
Exact sampling

The pinned steppingstone model

Recall the  pinned stepping  stone  model I  discussed  at

the  end of  the  last  lecture:  We  have a 21-by-20  cylin -

der,  where  each square  is  initially  colored  0  or  1, all

the  squares on the  upper  edge are  pinned at  0,  all  the

squares on the  lower  edge are  pinned at  1, and at  each

step,  we  choose  a  non-pinned  square  at  random  and

change the  color  of  that  square to  the  color  of  one of

the  square's  4 neighbors.

The  pinned stepping  stone  model, pruned  of  its   tran -

sient  states,  is ergodic  and has a unique stationary  mea-

sure Π.

Here's  a typical  state,  sampled in accordance  with  the

stationary  distribution  Π,  or  rather  a  distribution

Π1,000 ,000  that  is extremely  close but  not  equal to  Π:



00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000010
00000000000000001110
00000000000000000110
00000000000000001110
11110000000000001110
11110000000000000110
10011110000000000100
10111101000000001111
10001101100000000111
10001100100100010111
10001100101101111111
11111100011111111111
11111111011111111111
11111111111111111111

Coupling from the past: an example

(graphics  courtesy  of  David Einstein)

How might  we sample from  Π?

One way is to  do ordinary  pseudorandom simulation  for

a large,  predetermined  number  of  steps  (a million,  say,

as was done for  the  preceding  figure).

Eventually,  the  color  of  a square will  be determined  not

by its  initial  coloring,  nor  by  the  initial  coloring  of  any

of  the  non-pinned  squares,  but  solely  by  our

(randomized)  choices  to  change  the  color  of  THIS

square to  the  color  of  THAT  neighbor,  whose color  was

earlier  changed to  the  color  of  one of  ITS  neighbors,

etc.,  eventually  leading  back  to  one  of  the  pinned

squar es.

Why?

..?..

Look at  the  Markov  chain  in  which  each  square  s  is

assigned not  just  a color  at  time  n, but  a "reason  for

being that  color  at  time  n".

This  "reason"  is  just  another  square,  namely,  the

square  s*  (which  could  be  s  itself)  such  that  our

sequence of  recolorings  forces  the  color  of  s  at  time  n

to  be the  color  of  s*   at  time  0.

If  it  ever  happens that  for  every  non-pinned square s,

s*  is  one of  the  pinned squares, then  this  property  will

hold forever  after.

Consider  for  instance  the  1-dimensional  pinned

steppingstone  model  from  the  final  problem  of  the

final  homework  assignment,  where  site  1 is  pinned to

color  0  (red)  and site  5  is  pinned  to  color  1 (blue).

Imagine  rolling  a 6-sided  die  with  faces  are  marked

"2 ¬1",  "2 ¬3",  "3 ¬2",  "3 ¬4",  "4 ¬3",  and  "4 ¬5",

signifying  "give  cell  2  whatever  color  cell  1 currently

has", "give  cell  3  whatever  colors  cell  2  currently  has",

etc.   Suppose the  first  8 die-rolls  are
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has", "give  cell  3  whatever  colors  cell  2  currently  has",

etc.   Suppose the  first  8 die-rolls  are
8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

3¬2

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

2¬1

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

3¬2

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

2¬3

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

3¬4

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

2¬1
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8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

4¬5

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

3¬4

Check that  at  this  stage,  the  colors  of  all  five  cells  are

determined  (even if  we don't  know what  the  colors  of

the  three  middle  cells  were  at  the  start),  and that  sub-

sequent  randomizations  may change the  coloring  but

won't  affect  the  fact  that  the  coloring can  be

deduced from  the  randomizations  alone  (without

knowledge of  the  initial  coloring).
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Most  of  the  time,  we don't  have to  do too  many random-

izations  for  this  effect  to  kick  in.

More  importantly,  if  we're  doing a long run of  N   recol -

orings,  and it  happens that  the  last  n  of  these  recolor -

ings (with  n < N)  have the  property  that  they  force

every  square  to  have the  color  of  one of  the  pinned

squares, then  the  result  of  applying the  N   recolorings

to  any initial  coloring  is the  same as the  result  of  apply-

ing just  the  n  recolorings  to  any initial  coloring;  earlier

recolorings  get  "washed out".

So one sneaky way to  find  out  the  outcome  of  an N-

step  pseudorandom simulation  with  N huge, without  hav-

ing to  do anywhere  close to  N  steps  of  actual  simula-

tion,  is  to  guess an n   and just  simulate  the  last  n

steps  of  the  simulation.

If  n  is  large  enough, then  the  last  n recolorings  will

wash out  everything  that  came before,  so  applying

these  n  recolorings  to  the  initial  coloring  (or  indeed

ANY  coloring)  will  give the  same result  as applying all

N  recolorings  to  the  initial  coloring.

If  n  was not  large  enough, try  again with  a larger  n, or

rather,  keep going.  Eventually,  you'll  find  an n  that

works,  though  if  you're  really  unlucky  it  might  be  N

it self .

For  instance,  suppose the  last  12 dice-rolls  looks  like

t his:
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t his:
8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

3¬4

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

4¬5

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

4¬5

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

2¬3
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8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

2¬1

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

4¬5

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

2¬1

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

2¬3

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

4¬3

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

3¬2

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

2¬1

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

2¬3
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Then we don't  need to  know what  the  preceding  N-12

dice-rolls  were to  know what  the  final  coloring  is.

Note  that  as N   grows,  the  typical  size  of  the  n that

works does not  grow; so using this  trick  to  sneakily sim-

ulate  a  trillion  recolorings  doesn't  take  much  more

work  on average than  using the  trick  to  sneakily  simu-

late  a billion  recolorings  (it  only  requires  a willingness

to  do more work  in very,  very,  very  rare  cases).

In  fact,  there's  a way to  do this  sneaky trick  so that

N   is  effectively  infinite,  and instead  of  getting  an N-

step  approximation  to  Π, you get  Π itself.
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late  a billion  recolorings  (it  only  requires  a willingness

to  do more work  in very,  very,  very  rare  cases).

In  fact,  there's  a way to  do this  sneaky trick  so that

N   is  effectively  infinite,  and instead  of  getting  an N-

step  approximation  to  Π, you get  Π itself.

This  is  the  method  of  simulation  from  the  past,  more

commonly called  "coupling  from  the  past"  or  CFTP; see

Chapter  22  of  Levin, Peres, and Wilmer.

Importance sampling

Knuth's trick

(this description is taken from chapter 17 of Engel)

General  problem:  How can we count  the  leaves  of  a

finite  tree?

Sample application:  How can we count  the  self-avoiding

paths  from  (0,0)  to  (10,10) in {( i,j ): 1 ²  i,j  ²  10}? 

Let  the  nodes at  level  n  be  the  self-avoiding  lattice

paths  of  length  n  that  start  at  (0,0)  and either  end at

(10,10) or  can be extended  to  give self-avoiding  lattice

paths  that  end at  (10,10).  The  node at  level  n-1 associ-

ated  with  path  P is  the  parent  of  the  node at  level  n

associated  with  path  P¢ if  P is obtained  from  P¢ by drop -

ping the  last  link  in the  path.   Then  the  leaves of  this

tree  are  precisely  the  self-avoiding  paths  from  (0,0)

to  (10,10).
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paths  from  (0,0)  to  (10,10) in {( i,j ): 1 ²  i,j  ²  10}? 

Let  the  nodes at  level  n  be  the  self-avoiding  lattice

paths  of  length  n  that  start  at  (0,0)  and either  end at
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paths  that  end at  (10,10).  The  node at  level  n-1 associ-

ated  with  path  P is  the  parent  of  the  node at  level  n

associated  with  path  P¢ if  P is obtained  from  P¢ by drop -

ping the  last  link  in the  path.   Then  the  leaves of  this

tree  are  precisely  the  self-avoiding  paths  from  (0,0)

to  (10,10).

Knuth's  trick:  Take  an unbiased directed  walk  in  the

tree,  starting  from  the  root  v0, taking  v1 to  be  a uni-

form  random  child  of  v0,  v2  to  be  a uniform  random

child  of  v1, etc.,  until  you hit  a leaf  v*= vn.  Let  mi  be

the  number of  children  of  vi  (0² i² n-1), so that  the  prob -

ability  of  our  walk  ending in  that  particular  leaf  v*  is

1/ (m0m1...mn-1).  Call m0m1...mn-1 the  weight  of  the  leaf

v*.  Estimate  the  number  of  leaves in  the  tree  as the

weight  of  the  leaf  v* you ended at.   Repeat this  many

times,  and average the  resulting  estimates.
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v*.  Estimate  the  number  of  leaves in  the  tree  as the

weight  of  the  leaf  v* you ended at.   Repeat this  many

times,  and average the  resulting  estimates.

Why  it  works:  Write  M  = m0m1...mn-1.  Think  of  v* and

M  as random variables.   Let  L  be  the  (unknown) true

number of  leaves in the  tree.   The expected  value of  M

is a sum of  L terms  Prob(v*=v) M(v), one for  each leaf

v  in the  tree,  and each such summand equals 1, since it

can be  written  as (1/ M(v))(M(v))  = 1, so the  expected

value of  M is exactly  L.

Example: Take  a tree  whose root  v has 2  children,  w

and x  ; w is  a leaf,  and x  has 2  children,  y and z, both

of  which  are  leaves.  Then M(w) = 2,  M(y) = 2´2=4, and

M(z)  = 2´2=4;  so if  we generate  a leaf  non-uniformly

by taking  a random path  through  the  tree  (picking  x , y,

and z  with  respective  probabilities,  1
2

,  1
4

,  and 1
4

),  we

find  that  the  expected  value of  M is
1
2

´2 + 1
4

´4 + 1
4

´4 = 3 = L. 

Applying  this  method  to  self-avoiding  lattice  paths,

Knuth  was able to  show that  the  number of  such paths

from  (0,0)  to  (10,10) is probably  1.06±0.3 times  1024 .
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Applying  this  method  to  self-avoiding  lattice  paths,

Knuth  was able to  show that  the  number of  such paths

from  (0,0)  to  (10,10) is probably  1.06±0.3 times  1024 .

Although  the  expected  value of  M is L (the  quantity  we

are  trying  to  estimate),  the  variance  of  M  is  quite

large,  so many samples are  required.

One could partially  quasirandomize this  method  of  esti -

mation  using  rotors:  when you  come to  a  new node,

choose a random child,  but  on subsequent  visits  to  the

parent,  choose  the  next  child  in  succession.  (Note

that  this  scheme  is  not  fully  deterministic.)   This

would ensure that  subtrees  get  visited  roughly  equally,

so more of  the  full  tree  gets  explored.   (E.g., you won't

happen to  visit  the  same leaf  twice.)   Unfortunately,

the  main source  of  variance  in  M  comes from  the  dis-

parate  sizes  of  the  subtrees  themselves,  so  this

method  of  reducing  variance  probably  won't  achieve

much.
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A more general view

We  have two  probability  distributions  on a set  W: one

of  them  (p) is  the  one we're  interested  in,  and one of

them  (q) is the  one that's  convenient  or  helpful  to  sam-

ple from.   (This  should remind  you of  acceptance/rejec -

tion  sampling and Metropolis  chains.)  

In  the  context  of  Knuth's  trick,  p is the  uniform  distri -

bution  on the  leaves, and q is the  non-uniform  distribu -

tion  on the  leaves that  comes from  repeatedly  taking  a

uniform  random child  of  each successive node we visit.

We  want  to  compute  the  expected  value of  some ran-

dom variable  f  ; that  is,  we want  to  compute  Expp(f )

= ÚΩ in W f (Ω) p(Ω).  

The obvious way to  estimate  this  quantity  is to  use the

ordinary  Monte  Carlo estimator  
1
n

Úi =1
n  f (W i )

where  W1,W2,...,Wn are  i.i.d.  elements  of  W distributed

according  to  p(.).  Instead,  we write  Expp(f ) as

ÚΩ in W [ f (Ω)p(Ω)/ q(Ω)]  q(Ω), 

and  estimate  it  as  1
n

Úi =1
n  f (W i )p(W i )/ q(W i )  where

W1,W2,...,Wn are  i.i.d. elements  of  W distributed  accord -

ing to  q(.).   This  will  give  us an unbiased estimate  of

Expp(f ).
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W1,W2,...,Wn are  i.i.d. elements  of  W distributed  accord -

ing to  q(.).   This  will  give  us an unbiased estimate  of

Expp(f ).

If  the  ratio  p(Ω)/ q(Ω) is  never  too  much bigger  than  1,

then  the  variance  of  f (W)p(W)/ q(W) isn't  much bigger

than  the  variance  of  f (W),  so the  method  will  give an

unbiased  estimate  of  Expp(f )  fairly  efficiently  (i.e.,

without  requiring  n  to  be prohibitively  large).

One way to  think  of
1
n

Úi =1
n  f (W i )p(W i )/ q(W i )

is as
1
n

Úi =1
n  f (W i )[p(W i )/ q(W i )] ;

we  are  weighing  the  sample-point  f (W )  by  a  ratio

p(W )/ q(W )  that  gives  f (W )  more  weight  when p(W )

(the  probability  of  choosing W  under  the  "true"  distri -

bution  p(.)) is large  in comparison with  q(W ) (the  proba -

bility  of  choosing  W  from  the  sampling distribution

q(.)).  The importance  sampling estimator

 1
n

Úi =1
n  f (W i )[p(W i )/ q(W i )]

is not  a true  weighted  average of  f (W1),...,f (Wn), since

the  ratios  p(W i )/ q(W i )  typically  do  not  add  up to  n.

However,  the  intuition  of  a weighted  average is not  too

far  off,  since the  expected sum of  the  ratios  is indeed

n.  Indeed,  Expq(p(W )/ q(W ))  = ÚΩ in W  (p(Ω)/ q(Ω))  q(Ω)

=  ÚΩ in W p(Ω) = 1.
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One way to  think  of
1
n

Úi =1
n  f (W i )p(W i )/ q(W i )

is as
1
n

Úi =1
n  f (W i )[p(W i )/ q(W i )] ;

we  are  weighing  the  sample-point  f (W )  by  a  ratio

p(W )/ q(W )  that  gives  f (W )  more  weight  when p(W )

(the  probability  of  choosing W  under  the  "true"  distri -

bution  p(.)) is large  in comparison with  q(W ) (the  proba -

bility  of  choosing  W  from  the  sampling distribution

q(.)).  The importance  sampling estimator

 1
n

Úi =1
n  f (W i )[p(W i )/ q(W i )]

is not  a true  weighted  average of  f (W1),...,f (Wn), since

the  ratios  p(W i )/ q(W i )  typically  do  not  add  up to  n.

However,  the  intuition  of  a weighted  average is not  too

far  off,  since the  expected sum of  the  ratios  is indeed

n.  Indeed,  Expq(p(W )/ q(W ))  = ÚΩ in W  (p(Ω)/ q(Ω))  q(Ω)

=  ÚΩ in W p(Ω) = 1.

Knuth's trick revisited

In  the  case of  Knuth's  trick,  where  p is  the  uniform

distribution  on the  leaves and q is the  non-uniform  dis-

tribution  on  the  leaves  that  comes  from  walking

through  the  tree,  the  "random  variable"  f   whose

expected  value we want to  compute relative  to  the  prob -

ability  distribution  p is  the  unknown constant  L.  With

importance  sampling, we sample from  the  random vari -

able f (W )p(W )/ q(W ),  where  W  is  distributed  accord -

ing to  q().   In  this  case f (W )  and p(W )  cancel  (their

product  of  L and 1/ L is  the  constant  1), so we're  just

sampling from  1/ q(W ), which we called  M.
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In  the  case of  Knuth's  trick,  where  p is  the  uniform

distribution  on the  leaves and q is the  non-uniform  dis-

tribution  on  the  leaves  that  comes  from  walking

through  the  tree,  the  "random  variable"  f   whose

expected  value we want to  compute relative  to  the  prob -

ability  distribution  p is  the  unknown constant  L.  With

importance  sampling, we sample from  the  random vari -

able f (W )p(W )/ q(W ),  where  W  is  distributed  accord -

ing to  q().   In  this  case f (W )  and p(W )  cancel  (their

product  of  L and 1/ L is  the  constant  1), so we're  just

sampling from  1/ q(W ), which we called  M.

Another example

(taken from Sheldon Ross' Introduction to Probability Models, Ninth Edition, pp. 714-719)

Consider a list  of  n entries,  some of  which  are  repeats

of  others;  we want  to  estimate  d, the  number  of  dis-

tinct  elements  in the  list.

If  m(i),  also written  as mi  (1² i² n),  is  the  number  of

times  that  the  element  in  position  i   appears  on the

list,  then  d = Úi =1
n  1

mi
.  So if  we take  X  uniformly  at  ran-

dom between  1 and n, the  expected  value of  1/ m(X) is 

Úi =1
n  1

n
1

mi
 = d

n

and the  expected  value of  n/ m(X)  is  d.  Hence  if  we

have an efficient  way to  determine  m(X), we can gener-

ate  k  i.i.d.  samples X1,...,Xk  from  {1,...,n} and estimate  d

by the  average 1
k

 Úi =1
k  n/ m(X i ).
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If  m(i),  also written  as mi  (1² i² n),  is  the  number  of

times  that  the  element  in  position  i   appears  on the

list,  then  d = Úi =1
n  1

mi
.  So if  we take  X  uniformly  at  ran-

dom between  1 and n, the  expected  value of  1/ m(X) is 

Úi =1
n  1

n
1

mi
 = d

n

and the  expected  value of  n/ m(X)  is  d.  Hence  if  we

have an efficient  way to  determine  m(X), we can gener-

ate  k  i.i.d.  samples X1,...,Xk  from  {1,...,n} and estimate  d

by the  average 1
k

 Úi =1
k  n/ m(X i ).

Now suppose each item  in the  list  has some value associ-

ated  with  it;  say vi  is the  value of  the  ith  element.   We

want to  estimate  the  sum v  of  the  values of  the  d  dis-

tinct  elements.   (If  vi  = 1 for  all  i, this  reduces  to  the

preceding  problem.)   We have v = Úi =1
n  vi

mi
, so 

Exp(v(X) /  m(X)) = Úi =1
n  1

n
vi

mi
 = v

n
 and 

Exp(n v(X) /  m(X)) = v, and we can estimate  v  by
1
k

 Úi =1
k  n v(X i ) /  m(X i ).
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Poisson processes

Bernoulli trials with p small and n large

Say we want  to  do n = 107  independent  random trials

each of  which  is  successful  with  probability  p = 10-6,

so  that  the  expected  number  of  successes  is  10.

(Think  of  p  as the  probability  that  a tossed  coin lands

on its  edge!)  Mathematically,  we want  ten  million  inde-

pendent  0,1-valued  random  variables  X1,  ..., X10,000 ,000

each of  which  is 1 with  probability  p  and 0 with  proba -

bility  1-p, so that  E(X1+...+X10,000 ,000 ) = np = 10.

The  obvious  way  to  simulate  this  on  a  computer

involves generating  ten  million  "independent"  pseudoran-

dom numbers  Uk  between  0  and 1; set  Xk  = 1 if  Uk  is

less than  10-6 and Xk  = 0 otherwise.

(I  put  the  word  "independent"  in  quotation  marks

because the  notion  of  independence presumes r andom-

ness,  whereas  pseudorandom  numbers  are

det er minist ic!)
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Timing@Total@Table@If@RandomReal@D < 10^H-6L, 1, 0D, 810^7<DDD

824.1584, 10<

H* 10 of the 10^7 Bernoulli random variables were equal to 1;
all the rest were equal to 0.
It took 24.1584 seconds for Mathematica to do this. *L

A more efficient  way is to  use a geometric  random vari -

able describing  the  number of  trials  required  until  suc-

cess occurs.

Specifically,  let  L1 be a random variable  with  distribu -

tion  Geom(p) (think:  "L"  is for  "lag"),  so that

Pr ob(L1=1) = p,

Pr ob(L1=2) = (1-p) p,

Pr ob(L1=3) = (1-p) 2 p,

...

Set  Xk  = 0 for  k = 1, 2, ..., L1-1 and XL1
 = 1.

Then let  L2  be  another  random variable  with  distribu -

tion  Geom(p), independent  of  L1, and set  Xk  = 0 for  k =

L1+1, L1+2, ..., L1+L2-1 and XL1+L2
 = 1.

And so on.  That  is, let  L1, L2, L3, ... be independent  ran-

dom variables  with  distribution  Geom(p), let  Xk  = 1 for

k = L1, L1+L2, L1+L2+L3, ... and Xk  = 0 for  all other  k.

How many Li 's  do we need on average? ...

Just  ten.
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Just  ten.

How many Li 's  do we need in best  case? ...

Just  one.

How many Li 's  do we need in worst  case? ...

Let's  try  it  (keeping in mind that  Mat hemat ica's  defini -

tion  of  GeometricDistribution  differs  from  the  stan -

dard  one, i.e. the  one that  I  am using in this  course,  by

an offset  of  1):
L = Table@1 + RandomInteger@GeometricDistribution@10^H-6LDD, 8n, 20<D

8887 596, 488 412, 872 236, 877 393, 86 840, 174 800, 1 129 440, 457 490, 687 959,
1 352 323, 267 013, 61 457, 3092, 550 670, 408 720, 78 639, 44 965, 542 105, 2 396 885, 2 081 129<

Table@Sum@L@@kDD, 8k, 1, n<D, 8n, 1, 20<D

8887 596, 1 376 008, 2 248 244, 3 125 637, 3 212 477, 3 387 277, 4 516 717, 4 974 207, 5 662 166, 7 014 489,
7 281 502, 7 342 959, 7 346 051, 7 896 721, 8 305 441, 8 384 080, 8 429 045, 8 971 150, 11 368 035, 13 449 164<

In  this  case  we  get  eighteen  successes  in  our  107

t r ials.

This  is  a good approach when p is  small, n is  large,  and

pn is not  too  large  (i.e., not  too  much bigger  than  1).

Recall from  homework assignment #2  how we can effi -

ciently  generate  a Geom(p) random variable:  pick  a ran-

dom number U in [0,1],  and output

1 if  U  lies  in (1-p, 1],

2 if  U  lies  in ((1-p) 2, 1-p] ,

3 if  U  lies  in ((1-p) 3, (1-p) 2] ,

...

That  is, take  the  log of  U  to  the  base 1-p and round up

to  the  next  higher  integer.
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Recall from  homework assignment #2  how we can effi -

ciently  generate  a Geom(p) random variable:  pick  a ran-

dom number U in [0,1],  and output

1 if  U  lies  in (1-p, 1],

2 if  U  lies  in ((1-p) 2, 1-p] ,

3 if  U  lies  in ((1-p) 3, (1-p) 2] ,

...

That  is, take  the  log of  U  to  the  base 1-p and round up

to  the  next  higher  integer.

Taking the limit as p®0, n®¥: Poisson processes

Assume that  we carry  out  kn trials  of  an event  that

occurs  independently  on each trial  with  probability  Λ/ n.

(In  the  preceding  section,  k  was 10, Λ was 1, and n  was

106.)   Then  we  expect  (kn)(Λ/ n)  = kΛ  successes (on

aver age).

Suppose that  the  trials  take  place at  a rate  of  n per

second, so that  all  kn trials  are  completed  in k seconds.

During  any given second, the  expected  number  of  suc-

cesses is (n)(Λ/ n) = Λ, independent  of  n.

The probability  that,  during  any given second, the  num-

ber  of  successes is 0 is 

(1 -  Λ/ n) n, 

which converges to  e-Λ as n ® ¥.
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The probability  that,  during  any given second, the  num-

ber  of  successes is 0 is 

(1 -  Λ/ n) n, 

which converges to  e-Λ as n ® ¥.

The probability  that,  during  any given second, the  num-

ber  of  successes is 1 is 

n (Λ/ n) (1 -  Λ/ n) n-1, 

which converges to  Λe-Λ as n ® ¥.

The probability  that,  during  any given second, the  num-

ber  of  successes is 2 is 

(n(n-1)/2)  (Λ/ n) 2 (1 -  Λ/ n) n-2, 

which converges to  (Λ 2/ 2)e-Λ as n ® ¥.

It  can be  shown that  the  probability  that,  during  any

given second, the  number of  successes is i converges to

(* )
Λi

i !
e-Λ

as n ® ¥.

(Check that  if  we sum (*)  over  all  i,  we get  1.  So (*)

determines  a probability  distribution  on the  non-nega-

tive  integers.)

More  generally  the  probability  that,  during  any given

time  interval  of  width  t, the  number  of  successes is  i

converges to

(* * )
HΛtLi

i !
e-Λt

as n ® ¥.

(You can also check that  (**)  sums to  1.)
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More  generally  the  probability  that,  during  any given

time  interval  of  width  t, the  number  of  successes is  i

converges to

(* * )
HΛtLi

i !
e-Λt

as n ® ¥.

(You can also check that  (**)  sums to  1.)

You may recognize  this  distribution  as ...

... the  Poisson distribution  with  parameter  Λt.

Now suppose that,  rather  than  doing a fixed  number of

trials,  we just  do trials  (at  a rate  of  n per  second) until

we get  our  first  success.  Then  the  time  T   until  the

first  success occurs,  under  our  earlier  "log  U "  simula-

tion  scheme, will  be equal to  1/ n times  the  log of  U  to

the  base 1 -  Λ/ n (the  rounding  up to  the  nearest  inte -

ger  doesn't  matter  in the  limit),  which  in the  limit  goes

to  

limn®¥ log U
n log H1-Λ�nL

= log U
nH-Λ�nL

=  log U
-Λ

(or  log H1�U L
Λ

 if  you prefer),  so that  

Pr ob[T ²  t]  = Prob[(log  U )/(- Λ) ²  t]  

= Prob[log  U ³  -Λt]  = Prob[U ³  e-Λt]  

= 1 -  e-Λt,

and Prob[T ³  t]  = e-Λt.
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Now suppose that,  rather  than  doing a fixed  number of

trials,  we just  do trials  (at  a rate  of  n per  second) until

we get  our  first  success.  Then  the  time  T   until  the

first  success occurs,  under  our  earlier  "log  U "  simula-

tion  scheme, will  be equal to  1/ n times  the  log of  U  to

the  base 1 -  Λ/ n (the  rounding  up to  the  nearest  inte -

ger  doesn't  matter  in the  limit),  which  in the  limit  goes

to  

limn®¥ log U
n log H1-Λ�nL

= log U
nH-Λ�nL

=  log U
-Λ

(or  log H1�U L
Λ

 if  you prefer),  so that  

Pr ob[T ²  t]  = Prob[(log  U )/(- Λ) ²  t]  

= Prob[log  U ³  -Λt]  = Prob[U ³  e-Λt]  

= 1 -  e-Λt,

and Prob[T ³  t]  = e-Λt.

You may recognize  this  distribution  as ...

... the  exponential  distribution  with  parameter  Λ.

The  time  from  the  first  success to  the  second is  gov-

erned  by the  same probability  distribution.

So if  we take  Bernoulli  trials  (with  each trial  having a

probability  of  Λ/n  of  success) occurring  at  a rate  of  n

trials  per  second, there's  a sensible way of  taking  a con-

tinuous-time  limit  by sending n®¥.

Instead  of  referring  to  "successes",  we  refer  to

"events".   (Don't  confuse  this  with  the  earlier  way we

used the  word  "event".)  The  parameter  Λ is  sometimes

called  "rate"  or  "intensity",  and  measures  the

expected  number of  events  per  time-unit.

The  first  event  occurs  at  time  T1,  the  second event

occurs  at  time  T1+T2,  the  third  occurs  at  time

T1+T2+T3, etc.,  where  T1, T2, T3, ... are  independent  posi-

tive  real-valued  random variables  governed by the  expo-

nential  distribution  with  parameter  Λ.
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The  first  event  occurs  at  time  T1,  the  second event

occurs  at  time  T1+T2,  the  third  occurs  at  time

T1+T2+T3, etc.,  where  T1, T2, T3, ... are  independent  posi-

tive  real-valued  random variables  governed by the  expo-

nential  distribution  with  parameter  Λ.

The  number  of  events  during  any  time-interval  of

width  t  is  a non-negative  integer-valued  random  vari -

able governed by the  Poisson distribution  with  parame-

ter  Λt, with  expected  value Λt.

Example  of  a  Poisson process:  events  correspond  to

clicks  of  a Geiger  counter  that  detects  Λ  decays per

second on average.  We  might  get  a lot  of  clicks  in the

first  second,  or  we  might  have  to  wait  a  century

before  we  hear  the  first  click  (though  that's

extremely  unlikely).   But  for   ΛÅ 1, the  number of  clicks

in  the  first  ten  seconds, divided  by  10, will  be  fairly

close to  Λ, and the  number  of  clicks  in  the  first  hun-

dred  seconds, divided  by  100, will  be even closer  to  Λ,

et c.

There  is  an important  analogy between  Bernoulli  trials

(in  the  discrete  probability  realm)  and  Poisson pro -

cesses (in the  continuous probability  realm),  with
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There  is  an important  analogy between  Bernoulli  trials

(in  the  discrete  probability  realm)  and  Poisson pro -

cesses (in the  continuous probability  realm),  with

   Bernoulli  trials  : Geometric  r.v.'s  : Binomial r.v.'s

:: Poisson process : Exponential  r.v.'s  : Poisson r.v.'s

If  you're  doing Bernoulli  trials,  then  the  time  until  the

next  success is  governed  by  a geometric  distribution,

and the  number of  successes in any time  interval  is gov-

erned  by a binomial distribution.

If  you're  running a Poisson process,  then  the  time  until

the  next  event  is  governed  by  an exponential  distribu -

tion,  and the  number  of  events  in  any time  interval  is

governed by a Poisson distribution.

Simulation

One way to  simulate  a Poisson process  is  to  sum the

inter-event  times,  just  as  we  simulated  a  sparse

Bernoulli  process;  in  the  discrete  (Bernoulli)  case we

summed geometric  random  variables  (with  small  p),

whereas  in  the  continuous  (Poisson) case we must  sum

exponential  random variables.
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L = Table@RandomReal@ExponentialDistribution@1DD, 8n, 20<D

80.573687, 0.368184, 0.186157, 1.12351, 2.1707, 0.272957, 0.135981, 0.334544, 2.18378, 0.0454035,
0.0601858, 0.855446, 0.568263, 0.699012, 4.38447, 0.0375255, 1.54105, 0.20601, 0.921528, 1.76704<

Table@Sum@L@@kDD, 8k, 1, n<D, 8n, 1, 20<D

80.573687, 0.941871, 1.12803, 2.25154, 4.42224, 4.6952, 4.83118, 5.16573, 7.34951,
7.39491, 7.4551, 8.31055, 8.87881, 9.57782, 13.9623, 13.9998, 15.5409, 15.7469, 16.6684, 18.4354<

In  this  example, there  are  14 events  that  occur  in the

time-interval  [0,10]  (i.e., between  time  0 and time  10).
UpTillTen@D := Module@8k = 0, PartialSum = 0<, While@PartialSum < 10,

k++; PartialSum += RandomReal@ExponentialDistribution@1DDD; Return@k - 1DD

N@Mean@Table@UpTillTen@D, 8100<DDD

10.08

N@Mean@Table@UpTillTen@D, 81000<DDD

10.027

N@Variance@Table@UpTillTen@D, 81000<DDD

10.2753

N@Variance@Table@UpTillTen@D, 810 000<DDD

10.3972

Another  way is  to  first  condition  on the  number  of

events  that  occur  in  the  time-interval  [a,b],  and then

figure  out  where  they  are,  using three  facts  (the  first

is  just  the  definition  of  the  Poisson distribution,  and

the  second and third  are  easy to  derive  from  our defini -

tion  of  the  Poisson process  as a limit  of  Bernoulli  pro -

cesses):

(a)  The  number  of  events  that  occurred  in  [a,b]  is  a

Poisson random variable  with  intensity  parameter  Λ(b-

a).

(b)  The  conditional  probability  that  k  events  occurred

in time-interval  J , given that  n events  occurred  in time-

interval  I  (with  J  a  subinterval  of  I ),  is  n!/ k!(n-k)!

times  (| J | / | I | ) n.

That  is,  the  conditional  distribution  on the  number  of

events  that  occurred  in  J ,  given  that  n  events

occurred  in I , is Binomial(n, | J | / | I | ).

(c) Given that  1 event  occurred  in I , the  conditional  dis-

tribution  of  the  time  at  which  the  event  occurred  is

uniform  on I .
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Another  way is  to  first  condition  on the  number  of

events  that  occur  in  the  time-interval  [a,b],  and then

figure  out  where  they  are,  using three  facts  (the  first

is  just  the  definition  of  the  Poisson distribution,  and

the  second and third  are  easy to  derive  from  our defini -

tion  of  the  Poisson process  as a limit  of  Bernoulli  pro -

cesses):

(a)  The  number  of  events  that  occurred  in  [a,b]  is  a

Poisson random variable  with  intensity  parameter  Λ(b-

a).

(b)  The  conditional  probability  that  k  events  occurred

in time-interval  J , given that  n events  occurred  in time-

interval  I  (with  J  a  subinterval  of  I ),  is  n!/ k!(n-k)!

times  (| J | / | I | ) n.

That  is,  the  conditional  distribution  on the  number  of

events  that  occurred  in  J ,  given  that  n  events

occurred  in I , is Binomial(n, | J | / | I | ).

(c) Given that  1 event  occurred  in I , the  conditional  dis-

tribution  of  the  time  at  which  the  event  occurred  is

uniform  on I .

So,  first  figure  out  how  many  events  occurred  in

I =[a,b]  (using the  Poisson distribution).

Split  I  in  half  and  figure  out  how  many  events

occurred  in each half-interval  (using the  binomial distri -

but ion).

Split  each half  in  half  again and figure  out  how many

events  occurred  in  each  quarter-interval  (again using

the  binomial distribution).

Etc.,  splitting  each number into  approximate  halves, fol -

lowing a binary  tree.

(This  should remind  you a little  bit  of  what  we did  last

time  with  card  shuffling!).

When  we reach  the  situation  where  a sub-sub-...-sub-

interval  contains  only 1 event,  we don't  keep splitting;

instead,  we choose a (uniform)  random  point  in  that

sub-sub-...-sub-interval  to  be  the  instant  at  which  an

event  occurred.
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So,  first  figure  out  how  many  events  occurred  in

I =[a,b]  (using the  Poisson distribution).

Split  I  in  half  and  figure  out  how  many  events

occurred  in each half-interval  (using the  binomial distri -

but ion).

Split  each half  in  half  again and figure  out  how many

events  occurred  in  each  quarter-interval  (again using

the  binomial distribution).

Etc.,  splitting  each number into  approximate  halves, fol -

lowing a binary  tree.

(This  should remind  you a little  bit  of  what  we did  last

time  with  card  shuffling!).

When  we reach  the  situation  where  a sub-sub-...-sub-

interval  contains  only 1 event,  we don't  keep splitting;

instead,  we choose a (uniform)  random  point  in  that

sub-sub-...-sub-interval  to  be  the  instant  at  which  an

event  occurred.

Yet  another  way, like  the  previous  way but  simpler,  is:

first  figure  out  how many events  occurred  in  I =[a,b]

(using the  Poisson distribution);  then  choose them  inde-

pendently  and uniformly  in I .
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CADLAG functions

For  mathematical  simplicity  (not  the  same as realism!),

we'll  focus  on Poisson processes that  run forever,  start -

ing from  time  0.

Let  N(t)  denote  the  number  of  events  that  have

occurred  up to  and including time  t, so that

N(t) = 0 for  0 ²  t < T1,

N(t) = 1 for  T1 ²  t < T1+T2,

N(t) = 2 for  T1+T2 ²  t < T1+T2+T3,

...

So  for  all  t,  N(t)  equals  the  limit  of  N(t ¢)  as  t ¢

approaches t  from  the  right;  as t ¢  approaches t  from

the  left,  N(t ¢)  does approach  some limit,  but  it  need

not  equal N(t).

Such  an integer-valued  function  of  a real  variable  is

called  CADLAG ("continue  a droit,  limite  a gauche")  or

RCLL ("right  continuous with  left  limits").  

A Poisson counting  process started  from  time  0 is a ran-

dom variable  whose  values  aren't  real  numbers  but

rather  CADLAG  functions  N(  )   from  [0, ¥)  to

{0,1,2,3,...}.
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A Poisson counting  process started  from  time  0 is a ran-

dom variable  whose  values  aren't  real  numbers  but

rather  CADLAG  functions  N(  )   from  [0, ¥)  to

{0,1,2,3,...}.
H* Here are the lags between one event and the next. *L

L = Table@RandomReal@ExponentialDistribution@1DD, 8n, 20<D

80.017245, 0.984541, 2.69391, 0.582312, 1.99226, 1.64209, 0.959098, 0.104667, 0.0733868,
1.803, 0.124619, 1.25705, 1.41894, 1.3682, 1.17099, 0.770198, 0.631614, 2.17124, 0.0826515, 0.585606<

H* Here are the times at which events occur. *L

Events = Table@Sum@L@@kDD, 8k, 1, n<D, 8n, 1, 20<D

80.017245, 1.00179, 3.6957, 4.27801, 6.27027, 7.91236, 8.87145, 8.97612, 9.04951,
10.8525, 10.9771, 12.2342, 13.6531, 15.0213, 16.1923, 16.9625, 17.5941, 19.7654, 19.848, 20.4336<

H* We write the counting process as a sum of
shifted Heavisde Theta functions where HeavisideTheta@xD is
1 if x > 0 and 0 if x < 0. *L

Plot@Sum@HeavisideTheta@x - Events@@nDDD, 8n, 1, 20<D, 8x, 0, 10<, AspectRatio ® AutomaticD
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cadlag@D := Module@8L, Events<, L = Table@RandomReal@ExponentialDistribution@1DD, 8n, 100<D;
Events = Table@Sum@L@@kDD, 8k, 1, n<D, 8n, 1, 20<D;
Return@Sum@HeavisideTheta@x - Events@@nDDD, 8n, 1, 20<DDD

H* Here's what one Poisson CADLAG counting function looks like: *L
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Plot@Evaluate@cadlag@DD, 8x, 0, 10<, AspectRatio ® AutomaticD
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H* Here's an average of 10 of them: *L

Plot@Evaluate@Mean@Table@cadlag@D, 810<DDD, 8x, 0, 10<, AspectRatio ® AutomaticD
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H* And here's an average of 100 of them: *L
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Plot@Evaluate@Mean@Table@cadlag@D, 8100<DDD, 8x, 0, 10<, AspectRatio ® AutomaticD
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H* As you can see the average is approaching the linear function
fHtL = t. *L

CADLAGs  aren't  differentiable,  but  the  expected

value of  a  CADLAG-valued  random  variable  can be  a

nice  differentiable  function,  amenable  to  calculus

met hods!

Suppose N()  is  a random CADLAG given by  the  Poisson

process.  Then, for  all t, the  expected  value of  N(t) is ...

... Λt.

So, thinking  now of  averaging functions  instead  of  just

numbers, the  expected  "value"  of  the  random function

N is ...

... the  linear  function  f (t) = Λt.
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... the  linear  function  f (t) = Λt.

This  function  satisfies  the  differential  equation 

f  ' (t) = Λ.  To see this  directly  (albeit  a bit  informally),

note  that  

f (t+Dt) -  f (t) =   Exp[ N(t+Dt)]  -  Exp[ N(t)]  

=   Exp[ N(t+Dt) -  N(t)]

=   Λ Dt

whence (f (t+Dt) -  f (t))/ Dt = Λ, which  "goes to"  0 as Dt®

0.  
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