
Homeworks

Please make sure  I  return  assignment  #2  and collect

assignment #3  at  the  end of  class!

I  will  try  to  grade  homework  #3  before  Friday  (the

last  day on which  students  can withdraw  from  a course

with  the  grade  of  "W"),  but  I  can't  promise  I'll  be

able  to.   If  you are  considering  withdrawing,  send me

an email, and I'll  make grading  your  assignment by  Fri -

day a higher  priority.

I'll  post  assignment #4  on the  web in the  next  couple

of  days.  It'll  be due on December  6.



Final projects

Deadlines, etc.

If  you haven't  already  done this,  by  Wednesday  email

me a proposal for  your  project!

The  project  is  supposed to  entail  only  about  10 hours

of  work;  don't  choose a topic  that's  too  involved!

Homework  problems  from  the  final  homework  assign-

ment  (to  be posted  in the  next  few  days) are  yet  more

examples of  what  a final  project  could be.

Don't  forget  your  class presentation  is as important  as

your written  submission!

You can use my Mac  (I  also have a tablet  PC that  I

could  bring  in  if  you prefer),  but  I  suggest  that  you

use your  own laptop  if  you have one, and that  you do a

rehearsal  ahead of  time  to  avoid technical  glitches.

Quest ions?
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The  project  is  supposed to  entail  only  about  10 hours

of  work;  don't  choose a topic  that's  too  involved!

Homework  problems  from  the  final  homework  assign-

ment  (to  be posted  in the  next  few  days) are  yet  more

examples of  what  a final  project  could be.

Don't  forget  your  class presentation  is as important  as

your written  submission!

You can use my Mac  (I  also have a tablet  PC that  I

could  bring  in  if  you prefer),  but  I  suggest  that  you

use your  own laptop  if  you have one, and that  you do a

rehearsal  ahead of  time  to  avoid technical  glitches.

Quest ions?

The project  write-ups  are  due on November 29 .

Since  there  are  10 people enrolled  in  the  class,  we'll

need 5  people to  present  on November  29  and 5  more

to  present  on December  6.   You all  should be  pre -

pared to  present  your  work  on either  day.   If  for

some reason you can't  present  on November  29,  you'll

need to  contact  me by email ahead of  time.
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More possible topics

Consider  random  walk  on {0,1,2,3,...}  with  p0,0= 1 and

pi ,i -1 = pi ,i +1 = pi ,i +2 = 1
3

for  all  i > 0.  (An upcoming home-

work  asks you to  show that  the  probability  that  a parti -

cle that  starts  at  1 will  ever  hit  0 is p = 2  -  1.)  Deran-

domize  this  walk  so  that  when  n  particles  are  put

through  the  system  starting  at  1, the  number  that  hit

0  differs  from  np by  no more  than  a constant.   (See

the  "Walk  on finite  graph  C" mode of  the  Canar y-Wong

applet .)

In  a somewhat similar  vein, see ht t p:/ / f acult y.uml.edu-

/jpropp/584/ladders.html  

for  a picture  of  a typical  ladder  graph  and the  deriva -

tion  of  the  governing equations.
Clear@p, q, r, s, tD

Solve@8p == H1 + q + qL � 3, q == H0 + r + sL � 3,
r == H1 + q + tL � 3, q + r � 1, s == r q + q r, t == q q + r r<, 8p, q, r, s, t<D

::p ® -
1

3
, s ® -3 - 2 3 , t ® 2 K2 + 3 O, r ®

1

2
K3 + 3 O, q ®

1

2
K-1 - 3 O>,

:p ®
1

3
, s ® 2 3 - 3, t ® 2 K2 - 3 O, r ®

1

2
K3 - 3 O, q ®

1

2
K 3 - 1O>>

Other  geometries  are  possible  (ladders  built  of  trian -

gles  instead  of  squares,  etc.);  they  all  give  nice

quadratic  irrationals.   Rotor-walk  on  these  graphs

should be susceptible  to  analysis, just  as in the  case of

the  "Goldbugs"  walk (although  the  analysis for  ladder-

graphs is likely  to  be more complicated).
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Other  geometries  are  possible  (ladders  built  of  trian -

gles  instead  of  squares,  etc.);  they  all  give  nice

quadratic  irrationals.   Rotor-walk  on  these  graphs

should be susceptible  to  analysis, just  as in the  case of

the  "Goldbugs"  walk (although  the  analysis for  ladder-

graphs is likely  to  be more complicated).

Diffusion-driven processes

Random walks in Z2  can be used to  "build  things"  in the

plane.  

For  instance,  suppose we have some initial  random color -

ing of  the  cells  of  an n-by-n array,  where  the  "colors"

are  the  numbers 1, 2,  and 3.  We'll  repeatedly  use ran-

dom walks that  start  in the  corners  to  modify  the  color -

ing.  

Call the  northwest  corner,  the  northeast  corner,  and

the  southwest  corner  the  1-corner,  2-corner,  and 3-

corner  respectively.

First  we'll  have color  1 steal  a cell  from  one of  the

other  two  colors.

To do this,  we'll  put  a walker  on the  1-corner  and have

her  do a random walk until  she encounters  a cell  that

isn't  colored  1 (say  its  color  is  c1);  she  changes its

color  to  1.  Let  c1
¢ be the  color  that's  neither  1 nor  c1.

Now put  a walker  on the  c1
¢  corner  and have her  do a

random walk until  she encounters  a cell  that  isn't  col-

ored  c1
¢  (say its  color  is  c2);  she changes its  color  to

c1
¢.  Let  c2

¢ be the  color  that's  neither  c1
¢ nor  c2.

Now put  a walker  on the  c2
¢ corner  and have her  do a

random walk until  she encounters  a cell  that  isn't  col-

ored  c2
¢  (say its  color  is  c3);  she changes its  color  to

c2
¢.  Let  c3

¢ be the  color  that's  neither  c2
¢ nor  c3.

Et c.

What  do you expect  to  happen?

Lec09.nb   5



Random walks in Z2  can be used to  "build  things"  in the

plane.  

For  instance,  suppose we have some initial  random color -

ing of  the  cells  of  an n-by-n array,  where  the  "colors"

are  the  numbers 1, 2,  and 3.  We'll  repeatedly  use ran-

dom walks that  start  in the  corners  to  modify  the  color -

ing.  

Call the  northwest  corner,  the  northeast  corner,  and

the  southwest  corner  the  1-corner,  2-corner,  and 3-

corner  respectively.

First  we'll  have color  1 steal  a cell  from  one of  the

other  two  colors.

To do this,  we'll  put  a walker  on the  1-corner  and have

her  do a random walk until  she encounters  a cell  that

isn't  colored  1 (say  its  color  is  c1);  she  changes its

color  to  1.  Let  c1
¢ be the  color  that's  neither  1 nor  c1.

Now put  a walker  on the  c1
¢  corner  and have her  do a

random walk until  she encounters  a cell  that  isn't  col-

ored  c1
¢  (say its  color  is  c2);  she changes its  color  to

c1
¢.  Let  c2

¢ be the  color  that's  neither  c1
¢ nor  c2.

Now put  a walker  on the  c2
¢ corner  and have her  do a

random walk until  she encounters  a cell  that  isn't  col-

ored  c2
¢  (say its  color  is  c3);  she changes its  color  to

c2
¢.  Let  c3

¢ be the  color  that's  neither  c2
¢ nor  c3.

Et c.

What  do you expect  to  happen?

6   Lec09.nb



Random walks in Z2  can be used to  "build  things"  in the

plane.  

For  instance,  suppose we have some initial  random color -

ing of  the  cells  of  an n-by-n array,  where  the  "colors"

are  the  numbers 1, 2,  and 3.  We'll  repeatedly  use ran-

dom walks that  start  in the  corners  to  modify  the  color -

ing.  

Call the  northwest  corner,  the  northeast  corner,  and

the  southwest  corner  the  1-corner,  2-corner,  and 3-

corner  respectively.

First  we'll  have color  1 steal  a cell  from  one of  the

other  two  colors.

To do this,  we'll  put  a walker  on the  1-corner  and have

her  do a random walk until  she encounters  a cell  that

isn't  colored  1 (say  its  color  is  c1);  she  changes its

color  to  1.  Let  c1
¢ be the  color  that's  neither  1 nor  c1.

Now put  a walker  on the  c1
¢  corner  and have her  do a

random walk until  she encounters  a cell  that  isn't  col-

ored  c1
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Et c.

What  do you expect  to  happen?
n := 64

Board = Table@RandomInteger@81, 3<D, 8n<, 8n<D;

MatrixPlot@Board - 2D
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1 20 40 64

1

20
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Revise@i_D := Module@8row, col, newrow, newcol, j<, 8row, col< = 881, 1<, 81, n<, 8n, 1<<
@@iDD;

While@Board@@row, colDD � i ,
8newrow, newcol< = 8row, col< + 881, 0<, 8-1, 0<, 80, 1<, 80, -1<<

@@RandomInteger@81, 4<DDD; If@newrow ³ 1 && newrow £ n && newcol ³ 1 && newcol £ n,
8row, col< = 8newrow, newcol<DD; j = Board@@row, colDD; Board@@row, colDD = i; Return@jDD

Compete@n_D :=

Module@8i = 1, j, m<, For@m = 1, m £ n, m++, j = Revise@iD; i = 6 - i - jD; Return@BoardDD

Compete@10 000D;
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MatrixPlot@Board - 2D
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Do the  three  regions  stabilize,  with  interfaces  whose

fluctuations  are  small as a function  of  n (so that  most

cells  of  the  grid  are  either  nearly-certain-to-be-1's,

nearly-certain-to-be-2's,  or  nearly-certain-to-be-3's?

Do the  interfaces  meet  at  120 degree  angles?

Ask me in about  three  years!

A  simpler  version  of  this  process  that  has been stud -

ied is Internal  Diffusion-Limited  Aggregation,  or  Inter -

nal DLA.

In  this  stochastic  model, we start  with  all  of  the  cells

of  Z2  colored  white.   We  repeatedly  let  a walker  leave

(0,0)  until  she  encounters  a white  square;  she  turns

the  white  square black  and starts  again from  (0,0).
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A simpler  version  of  this  process  that  has been stud -

ied is Internal  Diffusion-Limited  Aggregation,  or  Inter -

nal DLA.

In  this  stochastic  model, we start  with  all  of  the  cells

of  Z2  colored  white.   We  repeatedly  let  a walker  leave

(0,0)  until  she  encounters  a white  square;  she  turns

the  white  square black  and starts  again from  (0,0).
n := 64

IDLABoard = Table@0, 8n<, 8n<D;

Grow@D := Module@8row, col, newrow, newcol, j<, 8row, col< = 8Floor@n � 2D, Floor@n � 2D<; While@
IDLABoard@@row, colDD � 1 , 8newrow, newcol< = 8row, col< + 881, 0<, 8-1, 0<, 80, 1<, 80, -1<<

@@RandomInteger@81, 4<DDD; If@newrow ³ 1 && newcol £ n && newrow ³ 1 && newcol £ n,
8row, col< = 8newrow, newcol<DD; IDLABoard@@row, colDD = 1D

Do@Grow@D, 82000<D

MatrixPlot@IDLABoard, ColorFunction ® "Monochrome"D
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It's  been proved  by  Jerison  and Levine and Sheffield

that  as an IDLA  blob  gets  bigger  and bigger,  it  gets

rounder  and rounder.
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It's  been proved  by  Jerison  and Levine and Sheffield

that  as an IDLA  blob  gets  bigger  and bigger,  it  gets

rounder  and rounder.

If  we use rotor-walk  instead  of  random walk,  we get

even rounder  blobs  (as  proved  by  Levine  and Peres),

and the  coloring  of  the  cells  shows beautiful  patterns

that  nobody understands  yet.   Run the  2-D  Aggrega -

tion  Mode of

ht t p:/ / www.cs.uml.edu/ ~j pr opp/ r ot or -r out er -model/

to  see what  this  looks like  dynamically,  and look at  the

pictures  at  ht t p:/ / r ot or -r out er .mpi-inf .mpg.de/  to  see

what  rotor-router  aggregation  blobs  look  like  after

they  have grown to  occupy millions  or  even billions  of

cells in the  grid.
Clear@nD
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Knowing when to stop

Total variation distance

We know that  if  P is the  transition  matrix  of  a regular

Markov  chain,  then  Pn®W  as n®¥,  where  W  is  the

square matrix  each of  whose rows  is  the  unique proba -

bility  vector  w that  satisfies  wP = w (the  stationary

probability  distribution  for  the  Markov  chain).

How quickly?

Note  that  the  i,j  th  entry  of  Pn  is  the  probability,  if

you start  in state  i, that  you're  in state  j  after  exactly

n steps.

That  is, the  i th  row of  Pn gives the  probability  distribu -

tion  that  governs  where  you are  after  n steps,  if  you

started  in state  i .

(Special  case: If  u is the  row-vector  with  1 in the  

i  th  position  and with  0  everywhere  else,  then  uPn  is

the  i th  row of  Pn.)

So if  we knew how quickly  Pn goes to  W , we'd  know how

quickly  uPn goes to  w, and vice versa.

Example: Random walk on a path  of  length  3, with  semi-

reflecting  endpoints.
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Example: Random walk on a path  of  length  3, with  semi-

reflecting  endpoints.
SR3 = 881 � 2, 1 � 2, 0<, 81 � 2, 0, 1 � 2<, 80, 1 � 2, 1 � 2<<;

MatrixForm@SR3D

1

2

1

2
0

1

2
0

1

2

0
1

2

1

2

Eigenvalues@SR3D

:1, -
1

2
,

1

2
>

Since there  are  no repeated  eigenvalues, the  matrix  is

definitely  diagonalizable.
EV = Eigenvectors@SR3D

1 1 1
1 -2 1

-1 0 1

(Note  that  Mat hemat ica  has  different  cell-formats

for  expressions  like  this,  such  as StandardForm  and

TraditionalForm.   You can convert  between  them  with

Cell ® Convert  To ® ...  Try  it:
EV = Eigenvectors@SR3D

881, 1, 1<, 81, -2, 1<, 8-1, 0, 1<<

We  can make the  change of  format  permanent  with

Mat hemat ica ® Preferences  ® Format  type  of  new out -

put  cells.)
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EVInverse = Inverse@%D

1

3

1

6
-

1

2

1

3
-

1

3
0

1

3

1

6

1

2

Diag = EV.SR3.EVInverse

1 0 0

0 -
1

2
0

0 0
1

2

EVInverse.Diag.EV

1

2

1

2
0

1

2
0

1

2

0
1

2

1

2

MatrixPower@SR3, 5D

11

32

11

32

5

16

11

32

5

16

11

32

5

16

11

32

11

32

MatrixPower@EVInverse.Diag.EV, 5D

11

32

11

32

5

16

11

32

5

16

11

32

5

16

11

32

11

32

EVInverse.MatrixPower@Diag, 5D.EV

11

32

11

32

5

16

11

32

5

16

11

32

5

16

11

32

11

32

EVInverse.MatrixPower@Diag, nD.EV

1

3
+ 2-n-1 +

1

3
H-1Ln 2-n-1 1

3
-

1

3
J-

1

2
N
n 1

3
- 2-n-1 +

1

3
H-1Ln 2-n-1

1

3
-

1

3
J-

1

2
N
n 1

3
+

1

3
H-1Ln 21-n 1

3
-

1

3
J-

1

2
N
n

1

3
- 2-n-1 +

1

3
H-1Ln 2-n-1 1

3
-

1

3
J-

1

2
N
n 1

3
+ 2-n-1 +

1

3
H-1Ln 2-n-1
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MatrixPower@SR3, nD

1

3
+ 2-n-1 +

1

3
H-1Ln 2-n-1 1

3
-

1

3
J-

1

2
N
n 1

3
- 2-n-1 +

1

3
H-1Ln 2-n-1

1

3
-

1

3
J-

1

2
N
n 1

3
+

1

3
H-1Ln 21-n 1

3
-

1

3
J-

1

2
N
n

1

3
- 2-n-1 +

1

3
H-1Ln 2-n-1 1

3
-

1

3
J-

1

2
N
n 1

3
+ 2-n-1 +

1

3
H-1Ln 2-n-1

Note  that  Mat hemat ica  does  at  least  one unhelpful

thing:  it  has expressions  like  the  
H-1Ln 21-n

in  the  middle  entry  that  hide  the  fact  that  the  rele -

vant eigenvalue is  -1/2.

Every entry  of  Pn is of  the  form

(* ) 1
3

 + A ( 1
2

) n + B (- 1
2

) n

for  constants  A, B, so we can see that  as n®¥, Pn con-

verges to
1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

exponent ially.

It  is  also easy to  see that  for  any u, the  three  entries

of  uPn are  all  of  the  form  (*),  and hence converge to  w

exponentially  fast.

It  turns  out  that  a good way to  measure the  distance

between  uPn and w is not  the  usual

"ell-two"  distance

d2((a,b,c),(d,e,f )) = Ha - d L2 + Hb - eL2 + Hc - f L2

but  instead  the  "ell-one"  distance

d1((a,b,c),(d,e,f )) = a - d + b - e + c - f

or  rather  half  of  the  ell-one  distance,  which  is  called

the  total         variation                distance  between  two  probability

dist r ibut ions:

| | (a,b,c)-(d,e,f )| | TV = 1
2

(| a-d| +| b-e| +| c- f | ).
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It  turns  out  that  a good way to  measure the  distance

between  uPn and w is not  the  usual

"ell-two"  distance

d2((a,b,c),(d,e,f )) = Ha - d L2 + Hb - eL2 + Hc - f L2

but  instead  the  "ell-one"  distance

d1((a,b,c),(d,e,f )) = a - d + b - e + c - f

or  rather  half  of  the  ell-one  distance,  which  is  called

the  total         variation                distance  between  two  probability

dist r ibut ions:

| | (a,b,c)-(d,e,f )| | TV = 1
2

(| a-d| +| b-e| +| c- f | ).

As  you'll  show on the  homework,  if  Π  and Π¢  are  two

probability  distributions  on a  finite  set  S,  then  the

total  variation  distance

|| Π -  Π¢| | TV = 1
2

 Ús in S  | Π(s) -  Π¢(s)|

is  also equal to  the  maximum of  | Π(E)  -  Π¢(E)|  over  all

subsets  E  of  S;  that  is,  it's  the  answer to  the  ques-

tion  "If  we're  computing  the  probability  of  an event,

how much might  it  matter  whether  we use Π or  Π¢?"
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As  you'll  show on the  homework,  if  Π  and Π¢  are  two

probability  distributions  on a  finite  set  S,  then  the

total  variation  distance

|| Π -  Π¢| | TV = 1
2

 Ús in S  | Π(s) -  Π¢(s)|

is  also equal to  the  maximum of  | Π(E)  -  Π¢(E)|  over  all

subsets  E  of  S;  that  is,  it's  the  answer to  the  ques-

tion  "If  we're  computing  the  probability  of  an event,

how much might  it  matter  whether  we use Π or  Π¢?"

Going back  to  our  example,  for  any initial  distribution

u, each entry  of  the  vector  uPn-w can be written  in the

f or m

A ( 1
2

) n + B (- 1
2

) n

and hence  is  bounded  by  (| A| +| B| )2-n.   This  implies

that  the  total  variation  distance  between  uPn  and w

goes to  0 like  C2-n for  some C.

More  generally,  if  we have a regular  Markov  chain on a

finite  state  space with  transition  matrix  P and station -

ary  distribution  w, and u is an arbitrary  initial  distribu -

tion,  the  total  variation  distance  between  uPn  and w

goes to  0 like  r n, where  

r  = max{| Λ|:  Λ 1  is an eigenvalue of  P} < 1.

If  we take  an n  such that  r n Å  1
2

, it  may not  look like

we've  made much progress  towards  stationarity,  but  if

we take  twice  as many steps,  we get  r 2 n Å  1
4

, and if  we

take  ten  times  as many steps,  we get  r 10n Å  1
1024

, which

means we're  quite  close to  stationarity  (unless our  mul-

tipliers  A,B,... are  huge, which  isn't  likely,  since all  the

numbers in sight  are  probabilities  and hence between  0

and 1); so in some sense, the  first  n  for  which  r n ²  1
2

measures the  time  at  which  we first  begin to  measur-

ably  approach  equilibrium,  and if  we take  multiples  of

that  n, we get  quite  close to  equilibrium.   But  there's

nothing  special about  the  number 1
2

.
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numbers in sight  are  probabilities  and hence between  0

and 1); so in some sense, the  first  n  for  which  r n ²  1
2

measures the  time  at  which  we first  begin to  measur-

ably  approach  equilibrium,  and if  we take  multiples  of

that  n, we get  quite  close to  equilibrium.   But  there's

nothing  special about  the  number 1
2

.

The  mixing  time  for  a regular  Markov  chain  is  often

defined  as the  smallest  n such that

Λ n ²  e-1 for  all eigenvalues Λ 1.

This  notion  of  mixing time  has some defects  (it  underes -

timates  the  amount of  time  it  takes  for  the  total  varia -

tion  distance  to  get  really  small), but  it's  good for  cer -

tain  sorts  of  qualitative  predictions.

Example: Unbiased  random walk  on the  vertices  of  an

m-gon, or  if  you prefer,  on Z/ mZ.

Here's  the  matrix  P for  random walk on the  5-gon:
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Example: Unbiased  random walk  on the  vertices  of  an

m-gon, or  if  you prefer,  on Z/ mZ.

Here's  the  matrix  P for  random walk on the  5-gon:
MatrixForm@880, 1 � 2, 0, 0, 1 � 2<, 81 � 2, 0, 1 � 2, 0, 0<,

80, 1 � 2, 0, 1 � 2, 0<, 80, 0, 1 � 2, 0, 1 � 2<, 81 � 2, 0, 0, 1 � 2, 0<<D
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Claim: The  eigenvalues are  (Ζ  + Ζ-1)/2  where  Ζ  ranges

over  the  m mth  roots  of  1 in C.  (These  eigenvalues are

real,  since  Ζ  and Ζ-1 are  complex  conjugates;  indeed,

writing  Ζ = exp(2 Πij / m) with  0² j ² m-1, we get  (Ζ + Ζ-1)/ 2

= cos 2Πj / m.)

Proof:  Check that  the  column vector  u with  components

Ζ1, Ζ2, Ζ3, ..., Ζm is  an eigenvector  of  the  matrix  P with

eigenvalue (Ζ + Ζ-1)/2.   Indeed,  if  the  kth  component of

u is  Ζk , the  kth  component of  Pu is  (1/2) Ζk +1+(1/ 2)Ζk -1;

the  eigenvector  equation Pu = Λu turns  into

(1/ 2)Ζk +1+(1/ 2)Ζk -1 = Λ Ζk  for  all k,

and dividing  the  equation by Ζk  gives just

(1/ 2)Ζ+1+(1/ 2)Ζ-1 = Λ,

so that  Λ = (Ζ + Ζ-1)/ 2.
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Claim: The  eigenvalues are  (Ζ  + Ζ-1)/2  where  Ζ  ranges

over  the  m mth  roots  of  1 in C.  (These  eigenvalues are

real,  since  Ζ  and Ζ-1 are  complex  conjugates;  indeed,

writing  Ζ = exp(2 Πij / m) with  0² j ² m-1, we get  (Ζ + Ζ-1)/ 2

= cos 2Πj / m.)

Proof:  Check that  the  column vector  u with  components

Ζ1, Ζ2, Ζ3, ..., Ζm is  an eigenvector  of  the  matrix  P with

eigenvalue (Ζ + Ζ-1)/2.   Indeed,  if  the  kth  component of

u is  Ζk , the  kth  component of  Pu is  (1/2) Ζk +1+(1/ 2)Ζk -1;

the  eigenvector  equation Pu = Λu turns  into

(1/ 2)Ζk +1+(1/ 2)Ζk -1 = Λ Ζk  for  all k,

and dividing  the  equation by Ζk  gives just

(1/ 2)Ζ+1+(1/ 2)Ζ-1 = Λ,

so that  Λ = (Ζ + Ζ-1)/ 2.

Now let's  compute the  mixing time.

Take the  case where  m is odd (this  rules  out  the  annoy-

ing eigenvalue -1); write  m = 2k+1.  Then the  eigenvalue

Λ 1  for  which | Λ|  is largest  is 

Λ = cos 2Πk/ (2k+1) = cos Π- Π

2 k +1
 = -  cos Π

2 k +1
, with  | Λ|  =

cos Π

2 k +1
 Å  1 -  x 2/2  Å  exp(- x 2/2)   with   x  = Π

2 k +1
.  So

the  error  between  uPn and w goes like  [exp(- x 2/ 2)] n =

exp(-nx2/2),  and starts  to  equilibrate  when nx2/2  Å  1.

Ignoring  constants,  we have x 2  Å  1/ k 2,  and equilibra -

tion  happens when nx2  Å  1, i.e., n � k 2  Å  1, i.e., when n Å

k 2Å  m2.

That  is,  the  time  it  takes  for  our  distribution  to  begin

to  approach  stationarity  is  about  m2,  where  m is  the

size of  our system.

Note  that  O(m2) is  also the  time  it  typically  takes  for

a particle  doing  random  walk  on the  m-gon  to  first

reach  the  other  side.  (Turn  this  into  a one-dimensional

random walk with  a walker  who starts  in the  middle  and

with  two  targets,  both  k  steps  away, located  in  oppo-

site  directions.)
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Note  that  O(m2) is  also the  time  it  typically  takes  for

a particle  doing  random  walk  on the  m-gon  to  first

reach  the  other  side.  (Turn  this  into  a one-dimensional

random walk with  a walker  who starts  in the  middle  and

with  two  targets,  both  k  steps  away, located  in  oppo-

site  directions.)

It  makes intuitive  sense that  the  time  it  takes  for  the

Markov  chain to  begin to  equilibrate  should be roughly

the  same order  of  magnitude  as  the  time  it  takes

before  it's  likely  that  the  walker  has gotten  to  the

opposite  side.

If  our  ergodic  chain is  not  regular,  then  we have (real

or  complex)  eigenvalues other  than  1 that  lie  on the

unit  circle  in the  complex  plane.  In  this  case, Pn  does

not  go to  W .  However,  we can introduce  a "lazy"  ver -

sion of  the  chain that  at  each step  tosses  a fair  coin

and stays  put  if  the  coin comes up heads and advances

according  to  the  transition  matrix  P is  the  coin comes

up tails.   The  transition  matrix  for  this  lazy  chain is P'

= 1
2

(I  + P), so its  eigenvalues are  of  the  form  Λ'  = 1
2

(1 +

Λ)  where  Λ ranges  over  the  eigenvalues of  P.  Since  Λ

lies  in  the  disk  of  radius  1 centered  at  0  in  the  com-

plex  plane, Λ'  lies  in the  disk  of  radius  1
2

centered  at  1
2

,

and if  we omit  the  eigenvalue 1, we see that  all  the

other  eigenvalues lie  strictly  inside  the  unit  disk.   This

is good news: it  means that  we get  exponential  conver-

gence.

Alternatively,  recall  that  if  P is ergodic,  1
2

(I  + P)

is regular.
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It  makes intuitive  sense that  the  time  it  takes  for  the

Markov  chain to  begin to  equilibrate  should be roughly

the  same order  of  magnitude  as  the  time  it  takes

before  it's  likely  that  the  walker  has gotten  to  the

opposite  side.

If  our  ergodic  chain is  not  regular,  then  we have (real

or  complex)  eigenvalues other  than  1 that  lie  on the

unit  circle  in the  complex  plane.  In  this  case, Pn  does

not  go to  W .  However,  we can introduce  a "lazy"  ver -

sion of  the  chain that  at  each step  tosses  a fair  coin

and stays  put  if  the  coin comes up heads and advances

according  to  the  transition  matrix  P is  the  coin comes

up tails.   The  transition  matrix  for  this  lazy  chain is P'

= 1
2

(I  + P), so its  eigenvalues are  of  the  form  Λ'  = 1
2

(1 +

Λ)  where  Λ ranges  over  the  eigenvalues of  P.  Since  Λ

lies  in  the  disk  of  radius  1 centered  at  0  in  the  com-

plex  plane, Λ'  lies  in the  disk  of  radius  1
2

centered  at  1
2

,

and if  we omit  the  eigenvalue 1, we see that  all  the

other  eigenvalues lie  strictly  inside  the  unit  disk.   This

is good news: it  means that  we get  exponential  conver-

gence.

Alternatively,  recall  that  if  P is ergodic,  1
2

(I  + P)

is regular.

Stopping rules

We've  seen that  if  you just  run  the  chain for  a preset

number of  steps,  you get  exponentially  close to  the  sta -

tionary  distribution  (with  the  caveat  that  if  one of  the

eigenvalues other  than  1 has magnitude  close to  1, then

it  could  take  a very  long time  for  this  exponential  law

to  kick  in).

What  if  you run  the  chain  for  a variable  number  of

steps,  in some adaptive  fashion?
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What  if  you run  the  chain  for  a variable  number  of

steps,  in some adaptive  fashion?

Then  it's  possible  that  you might  hit  the  stationary

measure on the  nose.

Example 1: Lazy random walk on the  vertices  of  the  n-

dimensional  cube.   (The  vertices  correspond  to  bit-

strings  of  length  n,  and two  vertices  are  adjacent  if

the  corresponding  bit-strings  disagree  in  exactly  one

locat ion.)

Toss a fair  coin.  If  it's  heads, stay  put;  if  it's  tails,

choose randomly  from  one of  the  n edges incident  to

the  vertex  you  currently  occupy,  and  travel  in  that

direction.  

In  terms  of  bit-strings:

Toss  a coin.   If  it's  heads,  do  nothing;  if  it's  tails,

choose randomly  from  one of  the  n positions  in the  cur -

rent  bit-string,  and complement that  bit.

Equivalent ly:

Choose randomly  from  one of  the  n positions,  and then

toss  a penny; if  it's  heads, do nothing,  and if  it's  tails,

complement that  bit.

Equivalently:  

Choose randomly  from  one of  the  n positions,  and then

toss  a nickel;  if  it's  heads, replace  that  bit  by a 0,  and

if  it's  tails,  replace  that  bit  by a 1.
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Toss a fair  coin.  If  it's  heads, stay  put;  if  it's  tails,

choose randomly  from  one of  the  n edges incident  to

the  vertex  you  currently  occupy,  and  travel  in  that

direction.  

In  terms  of  bit-strings:

Toss  a coin.   If  it's  heads,  do  nothing;  if  it's  tails,

choose randomly  from  one of  the  n positions  in the  cur -

rent  bit-string,  and complement that  bit.

Equivalent ly:

Choose randomly  from  one of  the  n positions,  and then

toss  a penny; if  it's  heads, do nothing,  and if  it's  tails,

complement that  bit.

Equivalently:  

Choose randomly  from  one of  the  n positions,  and then

toss  a nickel;  if  it's  heads, replace  that  bit  by a 0,  and

if  it's  tails,  replace  that  bit  by a 1.

What's  good about  this  last  way of  running the  Markov

chain  (tossing  a nickel  instead  of  tossing  a penny) is

that  there's  an obvious rule  for  when to  stop:  As soon

as you've  picked  (and re-randomized)  every  position  in

the  bit-string,  it's  as likely  to  be any bit-string  as any

other,  so  you can stop;  the  state  at  that  (random!)

time  is  uniform  on the  set  of  bit-strings  of  length  n

(that  is, it  is governed by the  stationary  probability  dis-

tribution  exact ly, without  any error).

Lec09.nb   23



What's  good about  this  last  way of  running the  Markov

chain  (tossing  a nickel  instead  of  tossing  a penny) is

that  there's  an obvious rule  for  when to  stop:  As soon

as you've  picked  (and re-randomized)  every  position  in

the  bit-string,  it's  as likely  to  be any bit-string  as any

other,  so  you can stop;  the  state  at  that  (random!)

time  is  uniform  on the  set  of  bit-strings  of  length  n

(that  is, it  is governed by the  stationary  probability  dis-

tribution  exact ly, without  any error).

(Moral:  Sometimes  it  helps to  think  of  a Markov  chain

in  a  different  way  that  gives  the  same transition

pr obabilit ies.)

Note  that  the  time  it  takes  before  this  stopping  rule

delivers  an output  is  a random variable  of  the  coupon-

collector  kind:  at  each step,  we pick  one of  the  n  posi-

tions  uniformly  at  random,  and  we  stop  when we've

picked  each of  them  at  least  once.  This  is the  same as

the  question  "How many times  do you have to  roll  an n-

sided die  before  each of  its  faces  has come up at  least

once?"  As  we saw in an earlier  lecture,  if  we call  this

random time  Τ, then  

Prob(Τ > n ln  n + cn)  ²  e-c, so we say it  takes  on the

order  of   n ln n  steps  for  our  stopping  rule  to  give us

an output  governed by the  stationary  distribution.
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Note  that  the  time  it  takes  before  this  stopping  rule

delivers  an output  is  a random variable  of  the  coupon-

collector  kind:  at  each step,  we pick  one of  the  n  posi-

tions  uniformly  at  random,  and  we  stop  when we've

picked  each of  them  at  least  once.  This  is the  same as

the  question  "How many times  do you have to  roll  an n-

sided die  before  each of  its  faces  has come up at  least

once?"  As  we saw in an earlier  lecture,  if  we call  this

random time  Τ, then  

Prob(Τ > n ln  n + cn)  ²  e-c, so we say it  takes  on the

order  of   n ln n  steps  for  our  stopping  rule  to  give us

an output  governed by the  stationary  distribution.

Stopping rules and total variation distance

It's  can be shown that  if  we have a stopping  rule,  then

| | uPn-w| | TV  is  bounded above by  the  probability  that

someone who runs  the  stopping  rule  will  still  be  going

(i.e., will  not  yet  have stopped)  after  n  steps.   (See sec-

tion  6.4 of  Levin, Peres, and Wilmer's  book.)

So if  we can show that  this  probability  is  small (as in

our estimate  Prob(Τ > n ln n + cn) ²  e-c), then  we have a

bound on the  total  variation  distance  between  uPn  and

w.
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Shuffling cards

In  a riffle  shuffle,  we divide  a deck  of  cards  into  two

equal (or  roughly  equal) stacks  and then  combine the

stacks,  preserving  the  order  of  the  cards  in each stack

but  interleaving  the  two  stacks  in  a somewhat  random

way.

In  a "backward  riffle  shuffle"  (not  actually  used in casi-

nos, but  easier  to  analyze!), we randomly  pull  apart  our

deck  into  two  stacks  and then  put  one stack  atop  the

ot her .

More  specifically,  we assign each  card  independently

(with  probability  1/2,1/2  respectively)  to  either  the

left  stack  or  the  right  stack,  and then  put  the  left

stack  on top  of  the  right  stack.

How many backward  riffle  shuffles  does it  take  to  ran-

domize a deck of  52  cards?

Imagine  that  when  you  backward  riffle  shuffle  the

deck,  you randomly  mark  each  card  with  a 0  or  a 1;

then  you toss  a nickel,  putting  the  cards  marked  0 into

the  left  stack  and the  cards  marked  1 into  the  right

stack  if  the  nickel  came up heads, and vice versa if  the

coin came up tails.

You do this  each time  you shuffle,  so that  after  two

shuffles,  each card  is  marked  00,  01, 10, or  11; after

three  shuffles,  each card  is  marked  with  a bit-string

of  length  3; etc.
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Imagine  that  when  you  backward  riffle  shuffle  the

deck,  you randomly  mark  each  card  with  a 0  or  a 1;

then  you toss  a nickel,  putting  the  cards  marked  0 into

the  left  stack  and the  cards  marked  1 into  the  right

stack  if  the  nickel  came up heads, and vice versa if  the

coin came up tails.

You do this  each time  you shuffle,  so that  after  two

shuffles,  each card  is  marked  00,  01, 10, or  11; after

three  shuffles,  each card  is  marked  with  a bit-string

of  length  3; etc.

Note  that  if  after  some number of  shuffles,  two  cards

are  marked  with  different  bit-strings,  then  the  first

has  a  probability  of  1
2

 of  being  above  the  other.

(Proof:  Look  at  the  last  position  in  which  the  bit-

strings  differ;  this  is  the  time  at  which  their  order  in

the  current  deck  got  established.   But  at  that  time,

the  two  stacks  were  randomly  put  one atop  the  other,

according  to  the  toss  of  a nickel.)

In  fact,  it  can be  shown that  when all  52  cards  are

marked  with  different  bit-strings,  each of  the  52!  dif -

ferent  orderings  of  the  cards  are  equally likely.

So, a stopping  rule  would be  "Stop  when all  the  cards

are marked  with  different  bit-strings."
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So, a stopping  rule  would be  "Stop  when all  the  cards

are marked  with  different  bit-strings."

How long will  this  take  to  happen?

An equivalent  model: 52  walkers  start  at  the  root  of  a

binary  tree  (where  each node has an edge marked  0

and an edge marked  1).  At  each node, the  walkers  pro -

ceed to  a random child  of  that  node.  How many levels

do we need to  go down before  all the  walkers  are  at  dif -

ferent  nodes?  (Obviously  at  least  six,  since five  levels

down we have only 32  nodes, which  are  not  enough to

fit  52  > 32  walkers.)

Write  this  random variable  as X.  Note  that,  exploiting

the  recursive  structure  of  the  binary  tree,  we  can

write  the  recursive  relation

X = 1 + max(Y,Z)

where  Y  is the  number of  additional  levels the  walkers

who take  the  0-branch  need to  take  before  they're  all

at  different  nodes, and Z   is  the  number  of  additional

levels  the  walkers  who take  the  1-branch  need to  take

before  they're  all at  different  nodes. 

The  Y and Z   variables  are  just  like  the  X  variable,

except  that  instead  of  starting  with  52  walkers,  they

start  with  r  walkers  and 52- r  walkers,  respectively,

where  r  is  a random integer  distributed  according  to

Binomial(52, 1
2

).
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The  Y and Z   variables  are  just  like  the  X  variable,

except  that  instead  of  starting  with  52  walkers,  they

start  with  r  walkers  and 52- r  walkers,  respectively,

where  r  is  a random integer  distributed  according  to

Binomial(52, 1
2

).

Applying  this  down the  tree  recursively,  we get  a very

simple way to  simulate  the  X-pr ocess:
Shuffle@n_D := Module@8r<,

If@n £ 1, 0, r = RandomInteger@BinomialDistribution@n, 1 � 2DD;
1 + Max@Shuffle@rD, Shuffle@n - rDDDD

N@Sum@Shuffle@52D, 8k, 1000<D � 1000D

11.74

It  can be shown rigorously  (see e.g. www.dar t mout h.e-

du/ ~chance/ t eaching_aids/ books_ar t icles/ Mann.pdf )

that  the  expected  value  of  this  random  variable  is

given by  a particular  infinite  sum whose value is  about

11.7.

True  casino card-shuffling  is  quite  a bit  less  random

than  a riffle  shuffle  or  a backward  riffle  shuffle.

So, if  you gamble, make sure  the  dealer  shuffles  the

deck  at  least  a dozen times  after  taking  it  out  of  the

box!

Exact sampling
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Exact sampling

The pinned steppingstone model

Recall the  stepping  stone  model (Example 11.12 in Grin-

stead  and Snell):  We  have a 20-by-20  array  of  squares

"with  toroidal  boundary  conditions"  (i.e.,  we glue  the

top  edge to  the  bottom  edge and the  left  edge to  the

right  edge),  where  each  square  is  initially  black  or

white,  and where  at  each step,  we choose a square at

random  and change the  color  of  that  square  to  the

color  of  one of  the  square's  8 neighbors.

This  is  an absorbing  Markov  chain  with  two  absorbing

states  (all-white  and all-black).

To  stop  the  chain  from  being  absorbing,  we can pick

some squares that  must  start         white          and       stay        white  and

some other  squares  that  must  start         black          and       stay

black.   I  call  this  the  "pinned  steppingstone  model";

see Lec05.   (As far  as I'm  aware, nobody's  written  any-

thing  about  this  model in  the  research  literature;  I'm

interested  in understanding  it  better.)

The  new chain  is  not  absorbing,  because  from  any

state  you  can  get  to  the  all-the-squares-that-are-

allowed-to-be-white-are-white  state,  AND  from  any

state  you  can  get  to  the  all-the-squares-that-are-

allowed-to-be-black-are-black  state,  in some finite  num-

ber  of  steps.

These are  r ecur r ent  states  (recall  the  classification  of

states  as transient  versus  recurrent).   More  impor -

tantly,  they  are  universally accessible  recurrent

states:  you can get  to  them  (with  positive  probability)

from  any other  state,  in a finite  number of  steps.
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states  as transient  versus  recurrent).   More  impor -

tantly,  they  are  universally accessible  recurrent

states:  you can get  to  them  (with  positive  probability)

from  any other  state,  in a finite  number of  steps.
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Recall the  stepping  stone  model (Example 11.12 in Grin-

stead  and Snell):  We  have a 20-by-20  array  of  squares

"with  toroidal  boundary  conditions"  (i.e.,  we glue  the

top  edge to  the  bottom  edge and the  left  edge to  the

right  edge),  where  each  square  is  initially  black  or

white,  and where  at  each step,  we choose a square at

random  and change the  color  of  that  square  to  the

color  of  one of  the  square's  8 neighbors.

This  is  an absorbing  Markov  chain  with  two  absorbing

states  (all-white  and all-black).

To  stop  the  chain  from  being  absorbing,  we can pick

some squares that  must  start         white          and       stay        white  and

some other  squares  that  must  start         black          and       stay

black.   I  call  this  the  "pinned  steppingstone  model";

see Lec05.   (As far  as I'm  aware, nobody's  written  any-

thing  about  this  model in  the  research  literature;  I'm

interested  in understanding  it  better.)

The  new chain  is  not  absorbing,  because  from  any

state  you  can  get  to  the  all-the-squares-that-are-

allowed-to-be-white-are-white  state,  AND  from  any

state  you  can  get  to  the  all-the-squares-that-are-

allowed-to-be-black-are-black  state,  in some finite  num-

ber  of  steps.

These are  r ecur r ent  states  (recall  the  classification  of

states  as transient  versus  recurrent).   More  impor -

tantly,  they  are  universally accessible  recurrent

states:  you can get  to  them  (with  positive  probability)

from  any other  state,  in a finite  number of  steps.

The  new chain  is  not  ergodic  either,  but  it  turns  out

that  if  you throw  out  the  transient  states,  the  chain

that  you're  left  with  is ergodic;  this  is  a consequence

of  the  existence  of  universally  accessible  recurrent

st at es.

 

So the  pinned stepping  stone  model, pruned of  its   tran -

sient  states,  is ergodic  and has a unique stationary  mea-

sure Π.

I've  done  simulations  of  a  version  of  this  model,  in

which  the  20-by-20  torus  is  replaced  by  a 21-by-20

cylinder,  the  "colors"  are  0  and 1, all  the  squares  on

the  upper  edge are  pinned at  0,  all  the  squares on the

lower  edge are  pinned at  1, and each site  has only  4

neighbors,  not  8.  Here's  a typical  state:
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00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000010
00000000000000001110
00000000000000000110
00000000000000001110
11110000000000001110
11110000000000000110
10011110000000000100
10111101000000001111
10001101100000000111
10001100100100010111
10001100101101111111
11111100011111111111
11111111011111111111
11111111111111111111

Harmonic functions again

The  preceding  picture  shows clumping: the  state  of  a

site  (0  versus  1) and the  states  of  its  neighbors  are

highly  correlated.   Indeed,  with  high  probability,  there

are  two  large  clumps with  a few  small  islands.   Being

more  quantitative  requires  non-trivial   analysis of  the

stationary  measure Π.  But  there  is  at  least  one asser-

tion  about  Π that  requires  almost  no work.

Claim: Let  s be a particular  square, and let  h(s) be the

probability  (with  respect  to  the  probability  measure Π)

that  square s  has color  1.  Then the  function  h is  har -

monic on the  set  of  squares (that  is,  its  value at  any

square equals the  average of  the   values of  its  neigh-

bors),  leaving aside the  pinned squares.
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Claim: Let  s be a particular  square, and let  h(s) be the

probability  (with  respect  to  the  probability  measure Π)

that  square s  has color  1.  Then the  function  h is  har -

monic on the  set  of  squares (that  is,  its  value at  any

square equals the  average of  the   values of  its  neigh-

bors),  leaving aside the  pinned squares.

Proof:  Look  at  two  successive  moments  in  time,  say

time  n  and time  n+1, where  the  system  is  equilibrium

at  time  n  and hence is  also in equilibrium  at  time  n+1.

The  probability  that  s  has color  1 at  time  n+1 equals

h(s), but  it  also equals 

p a(s)  + (1-p)  h(s),  where  p  is  the  probability  that

square s  gets  recolored  from  time  n to  time  n+1, and

a(s) is the  average of  h(s) over  the  neighbors  of  s.  So 

h(s) = p a(s) + (1-p) h(s)

Subtracting  (1-p) h(s) from  both  sides  and dividing   by

p  gives

h(s) = a(s)

which is what  we needed to  show.

For  the  case of  the  21-by-20  cylinder,  it's  easy to  say

what  h(s)  is:  the  unique harmonic  function  that  takes

the  value 0  at  the  top  and 1 at  the  bottom  is  a linear

function  of  the  vertical  coordinate  of  the  square (and

doesn't  depend on the  horizontal  coordinate  at  all).   So

h(s) is  0  in the  top  row,  1/20   in the  next  row,  2/20  in

the  row  after  that,  and so on, and is  20/20  = 1 in the

final  (21st)  row.
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For  the  case of  the  21-by-20  cylinder,  it's  easy to  say

what  h(s)  is:  the  unique harmonic  function  that  takes

the  value 0  at  the  top  and 1 at  the  bottom  is  a linear

function  of  the  vertical  coordinate  of  the  square (and

doesn't  depend on the  horizontal  coordinate  at  all).   So

h(s) is  0  in the  top  row,  1/20   in the  next  row,  2/20  in

the  row  after  that,  and so on, and is  20/20  = 1 in the

final  (21st)  row.

Already  this  has  a  non-obvious  consequence, namely,

that  the  border  between  the  two  "voting  blocs"  (the

white  bloc  and the  black  bloc)  does  not  stay  poised

halfway  between  the  pinned squares,  but  moves back

and forth  as the  Markov  chain evolves.  That  is, the  sta -

tistical  equilibrium  (aka stationarity)  does not  lead to  a

large-scale   equilibrium  in the  location  of  the  interface

between  the  two  clusters.   Putting  it  differently:

unlike  the  case of  the  three-competing-colors  model

from  the  start  of  the  lecture,  for  which  the  station -

ary  measure appears  to  have the  property  that  most

cells  have a favored  color  that  they  are  almost  certain

to  have, the  stationary  distribution  for  the  pinned step -

ping  stone  model  has  the  property  that  most  cells

spend some time  having each of  the  two  colors.   It's  a

very  different  sort  of  interface.
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