  event  "the  walker  never  reaches  0",

and write  E as the  intersection  of  the  sets  E2, E3, ...,

where  En  is  the  event  "the  walker  hits  n without  hit -

ting  0".   Since 

E = Ýn=2
¥  En, and since the  sets  En are  nested,  we have

Pr ob(E) = limn®¥ Prob(En) = 

limn®¥ (Hq � pL1 - 1)/ (Hq � pLn - 1) = 1 -  q/ p, 

so p1 = 1 -  Prob(E) = q � p.

So, when p > 1
2

, we get

pk  = Hq � pLk

for  all k ³  0.

Note  that  it  makes no sense to  talk  about  ak  in  this

case, since the  time  until  absorption  is infinite  with  posi-

tive  probability.
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Pr ob(E) = limn®¥ Prob(En) = 

limn®¥ (Hq � pL1 - 1)/ (Hq � pLn - 1) = 1 -  q/ p, 

so p1 = 1 -  Prob(E) = q � p.

So, when p > 1
2

, we get

pk  = Hq � pLk

for  all k ³  0.

Note  that  it  makes no sense to  talk  about  ak  in  this

case, since the  time  until  absorption  is infinite  with  posi-

tive  probability.

No bias

In  the  case p = 1
2

, the  two  candidate  values for  p1 (1

and q/ p) coincide,  so we get  p1 = 1 and pk  = 1 for  all  k ³

0.

We  can also see this  by  comparison with  the  finite- n

case.  Defining  E and E2, E3, ... as above, we have P(En)

=  1
n
,  which  doesn't  go  to  0  as  fast  as

(Hq � pL1 - 1)/ (Hq � pLn - 1) did  in the  case p < 1
2

, but  that's

okay: we still  get  Prob(E) = limn®¥ Prob(En) = limn®¥ 1
n

 =

0, so p1 = 1 -  0 = 1.
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2

, the  two  candidate  values for  p1 (1

and q/ p) coincide,  so we get  p1 = 1 and pk  = 1 for  all  k ³

0.

We  can also see this  by  comparison with  the  finite- n

case.  Defining  E and E2, E3, ... as above, we have P(En)

=  1
n
,  which  doesn't  go  to  0  as  fast  as

(Hq � pL1 - 1)/ (Hq � pLn - 1) did  in the  case p < 1
2

, but  that's

okay: we still  get  Prob(E) = limn®¥ Prob(En) = limn®¥ 1
n

 =

0, so p1 = 1 -  0 = 1.

How long does it  take  on average for  the  walker  to  get

from  1 to  0?

It  can be shown that  the  expected  value of  the  absorp-

tion  time  is inf init e.

One way to  prove this  is by viewing the  case 

p = 1
2

 as a limiting  case of  the  p < 1
2

 regime,  noting  that

as p ® 1
2

 from  below, we get  ak= k
1-2 p

®¥.

Another  way to  prove  it  is  to  compare  with  random

walk  on {0,1,2,...,n},  which  has an expected  time-until

absorption  (starting  from  1) equal to  (1)(n-1) 

(you proved  this  fact  about  gambler's  ruin  on the  home-

work;  see the  solution  to  11.2.26, aka problem  I  from

assignment #2).
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walk  on {0,1,2,...,n},  which  has an expected  time-until

absorption  (starting  from  1) equal to  (1)(n-1) 

(you proved  this  fact  about  gambler's  ruin  on the  home-

work;  see the  solution  to  11.2.26, aka problem  I  from

assignment #2).

Walk on Z

Suppose  we  do  a  biased  random  walk  on  Z  =

{...,-2,-1,0,1,2,...}, where  a walker  at  position  

k   > 0  moves to  position  k  + 1 with  probability  p  and

moves to  position  k - 1 with  probability  q = 

1 -  p.

Say  the  walker  starts  from  0;  does  the  walker  get

back to  0 again?  How often?

Another  way to  look at  this  process is to  view the  walk-

er's  location  at  time  n as a sum of  n i.i.d.  random vari -

ables X1+X2+...+Xn, where  each Xk  is +1 with  probability

p  and is -1 with  probability  q.

The  Strong  Law of  Large  Numbers,  applied to  the  i.i.d.

process,  tells  us  that  with  probability  1,

HX1+X2+...+Xn)/ n   ®   p-q   (since  p-q  is  the  shared

expected  value of  the  Xk 's).   In  particular,  if  p-q ­  0

(i.e., if  p ­  1
2

), then  with  probability  1, (X1+X2+...+Xn)/ n

will  equal 0  only  finitely  often,  i.e.,  X1+X2+...+Xn  will

equal 0  only finitely  often.   That  is,  with  probability  1,

the  random walk  on Z  that  starts  from  0  will  visit  0

only finitely  many times.   (If  p > 1
2

, the  walk drifts  off

to  the  right;  if  p < 1
2

, the  walk drifts  off  to  the  left.)
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equal 0  only finitely  often.   That  is,  with  probability  1,

the  random walk  on Z  that  starts  from  0  will  visit  0

only finitely  many times.   (If  p > 1
2

, the  walk drifts  off

to  the  right;  if  p < 1
2

, the  walk drifts  off  to  the  left.)

What  about  p = 1
2

?

We  have shown that,  starting  from  1, the  probability

that  an unbiased random walker  will  eventually  hit  0  is

1.  The  same is  true  starting  from  -1.   Hence,  if  a

walker  takes  a random  step  starting  from  0,  regard -

less of  whether  the  step  is  to  the  right  or  the  left,

the  probability  that  the  walker  will  return  to  0 is 1.
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What  about  p = 1
2

?

We  have shown that,  starting  from  1, the  probability

that  an unbiased random walker  will  eventually  hit  0  is

1.  The  same is  true  starting  from  -1.   Hence,  if  a

walker  takes  a random  step  starting  from  0,  regard -

less of  whether  the  step  is  to  the  right  or  the  left,

the  probability  that  the  walker  will  return  to  0 is 1.

And  when  that  happens,  the  probability  that  the

walker  will  return  again is likewise  1.  Etc.

So the  probability  that  the  walker  starting  from  0 will

visit  0  at  least  n times  is  1, for  every  n.  It  follows

that  with  probability  1, the   walker  who starts  from  0

will  visit  0 infinitely  often  ("i.o."  for  short).

In  fact,  with  probability  1, ever y integer  in  Z  will  be

visited  by the  walker  infinitely  often.

However,  the  proportion  of  the  time  that  the  walker

spends at  any one of  these  states  goes to  zero  in the

limit .

For  instance,  if  the  walker  starts  at  0,  the  expected

number of  visits  to  0  by  time  n  grows like  the  square

root  of  n.

To  see why  this  makes intuitive  sense, note  that  at

time  n,  the  variance  of  the  position  of  the  walker  is

Var (X1+X2+...+Xn) = C n for  suitable  C.  The  distribution

of  values of  the  position  of  the  walker  is  binomial,  and

hence very  close  to  Gaussian, with  standard  deviation

C n .  So, while  the  value X1+X2+...+Xn=0 is  the  most

likely,  the  other  2 C n  values  between  + C n  and

- C n  aren't  that  much more  unlikely,  and their  total

probability  is about  .68,  so each of  the  values has proba -

bility  on the  order  of  1/ n .

I  haven't  shown you random or  quasirandom simulations

of  random walk; this  is something  someone could do for

a term  project.
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Recurrence and transience

A queueing model

(material taken from the excellent book Probability and Computing: Randomized Algorithms and 
Probabilistic Analysis  by Michael Mitzenmacher and Eli Upfal, pp. 173-174)

Customers  wait  in  line  at  an ATM.   At  each discrete

time  step,  exactly  one of  the  following  occurs:  a new

customer  joins  the  end of  the  queue (so  the  size  of

the  queue increases  by  1), the  person  at  the  head of

the  queue gets  served  (so  the  size  of  the  queue

decreases  by 1), or  nothing  happens (so the  size  of  the

queue doesn't  change).   We  assume that  new cus-

tomers  will  not  join  the  queue if  it  contains   n  cus-

tomers;  other  than  that,  we assume that  the  rate  at

which  customers  join  the  queue, and the  rate  at  which

customers  leave  the  queue, does  not  depend  on the

size of  the  current  queue.

(Note:  It  is more customary  to  model queues in continu -

ous time;  but  if  we divide  time  into  very  small  incre -

ments,  then  we can approximate  the  continuous-time

queueing process  by  a discrete-time  queueing process.

Moreover,  the  assumption  that  no time  intervals  con-

tains  both  an arrival  and a departure,  or  two  arrivals,

or  two  departures,  makes sense if  the  time  increments

are  sufficiently  small, since the  probability  of  such an

event  is  low.   But  we'll  say  more  about  continuous-

queues later  in the  semester.)
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ous time;  but  if  we divide  time  into  very  small  incre -

ments,  then  we can approximate  the  continuous-time

queueing process  by  a discrete-time  queueing process.

Moreover,  the  assumption  that  no time  intervals  con-

tains  both  an arrival  and a departure,  or  two  arrivals,

or  two  departures,  makes sense if  the  time  increments

are  sufficiently  small, since the  probability  of  such an

event  is  low.   But  we'll  say  more  about  continuous-

queues later  in the  semester.)

The size  of  the  queue after  k  time-steps  (k = 1,2,3,...)

is an integer-valued  random process that  can be viewed

as a Markov  chain whose states  are  0,1,2,...,n, with  tran -

sition  probabilities  pi ,j  of  the  form

pi ,i +1 = Λ  if  i < n

pi ,i -1 = Μ  if  i > 0

pi ,i  = 

1- Λ if i = 0

1- Λ - Μ if 1 £ i £ n - 1

1- Μ if i = n

(pi ,j  is 0 otherwise)

where  Λ  is  the  probability  that  someone joins  the

queue (if  the  current  queue length  is less than  n) and Μ

is  the  probability  that  someone leaves the  queue (if

the  current  queue length  is greater  than  0).
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pi ,i -1 = Μ  if  i > 0

pi ,i  = 

1- Λ if i = 0

1- Λ - Μ if 1 £ i £ n - 1

1- Μ if i = n

(pi ,j  is 0 otherwise)

where  Λ  is  the  probability  that  someone joins  the

queue (if  the  current  queue length  is less than  n) and Μ

is  the  probability  that  someone leaves the  queue (if

the  current  queue length  is greater  than  0).

The chain is ergodic,  so there  is a unique stationary  dis-

tribution  w.  We use w = wP to  write

    w0 = (1-Λ)w0 + Μw1,

    wi  = Λwi -1 + (1-Λ-Μ)wi  + Μwi +1 (for  1 £ i £ n-1),

    wn = Λwn-1 + (1-Μ)wn.

The  (non-stochastic)  vector   wi  = (Λ/ Μ) i  is  a solution

(check:
In[40]:= HL � ML^i � L HL � ML^Hi - 1L + H1 - L - ML HL � ML^i + M HL � ML^Hi + 1L

Out[40]=
L

M

i

� L
L

M

i-1

+ H-L - M + 1L
L

M

i

+ M
L

M

i+1

In[41]:= Simplify@%D

Out[41]= True

which  works),  so by  rescaling  to  make the  entries  sum

to  1, we get  the  stationary  distribution

wi  = (Λ/ Μ) i /  Z

wit h

Z = Úi =0
n  (Λ/ Μ) i .
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which  works),  so by  rescaling  to  make the  entries  sum

to  1, we get  the  stationary  distribution

wi  = (Λ/ Μ) i /  Z

wit h

Z = Úi =0
n  (Λ/ Μ) i .

This  is just  a random walk model on {0,1,2,...,n} with  left -

ward,  rightward,  and holding  steps,  each occurring  with

respectively  probability  Μ,  Λ,  and 1-Λ-Μ,  with  partially

reflecting  boundaries  at  0 and n.

Now suppose there  is  no upper  limit  n  to  the  size  of

the  queue.  This  is  an example of  a Markov  chain with

infinite  state  space; it  is  ergodic  because it  is  possible

to  get  from  any state  to  any other.   It  can be  shown

that  for  an ergodic  Markov  chain  on an infinite  state

space, stationary  probability  measure may or  may not

exist,  but  if  it  exists  it  is  unique.  In  our  particular

case, a stationary  probability  measure is  a vector  w =

(w0,w1,w2,...) consisting  of  infinitely  many non-negative

real  numbers summing to  1, such that

    w0 = (1-Λ)w0 + Μw1,

    wi  = Λwi -1 + (1-Λ-Μ)wi  + Μwi +1 (for  i ³ 1).

It  can be  checked  that  one vector  satisfying  these

equations is w with  wi  = (Λ/ Μ) i .

If  Λ < Μ, then  Úi ³0  (Λ/ Μ) i  converges to  the  finite  num-

ber  Z  = 1/(1 -  Λ/ Μ), so the  unique stationary  probability

measure is

wi  = (Λ/ Μ) i  (1 -  Λ/ Μ).

20   Lec08.nb



Now suppose there  is  no upper  limit  n  to  the  size  of

the  queue.  This  is  an example of  a Markov  chain with

infinite  state  space; it  is  ergodic  because it  is  possible

to  get  from  any state  to  any other.   It  can be  shown

that  for  an ergodic  Markov  chain  on an infinite  state

space, stationary  probability  measure may or  may not

exist,  but  if  it  exists  it  is  unique.  In  our  particular

case, a stationary  probability  measure is  a vector  w =

(w0,w1,w2,...) consisting  of  infinitely  many non-negative

real  numbers summing to  1, such that
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    wi  = Λwi -1 + (1-Λ-Μ)wi  + Μwi +1 (for  i ³ 1).

It  can be  checked  that  one vector  satisfying  these

equations is w with  wi  = (Λ/ Μ) i .

If  Λ < Μ, then  Úi ³0  (Λ/ Μ) i  converges to  the  finite  num-

ber  Z  = 1/(1 -  Λ/ Μ), so the  unique stationary  probability

measure is

wi  = (Λ/ Μ) i  (1 -  Λ/ Μ).

If  Λ  > Μ,  then  the  rate  at  which  customers  arrive  is

higher  than  the  rate  at  which  they  leave,  and  the

queue becomes arbitrarily  long as time  passes (indeed,

its  length  after  k  steps  is  roughly  (Λ-Μ)k);  there  is  no

stationary  distribution  on queue-length.

If  Λ  = Μ,  there  is  no stationary  distribution;  if  we

define  Mn as the  maximum queue length  from  time  1 to

time  n,  one finds  that  Mn  drifts  upward  to  infinity.

However,  unlike  the  case where  Λ > Μ (where  the  queue

length  exhibited  linear  growth),  we have Mn Å  n .  Fur -

thermore,  there  will  (with  probability  1) be  infinitely

many values of  k  for  which  the  queue length  at  time  k

equals 0,  even though  as n goes to  infinity,  the  propor -

tion  of  the  time  between  time  0  and time  n that  the

queue has been empty  goes to  zero  (with  probability  1).
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However,  unlike  the  case where  Λ > Μ (where  the  queue

length  exhibited  linear  growth),  we have Mn Å  n .  Fur -

thermore,  there  will  (with  probability  1) be  infinitely

many values of  k  for  which  the  queue length  at  time  k

equals 0,  even though  as n goes to  infinity,  the  propor -

tion  of  the  time  between  time  0  and time  n that  the

queue has been empty  goes to  zero  (with  probability  1).

The recurrence trichotomy

Think  of  a  Markov  chain  with  state-space  S  as  a

sequence of  random variables:  a random variable  X1 tak -

ing its  values in  S,  another  S-valued  random  variable

X2 for  which 

Prob( X2 = j  |  X1 = i  ) = pi ,j ,

another  S-valued random variable  X3 for  which 

Pr ob( X3 = k |  X1 = i  and X2 = j  ) = pj ,k ,

etc.   

If  S  is  countably  infinite  then  the  entries  pi ,j  do not

form  an ordinary  matrix,  but  as long as each entry  pi ,j

is  non-negative  and each "row-sum"  Új  pi ,j  is  1, we can

(at  least  in principle)  simulate  the  Markov  chain, start -

ing with  X1 equal to  some particular  state  i  (or  some

specified  random distribution  on states).   As  usual, we

find  it  helpful  to  speak of  a "walker"  moving from  one

state  in S to  another.

Typical  examples  of  infinite  state  spaces are  N,  Z,

Z
2,...

Assume that  our  transition  matrix  P is  "ergodic"  in the

sense that  it  is  possible  to  get  from  any state  to  any

other  in some finite  number  of  steps.   Then there  are

two  cases:
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Think  of  a  Markov  chain  with  state-space  S  as  a

sequence of  random variables:  a random variable  X1 tak -

ing its  values in  S,  another  S-valued  random  variable

X2 for  which 

Prob( X2 = j  |  X1 = i  ) = pi ,j ,

another  S-valued random variable  X3 for  which 

Pr ob( X3 = k |  X1 = i  and X2 = j  ) = pj ,k ,

etc.   

If  S  is  countably  infinite  then  the  entries  pi ,j  do not

form  an ordinary  matrix,  but  as long as each entry  pi ,j

is  non-negative  and each "row-sum"  Új  pi ,j  is  1, we can

(at  least  in principle)  simulate  the  Markov  chain, start -

ing with  X1 equal to  some particular  state  i  (or  some

specified  random distribution  on states).   As  usual, we

find  it  helpful  to  speak of  a "walker"  moving from  one

state  in S to  another.

Typical  examples  of  infinite  state  spaces are  N,  Z,

Z
2,...

Assume that  our  transition  matrix  P is  "ergodic"  in the

sense that  it  is  possible  to  get  from  any state  to  any

other  in some finite  number  of  steps.   Then there  are

two  cases:

(1) For  every  i  and j , the  expected  number 

of  times  a walker  who starts  at  i  visits  j

is infinite.

(2) For  every  i  and j , the  expected  number 

of  times  a walker  who starts  at  i  visits  j

is finite.

In  case (1), it  can be shown (proof  omitted)  that  with

probability  1, a  walker  who  starts  at  i   will  visit  j  

infinitely  many times,  whereas  in  case (2),   it  can be

shown that  with  probability  1, a walker  who starts  at  i

will  visit  j   finitely  many times.
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In  case (1), it  can be shown (proof  omitted)  that  with

probability  1, a  walker  who  starts  at  i   will  visit  j  

infinitely  many times,  whereas  in  case (2),   it  can be

shown that  with  probability  1, a walker  who starts  at  i

will  visit  j   finitely  many times.

Case (1) bifurcates,  so we get  three  cases:

(1a) For  every  i  and j , a walker  who starts  at  i

will  (with  probability  1) visit  j   infinitely  

often,  and indeed will  visit  j   a positive  

proportion  of  the  time.

(1b) For  every  i  and j , a walker  who starts  at  i

will  (with  probability  1) visit  j   infinitely  

often,  but  asymptotically  will  visit  j   a 

vanishingly small proportion  of  the  time.

(2) For  every  i  and j , a walker  who starts  at  i

will  (with  probability  1) visit  j   only 

finitely  often.

Case (1a) is called  the  positive  recurrent  case.  An exam-

ple is  the  queue model in the  case Λ < Μ (aka leftward-

biased walk on N).

Case (1b) is called  the  null recurrent  case.  An example

is the  queue model in the  case Λ = Μ (aka unbiased walk

on N with  a semireflecting  barrier  at  0).

Case (2)  is  called  the  t r ansient  case.  An  example  is

the  queue model  in  the  case  Λ  > Μ  (aka  rightward-

biased walk on N).
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Case (1a) is called  the  positive  recurrent  case.  An exam-

ple is  the  queue model in the  case Λ < Μ (aka leftward-

biased walk on N).

Case (1b) is called  the  null recurrent  case.  An example

is the  queue model in the  case Λ = Μ (aka unbiased walk

on N with  a semireflecting  barrier  at  0).

Case (2)  is  called  the  t r ansient  case.  An  example  is

the  queue model  in  the  case  Λ  > Μ  (aka  rightward-

biased walk on N).

In  case (1a), there  is  a stationary  probability  measure

on S; in cases (1b) and (2),  there  is not.
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Unbiased walk on Zd

It's  easy to  see that  n  steps  of  unbiased random walk

on Z starting  from  0 gives a distribution  on 

{-n,-n+2,...,n-2,n}  that,  if  you shift  values to  the  right

by n and divide  by 2, becomes the  Binomial(n, 1
2

) distri -

bution.   So  the  position  of  the  walker  at  time  n   is

approximated  by a normal distribution  with  mean 0 and

standard  deviation  n , and the  probability  pn that  the

walker  is  actually  at  0  after  n steps  is on the  order  of

1/ n .  Note  that  the  sum · n=1

¥
 1/ n  diverges,  so the

expected  number  of  visits  to  0  is  ¥, and indeed,  with

probability  1, the  walker  will  visit  0  infinitely  many

t imes.

What  about  random walk on Z2?  That  is,  from  (i,j )  in

Z
2  we move with  equal probability  to  one of  the  four

neighbors  (i-1,j ), (i+1,j ), (i,j -1), (i,j +1).

Trick:  Use instead  the  four  neighbors  (i±1,j ±1).  This

just  amount to  rotating  the  walk by 45  degrees  and scal-

ing by 2 .

The  reason this  trick  is  smart  is  that  the  rotated  and

rescaled  walk gives a path  in Z2 such that  the  x-  and y-

coordinates  of  the  points  in the  path  are  just  doing ran-

dom walk in Z, independently  of  each other.
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The  reason this  trick  is  smart  is  that  the  rotated  and

rescaled  walk gives a path  in Z2 such that  the  x-  and y-

coordinates  of  the  points  in the  path  are  just  doing ran-

dom walk in Z, independently  of  each other.

Hence, for  the  rotated  and rescaled  walk, the  probabil -

ity  that  a walker  who starts  at  (0,0)  is  back  at  (0,0)

after  n  steps  is  pn
2, where  pn is  the  probability  that  a

walker  in Z who starts  at  0 is back at  0 after  n  st eps.

Since  pn  Å  1/ n , we have pn
2  Å  1/ n.  So the  expected

number  of  visits  to  (0,0)  is  · n=1

¥
 1/ n, which  is  infinite,

and we can see that  this  walk (like  the  walk in 1 dimen-

sion) is null-recurrent.

This  rotate-and-rescale  trick  doesn't  work  in  more

than  two  dimensions.   E.g., in  three  dimensions,  we

want  to  study  a walk where  from  (i,j ,k) in  Z3  we move

with  equal  probability  to  one  of  the  six  neighbors

(i-1,j ,k),  (i+1,j ,k),  (i,j -1,k),  (i,j +1,k),  (i,j ,k-1),  (i,j ,k+1).

However,  the  trick  applies to  a walk where  from  (i,j ,k)

in  Z3  we move with  equal probability  to  one of  the

eight  neighbors  (i±1,j ±1,k±1).  These two  walks are  gen-

uinely  different  (they  don't  just  differ  by  rotation

and scaling).  However,  they  do turn  out  to  have some-

thing  in common: they  are  both  t ransient .  We  can see

that  the  eight-neighbor  walk in Z3 is transient  by using

the  same method  as before:  since  each of  the  three

coordinates  is doing a one-dimensional random walk inde-

pendently  of  the  other  two,  the  probability  that  a

walker  who starts  at  (0,0,0)  is  back  at  (0,0,0)  after  n

steps  is 

pn
3  Å  (1/ n ) 3, and · n=1

¥
 n-3�2, unlike  · n=1

¥
 n-1 and · n=1

¥

n-1�2, is finite.   So this  walk is transient.   And the  same

is  true  for  six-neighbor  random  walk  in  Z3  (proof

omit t ed).
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This  rotate-and-rescale  trick  doesn't  work  in  more

than  two  dimensions.   E.g., in  three  dimensions,  we

want  to  study  a walk where  from  (i,j ,k) in  Z3  we move

with  equal  probability  to  one  of  the  six  neighbors

(i-1,j ,k),  (i+1,j ,k),  (i,j -1,k),  (i,j +1,k),  (i,j ,k-1),  (i,j ,k+1).

However,  the  trick  applies to  a walk where  from  (i,j ,k)

in  Z3  we move with  equal probability  to  one of  the

eight  neighbors  (i±1,j ±1,k±1).  These two  walks are  gen-

uinely  different  (they  don't  just  differ  by  rotation

and scaling).  However,  they  do turn  out  to  have some-

thing  in common: they  are  both  t ransient .  We  can see

that  the  eight-neighbor  walk in Z3 is transient  by using

the  same method  as before:  since  each of  the  three

coordinates  is doing a one-dimensional random walk inde-

pendently  of  the  other  two,  the  probability  that  a

walker  who starts  at  (0,0,0)  is  back  at  (0,0,0)  after  n

steps  is 

pn
3  Å  (1/ n ) 3, and · n=1

¥
 n-3�2, unlike  · n=1

¥
 n-1 and · n=1

¥

n-1�2, is finite.   So this  walk is transient.   And the  same

is  true  for  six-neighbor  random  walk  in  Z3  (proof

omit t ed).

Summary: 

In  Zd  with  d=1 or  d=2, random walk  is  null-recurrent,

and the  probability  that  you will  eventually  return  to

the  origin,  given that  you're  currently  at  the  origin,  is

1.

In  Zd  with  d > 2, random walk is transient,  and the  prob -

ability  that  you  will  eventually  return  to  the  origin,

given that  you're  currently  at  the  origin,  is some proba -

bility  p  strictly  between  0  and 1.  In  this  case, the

expected  number  of  returns  to  the  origin,  if  you start

at  the  origin,  is 

· n=1

¥
 Prob(the  number of  visits  is at  least  n) 

= · n=1

¥
 pn = p/ (1-p). 

Polya: "A  drunk  man will  eventually  return  home but  a

drunk  bird  will  lose its  way in space." 
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Summary: 
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Summary: 

In  Zd  with  d=1 or  d=2, random walk  is  null-recurrent,

and the  probability  that  you will  eventually  return  to

the  origin,  given that  you're  currently  at  the  origin,  is

1.

In  Zd  with  d > 2, random walk is transient,  and the  prob -

ability  that  you  will  eventually  return  to  the  origin,

given that  you're  currently  at  the  origin,  is some proba -

bility  p  strictly  between  0  and 1.  In  this  case, the

expected  number  of  returns  to  the  origin,  if  you start

at  the  origin,  is 

· n=1

¥
 Prob(the  number of  visits  is at  least  n) 

= · n=1

¥
 pn = p/ (1-p). 

Polya: "A  drunk  man will  eventually  return  home but  a

drunk  bird  will  lose its  way in space." 

The "Goldbug walk"

Consider random walk on {-1,0,1,2,3,...}  with  absorption

at  {-1,0}  in which  pi ,j  is 1
2

 if  j   equals i-2  or  i+1 and is 0

otherwise  (as  in  the  "1-D  Walk"  mode of  the  r ot or -

router  applet ).

This  random walk is biased to  the  left,  so with  probabil -

ity  1, the  walk will  get  absorbed  in {-1,0}.  

More  rigorously:  View the  walker's  location  at  time  n

(prior  to  absorption)  as a sum of  n i.i.d.  random vari -

ables X1+X2+...+Xn, where  each Xk  is +1 with  probability
1
2

 and is  -2  with  probability  1
2

.   The  Strong  Law of

Large  Numbers,  applied  to  the  i.i.d.  process,  tells  us

that  with  probability  1,  

(X1+X2+...+Xn)/ n   ®   - 1
2

  (since  - 1
2

 is  the  shared

expected  value of  the  Xk 's).   In  particular,  the  probabil -

ity  that  (X1+X2+...+Xn)/ n  will  stay  positive  forever  is 0.

So absorption  occurs  with  probability  1.
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Consider random walk on {-1,0,1,2,3,...}  with  absorption

at  {-1,0}  in which  pi ,j  is 1
2

 if  j   equals i-2  or  i+1 and is 0

otherwise  (as  in  the  "1-D  Walk"  mode of  the  r ot or -

router  applet ).

This  random walk is biased to  the  left,  so with  probabil -

ity  1, the  walk will  get  absorbed  in {-1,0}.  

More  rigorously:  View the  walker's  location  at  time  n

(prior  to  absorption)  as a sum of  n i.i.d.  random vari -

ables X1+X2+...+Xn, where  each Xk  is +1 with  probability
1
2

 and is  -2  with  probability  1
2

.   The  Strong  Law of

Large  Numbers,  applied  to  the  i.i.d.  process,  tells  us

that  with  probability  1,  

(X1+X2+...+Xn)/ n   ®   - 1
2

  (since  - 1
2

 is  the  shared

expected  value of  the  Xk 's).   In  particular,  the  probabil -

ity  that  (X1+X2+...+Xn)/ n  will  stay  positive  forever  is 0.

So absorption  occurs  with  probability  1.

Hence with  probability  1, the  walker  will  be  absorbed

at  either  -1 or  0,  regardless  of  the  walker's  starting

locat ion.

What  is  the  probability  that  a walker  who starts  at  1

eventually  gets  absorbed  at  -1?

Call this  probability  p.

We know that  p > 0 (why? ...

..?..

because the  walker  could  go from  1 to  -1 in  a single

move), and we also know that  p < 1 (why? ...

..?..

because the  walker  could go from  1 to  2 to  0).  

It'll  be  handy to  think  of  p as the  probability  that  a

random walker  who starts  at  1 will  hit  -1 before  hitting

0;  and we will  need to  know that  p is  also the  probabil -

ity  that  a random  walker  who starts  at  2  will  hit  0

before  hitting  1 (using  the  translation-invariance  of

the  transition  probabilities  for  the  random walk).

I  claim that

p = 1
2

 + 1
2

 ((p)(0)+(1-p)(p)).

The first  term  in the  RHS corresponds  to  the  possibil -

ity  that  the  walker  who starts  at  1 will  jump to  -1 imme-

diately.   If  this  doesn't  happen, then  the  walker  jumps

from  1 to  2.   Let's  look  at  what  happens after  the

walker  continues  onward  from  2.   We  know that  with

probability  1, the  walker  who continues  from  2 will  even-

tually  hit  {0,1}, and indeed, we know that  when this  hap-

pens for  the  first  time,  the  respective  probabilities  of

the  walker  being at  0  and 1 are  p and 1-p (see the  dis-

cussion of  translation-invariance  in the  preceding  para-

graph).   In  the  former  case,  the  game is  over;  the

walker  has hit  0 without  first  hitting  1, so the  walker's

chance of  "winning"  (i.e.  hitting  -1 before  0)  is  zero.

But,  in  the  latter  case, the  walker  is  back  where  he

started,  and his  chance of  winning is  p, just  as it  was

at  the  start.

[Go over  this  analysis a second time,  to  make sure every -

one's  got  it!   There'll  be a homework problem  requiring

this  style  of  analysis.]

We can simplify  the  equation:

p = 1
2

 + 1
2

 ((p)(0)+(1-p)(p))

2p = 1 + (1-p)(p)

2p = 1 + p -  p2

p2 + p -  1 = 0

p = (-1± 5 )/ 2

Since p > 0,  we must  have p = (-1+ 5 )/2  (the  recipro -

cal  of  the  golden  ratio;  hence  Kleber's  coinage

"goldbug").

Thus, a particle  added to  the  system  at  1 

escapes to  infinity  with  probability  0, 

gets  absorbed  at  -1 with  probability  p = (-1+ 5 )/2  Å

.618, 

and gets  absorbed  at  0 with  probability  1-p=p2Å .382.
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Hence with  probability  1, the  walker  will  be  absorbed

at  either  -1 or  0,  regardless  of  the  walker's  starting

locat ion.

What  is  the  probability  that  a walker  who starts  at  1

eventually  gets  absorbed  at  -1?

Call this  probability  p.

We know that  p > 0 (why? ...

..?..

because the  walker  could  go from  1 to  -1 in  a single

move), and we also know that  p < 1 (why? ...

..?..

because the  walker  could go from  1 to  2 to  0).  

It'll  be  handy to  think  of  p as the  probability  that  a

random walker  who starts  at  1 will  hit  -1 before  hitting

0;  and we will  need to  know that  p is  also the  probabil -

ity  that  a random  walker  who starts  at  2  will  hit  0

before  hitting  1 (using  the  translation-invariance  of

the  transition  probabilities  for  the  random walk).

I  claim that

p = 1
2

 + 1
2

 ((p)(0)+(1-p)(p)).

The first  term  in the  RHS corresponds  to  the  possibil -

ity  that  the  walker  who starts  at  1 will  jump to  -1 imme-

diately.   If  this  doesn't  happen, then  the  walker  jumps

from  1 to  2.   Let's  look  at  what  happens after  the

walker  continues  onward  from  2.   We  know that  with

probability  1, the  walker  who continues  from  2 will  even-

tually  hit  {0,1}, and indeed, we know that  when this  hap-

pens for  the  first  time,  the  respective  probabilities  of

the  walker  being at  0  and 1 are  p and 1-p (see the  dis-

cussion of  translation-invariance  in the  preceding  para-

graph).   In  the  former  case,  the  game is  over;  the

walker  has hit  0 without  first  hitting  1, so the  walker's

chance of  "winning"  (i.e.  hitting  -1 before  0)  is  zero.

But,  in  the  latter  case, the  walker  is  back  where  he

started,  and his  chance of  winning is  p, just  as it  was

at  the  start.

[Go over  this  analysis a second time,  to  make sure every -

one's  got  it!   There'll  be a homework problem  requiring

this  style  of  analysis.]

We can simplify  the  equation:

p = 1
2

 + 1
2

 ((p)(0)+(1-p)(p))

2p = 1 + (1-p)(p)

2p = 1 + p -  p2

p2 + p -  1 = 0

p = (-1± 5 )/ 2

Since p > 0,  we must  have p = (-1+ 5 )/2  (the  recipro -

cal  of  the  golden  ratio;  hence  Kleber's  coinage

"goldbug").

Thus, a particle  added to  the  system  at  1 

escapes to  infinity  with  probability  0, 

gets  absorbed  at  -1 with  probability  p = (-1+ 5 )/2  Å

.618, 

and gets  absorbed  at  0 with  probability  1-p=p2Å .382.
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Hence with  probability  1, the  walker  will  be  absorbed

at  either  -1 or  0,  regardless  of  the  walker's  starting

locat ion.

What  is  the  probability  that  a walker  who starts  at  1

eventually  gets  absorbed  at  -1?

Call this  probability  p.

We know that  p > 0 (why? ...

..?..

because the  walker  could  go from  1 to  -1 in  a single

move), and we also know that  p < 1 (why? ...

..?..

because the  walker  could go from  1 to  2 to  0).  

It'll  be  handy to  think  of  p as the  probability  that  a

random walker  who starts  at  1 will  hit  -1 before  hitting

0;  and we will  need to  know that  p is  also the  probabil -

ity  that  a random  walker  who starts  at  2  will  hit  0

before  hitting  1 (using  the  translation-invariance  of

the  transition  probabilities  for  the  random walk).

I  claim that

p = 1
2

 + 1
2

 ((p)(0)+(1-p)(p)).

The first  term  in the  RHS corresponds  to  the  possibil -

ity  that  the  walker  who starts  at  1 will  jump to  -1 imme-

diately.   If  this  doesn't  happen, then  the  walker  jumps

from  1 to  2.   Let's  look  at  what  happens after  the

walker  continues  onward  from  2.   We  know that  with

probability  1, the  walker  who continues  from  2 will  even-

tually  hit  {0,1}, and indeed, we know that  when this  hap-

pens for  the  first  time,  the  respective  probabilities  of

the  walker  being at  0  and 1 are  p and 1-p (see the  dis-

cussion of  translation-invariance  in the  preceding  para-

graph).   In  the  former  case,  the  game is  over;  the

walker  has hit  0 without  first  hitting  1, so the  walker's

chance of  "winning"  (i.e.  hitting  -1 before  0)  is  zero.

But,  in  the  latter  case, the  walker  is  back  where  he

started,  and his  chance of  winning is  p, just  as it  was

at  the  start.

[Go over  this  analysis a second time,  to  make sure every -

one's  got  it!   There'll  be a homework problem  requiring

this  style  of  analysis.]

We can simplify  the  equation:

p = 1
2

 + 1
2

 ((p)(0)+(1-p)(p))

2p = 1 + (1-p)(p)

2p = 1 + p -  p2

p2 + p -  1 = 0

p = (-1± 5 )/ 2

Since p > 0,  we must  have p = (-1+ 5 )/2  (the  recipro -

cal  of  the  golden  ratio;  hence  Kleber's  coinage

"goldbug").

Thus, a particle  added to  the  system  at  1 

escapes to  infinity  with  probability  0, 

gets  absorbed  at  -1 with  probability  p = (-1+ 5 )/2  Å

.618, 

and gets  absorbed  at  0 with  probability  1-p=p2Å .382.
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Hence with  probability  1, the  walker  will  be  absorbed

at  either  -1 or  0,  regardless  of  the  walker's  starting

locat ion.

What  is  the  probability  that  a walker  who starts  at  1

eventually  gets  absorbed  at  -1?

Call this  probability  p.

We know that  p > 0 (why? ...

..?..

because the  walker  could  go from  1 to  -1 in  a single

move), and we also know that  p < 1 (why? ...

..?..

because the  walker  could go from  1 to  2 to  0).  

It'll  be  handy to  think  of  p as the  probability  that  a

random walker  who starts  at  1 will  hit  -1 before  hitting

0;  and we will  need to  know that  p is  also the  probabil -

ity  that  a random  walker  who starts  at  2  will  hit  0

before  hitting  1 (using  the  translation-invariance  of

the  transition  probabilities  for  the  random walk).

I  claim that

p = 1
2

 + 1
2

 ((p)(0)+(1-p)(p)).

The first  term  in the  RHS corresponds  to  the  possibil -

ity  that  the  walker  who starts  at  1 will  jump to  -1 imme-

diately.   If  this  doesn't  happen, then  the  walker  jumps

from  1 to  2.   Let's  look  at  what  happens after  the

walker  continues  onward  from  2.   We  know that  with

probability  1, the  walker  who continues  from  2 will  even-

tually  hit  {0,1}, and indeed, we know that  when this  hap-

pens for  the  first  time,  the  respective  probabilities  of

the  walker  being at  0  and 1 are  p and 1-p (see the  dis-

cussion of  translation-invariance  in the  preceding  para-

graph).   In  the  former  case,  the  game is  over;  the

walker  has hit  0 without  first  hitting  1, so the  walker's

chance of  "winning"  (i.e.  hitting  -1 before  0)  is  zero.

But,  in  the  latter  case, the  walker  is  back  where  he

started,  and his  chance of  winning is  p, just  as it  was

at  the  start.

[Go over  this  analysis a second time,  to  make sure every -

one's  got  it!   There'll  be a homework problem  requiring

this  style  of  analysis.]

We can simplify  the  equation:

p = 1
2

 + 1
2

 ((p)(0)+(1-p)(p))

2p = 1 + (1-p)(p)

2p = 1 + p -  p2

p2 + p -  1 = 0

p = (-1± 5 )/ 2

Since p > 0,  we must  have p = (-1+ 5 )/2  (the  recipro -

cal  of  the  golden  ratio;  hence  Kleber's  coinage

"goldbug").

Thus, a particle  added to  the  system  at  1 

escapes to  infinity  with  probability  0, 

gets  absorbed  at  -1 with  probability  p = (-1+ 5 )/2  Å

.618, 

and gets  absorbed  at  0 with  probability  1-p=p2Å .382.
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Hence with  probability  1, the  walker  will  be  absorbed

at  either  -1 or  0,  regardless  of  the  walker's  starting

locat ion.

What  is  the  probability  that  a walker  who starts  at  1

eventually  gets  absorbed  at  -1?

Call this  probability  p.

We know that  p > 0 (why? ...

..?..

because the  walker  could  go from  1 to  -1 in  a single

move), and we also know that  p < 1 (why? ...

..?..

because the  walker  could go from  1 to  2 to  0).  

It'll  be  handy to  think  of  p as the  probability  that  a

random walker  who starts  at  1 will  hit  -1 before  hitting

0;  and we will  need to  know that  p is  also the  probabil -

ity  that  a random  walker  who starts  at  2  will  hit  0

before  hitting  1 (using  the  translation-invariance  of

the  transition  probabilities  for  the  random walk).

I  claim that

p = 1
2

 + 1
2

 ((p)(0)+(1-p)(p)).

The first  term  in the  RHS corresponds  to  the  possibil -

ity  that  the  walker  who starts  at  1 will  jump to  -1 imme-

diately.   If  this  doesn't  happen, then  the  walker  jumps

from  1 to  2.   Let's  look  at  what  happens after  the

walker  continues  onward  from  2.   We  know that  with

probability  1, the  walker  who continues  from  2 will  even-

tually  hit  {0,1}, and indeed, we know that  when this  hap-

pens for  the  first  time,  the  respective  probabilities  of

the  walker  being at  0  and 1 are  p and 1-p (see the  dis-

cussion of  translation-invariance  in the  preceding  para-

graph).   In  the  former  case,  the  game is  over;  the

walker  has hit  0 without  first  hitting  1, so the  walker's

chance of  "winning"  (i.e.  hitting  -1 before  0)  is  zero.

But,  in  the  latter  case, the  walker  is  back  where  he

started,  and his  chance of  winning is  p, just  as it  was

at  the  start.

[Go over  this  analysis a second time,  to  make sure every -

one's  got  it!   There'll  be a homework problem  requiring

this  style  of  analysis.]

We can simplify  the  equation:

p = 1
2

 + 1
2

 ((p)(0)+(1-p)(p))

2p = 1 + (1-p)(p)

2p = 1 + p -  p2

p2 + p -  1 = 0

p = (-1± 5 )/ 2

Since p > 0,  we must  have p = (-1+ 5 )/2  (the  recipro -

cal  of  the  golden  ratio;  hence  Kleber's  coinage

"goldbug").

Thus, a particle  added to  the  system  at  1 

escapes to  infinity  with  probability  0, 

gets  absorbed  at  -1 with  probability  p = (-1+ 5 )/2  Å

.618, 

and gets  absorbed  at  0 with  probability  1-p=p2Å .382.

Read the  first  four  pages of

 ht t p:/ / people.br andeis.edu/ ~kleber / Paper s/ r ot or .pdf

for  a  nice  description  of  what's  going  on  with  the

rotor-router  simulation  of  the  walk.

If  we let  N(t) be the  number of  times,  during  the  first

t runs, that  the  rotor-walk  (with  all rotors  initially  point -

ing  rightward)  started  from  1 gets  absorbed  at  -1

(rather  than  0),  then  it  can be shown that  N(t)  equals

[p(t+1)],  the  greatest  integer  less  than  or  equal  to

p(t+1).  From  this  it  follows  that  the  difference

between  N(t)/ t  (the  empirical  rotor-router  estimate  of

the  probability  of  absorption  at  -1)  and p (the  exact

value of  this  probability)  falls  off  like  1/ t.  (Recall that

for  true  random simulation,  the  corresponding  discrep -

ancy drops  off  only like  1/ t .)

Can we do better  than  O(1/ t)?  Strange  but  true:  We

can!  Stay  tuned...

Rotor-routing on infinite graphs

Lec08.nb   35



Rotor-routing on infinite graphs

Prologue

For  the  Goldbug walk, the  set  of  sites  is  infinite,  "but

not  very".   Specifically,  if  you do random Goldbug walk,

the  probability  of  visiting  infinitely  many sites  is  0;

and if  you do  rotor-router  Goldbug walk  with  lots  of

bugs, only one of  the  bugs can wander  off  to  infinity.

That's  because the  walk is biased to  the  left.

But  what  about  rightward-biased  walks  on {0,1,2,3,...}

in  which  you expect  to  wander  off  to  infinity  lots  of

t imes?
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A rightward-biased walk on N

Example: p0,0= 1 (i.e., 0  is  an absorbing  site),  and pi ,i -1=
1
3

and pi ,i +1= 2
3

for  all i > 0.  If  we start  at  1, the  probabil -

ity  p that  we'll  eventually  hit  0  is  1/2  (recall  our  ear -

lier  analysis  of  biased  random walk).   Can we do  this

with  rotor-routing?

Yes: At  each site  k with  k > 0, send 

the  1st particle  to  k+1, 

the  2nd to  k-1,

the  3rd  to  k+1, 

the  4th  to  k+1,

the  5th  to  k-1,

the  6th  to  k+1,

etc.:  

1 ®2®3®4®5®6®... (escape)

1®0 (absorption)

1®2®1®2®3®2®3®4®3®... (escape)

1®0 (absorption)

1®2®1®2®3®2®3®4®3®... (escape)

...

Why        does         it    make         sense          to     play        this        game?
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Why        does         it    make         sense          to     play        this        game?

What  does it  mean to  say "the  state  of  the  rotors  at

time  infinity"?

This  only  makes sense if  each site  has been visited  a

finite  number  of  times  (for  then  we can define  the

state  of  the  rotor  at  time  infinity  as the  state  of  the

rotor  after  the  last  time  it  changed and forever  after).

But  how do we know each site  gets  visited  only a finite

number of  times  as the  particle  wanders off   to  infin -

it y?

Insight:  if  there  were  some site  that  got  visited

infinitely  often,  then  so would each of  its  neighbors,

and so would each of  their  neighbors;  but  then  0 would

get  visited,  so the  particle  wouldn't  wander off  to  infin -

ity  after  all!

Why        does         the       game         give        the       right         answer?

Once again, the  trick  is  to  assign a numerical  value to

the  rotor-configuration.   See   ht t p:/ / j amespr op-

p.or g/ 584/ bugs.pdf  for  details.  
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Rotor-router walk in Z2

Consider random walk on {( i,j ):  i, j  in Z} with  px ,y= 1
4

 if

y-x=(1,0), (0,1),  (-1,0),  or  (0,-1)  and px ,y  = 0  otherwise

(two-dimensional  random walk as discussed  above).  As

we saw above, this  random walk  is  recurrent,  so that

with  probability  1, a  walker  who starts  at  (0,0)  will

return  to  (0,0),  and indeed  return  infinitely  often,  and

indeed visit  every  site  in Z2 infinitely  often.

What  is  the  probability  that  a  random  walker  who

starts  at  (0,0)  will  visit  (1,0) before  returning  to  (0,0)?

The  answer is  1
2

, and we will  see an (incomplete)  proof

of  this  in a few  weeks.

What  is  the  probability  that  a  random  walker  who

starts  at  (0,0)  will  visit  (1,1) before  returning  to  (0,0)?

This  problem  is  much harder;  it  turns  out  that  the

answer is Π

8
 .

We can quasirandomize this  walk by using rotors  at  the

sites  in Z2  to  decide  where  the  walker  goes next.   See

the  "2-D  Walk"  mode of  the  Canary-Wong applet .)

If  we let  N(t) be the  number of  times,  during  the  first

t runs, that  the  rotor-walk  (with  all rotors  initially  point -

ing  rightward)  started  from  (0,0)  gets  absorbed  at

(1,1) (rather  than  (0,0)),  then  it  can be shown that  N(t-

)/ t  (the  empirical  rotor-router  estimate  of  the  proba -

bility  of  absorption  at  (1,1)) approaches Π

8
 (the  exact

value of  this  probability),  and that  the  difference  falls

off  at  least  as fast  as (log t)/ t. 

Can we do  better  than  O((log  t)/ t)?  I  don't  know; I

have a  method  that  (for  t  up  to  100,000)  satisfies

| N(t)/ t  -  Π

8
|  < 1/ t1.5, but  I  have no proof  that  it  works

for  larger  t,  nor  any heuristic  explanation  of  why the

exponent  should  be  about  1.5 and not  something  else

(larger  or  smaller).

One reason  why  we might  expect  to  do  better  than

(log  t)/ t  is  the  fact  that  the  behavior  of  the  hitting

sequence (i.e.,  the  sequence whose nth  term  is  1 or  0

according  to  whether  the  nth  stage  results  in  absorp-

tion  at  (1,1) or  (0,0)),  although  not  periodic,  is  "almost-

periodic",  and  even  appears  to  have  some periodic

subsequences.
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If  we let  N(t) be the  number of  times,  during  the  first

t runs, that  the  rotor-walk  (with  all rotors  initially  point -

ing  rightward)  started  from  (0,0)  gets  absorbed  at

(1,1) (rather  than  (0,0)),  then  it  can be shown that  N(t-

)/ t  (the  empirical  rotor-router  estimate  of  the  proba -

bility  of  absorption  at  (1,1)) approaches Π

8
 (the  exact

value of  this  probability),  and that  the  difference  falls

off  at  least  as fast  as (log t)/ t. 

Can we do  better  than  O((log  t)/ t)?  I  don't  know; I

have a  method  that  (for  t  up  to  100,000)  satisfies

| N(t)/ t  -  Π

8
|  < 1/ t1.5, but  I  have no proof  that  it  works

for  larger  t,  nor  any heuristic  explanation  of  why the

exponent  should  be  about  1.5 and not  something  else

(larger  or  smaller).

One reason  why  we might  expect  to  do  better  than

(log  t)/ t  is  the  fact  that  the  behavior  of  the  hitting

sequence (i.e.,  the  sequence whose nth  term  is  1 or  0

according  to  whether  the  nth  stage  results  in  absorp-

tion  at  (1,1) or  (0,0)),  although  not  periodic,  is  "almost-

periodic",  and  even  appears  to  have  some periodic

subsequences.
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If  we let  N(t) be the  number of  times,  during  the  first

t runs, that  the  rotor-walk  (with  all rotors  initially  point -

ing  rightward)  started  from  (0,0)  gets  absorbed  at

(1,1) (rather  than  (0,0)),  then  it  can be shown that  N(t-

)/ t  (the  empirical  rotor-router  estimate  of  the  proba -

bility  of  absorption  at  (1,1)) approaches Π

8
 (the  exact

value of  this  probability),  and that  the  difference  falls

off  at  least  as fast  as (log t)/ t. 

Can we do  better  than  O((log  t)/ t)?  I  don't  know; I

have a  method  that  (for  t  up  to  100,000)  satisfies

| N(t)/ t  -  Π

8
|  < 1/ t1.5, but  I  have no proof  that  it  works

for  larger  t,  nor  any heuristic  explanation  of  why the

exponent  should  be  about  1.5 and not  something  else

(larger  or  smaller).

One reason  why  we might  expect  to  do  better  than

(log  t)/ t  is  the  fact  that  the  behavior  of  the  hitting

sequence (i.e.,  the  sequence whose nth  term  is  1 or  0

according  to  whether  the  nth  stage  results  in  absorp-

tion  at  (1,1) or  (0,0)),  although  not  periodic,  is  "almost-

periodic",  and  even  appears  to  have  some periodic

subsequences.
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