
Exact sampling

The pinned steppingstone model

Recall the pinned stepping stone model I discussed at

the end of the last lecture: We have a 21-by-20 cylin -

der, where each square is initially colored 0 or 1, all

the squares on the upper edge are pinned at 0, all the

squares on the lower edge are pinned at 1, and at each

step, we choose a non-pinned square at random and

change the color of that square to the color of one of

the square's 4 neighbors.

The pinned stepping stone model, pruned of its tran -

sient states, is ergodic and has a unique stationary mea-

sure Π.

Here's a typical state, sampled in accordance with the

stationary distribution Π, or rather a distribution

Π1,000 ,000 that is extremely close but not equal to Π:

00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000010
00000000000000001110
00000000000000000110
00000000000000001110
11110000000000001110
11110000000000000110
10011110000000000100
10111101000000001111
10001101100000000111
10001100100100010111
10001100101101111111
11111100011111111111
11111111011111111111
11111111111111111111

Coupling from the past: an example

(graphics courtesy of David Einstein)

How might we sample from Π?

One way is to do ordinary pseudorandom simulation for

a large, predetermined number of steps (a million, say,

as was done for the preceding figure).

Eventually, the color of a square will be determined not

by its initial coloring, nor by the initial coloring of any

of the non-pinned squares, but solely by our

(randomized) choices to change the color of THIS

square to the color of THAT neighbor, whose color was

earlier changed to the color of one of ITS neighbors,

etc., eventually leading back to one of the pinned

squar es.

Why?

..?..

Look at the Markov chain in which each square s is

assigned not just a color at time n, but a "reason for

being that color at time n".

This "reason" is just another square, namely, the

square s* (which could be s itself) such that our

sequence of recolorings forces the color of s at time n

to be the color of s* at time 0.

If it ever happens that for every non-pinned square s,

s* is one of the pinned squares, then this property will

hold forever after.

Consider for instance the 1-dimensional pinned

steppingstone model from the final problem of the

final homework assignment, where site 1 is pinned to

color 0 (red) and site 5 is pinned to color 1 (blue).

Imagine rolling a 6-sided die with faces are marked

"2 ¬1", "2 ¬3", "3 ¬2", "3 ¬4", "4 ¬3", and "4 ¬5",

signifying "give cell 2 whatever color cell 1 currently

has", "give cell 3 whatever colors cell 2 currently has",

etc. Suppose the first 8 die-rolls are

2 Lec10.nb

How might we sample from Π?

One way is to do ordinary pseudorandom simulation for

a large, predetermined number of steps (a million, say,

as was done for the preceding figure).

Eventually, the color of a square will be determined not

by its initial coloring, nor by the initial coloring of any

of the non-pinned squares, but solely by our

(randomized) choices to change the color of THIS

square to the color of THAT neighbor, whose color was

earlier changed to the color of one of ITS neighbors,

etc., eventually leading back to one of the pinned

squar es.

Why?

..?..

Look at the Markov chain in which each square s is

assigned not just a color at time n, but a "reason for

being that color at time n".

This "reason" is just another square, namely, the

square s* (which could be s itself) such that our

sequence of recolorings forces the color of s at time n

to be the color of s* at time 0.

If it ever happens that for every non-pinned square s,

s* is one of the pinned squares, then this property will

hold forever after.

Consider for instance the 1-dimensional pinned

steppingstone model from the final problem of the

final homework assignment, where site 1 is pinned to

color 0 (red) and site 5 is pinned to color 1 (blue).

Imagine rolling a 6-sided die with faces are marked

"2 ¬1", "2 ¬3", "3 ¬2", "3 ¬4", "4 ¬3", and "4 ¬5",

signifying "give cell 2 whatever color cell 1 currently

has", "give cell 3 whatever colors cell 2 currently has",

etc. Suppose the first 8 die-rolls are

Lec10.nb 3

How might we sample from Π?

One way is to do ordinary pseudorandom simulation for

a large, predetermined number of steps (a million, say,

as was done for the preceding figure).

Eventually, the color of a square will be determined not

by its initial coloring, nor by the initial coloring of any

of the non-pinned squares, but solely by our

(randomized) choices to change the color of THIS

square to the color of THAT neighbor, whose color was

earlier changed to the color of one of ITS neighbors,

etc., eventually leading back to one of the pinned

squar es.

Why?

..?..

Look at the Markov chain in which each square s is

assigned not just a color at time n, but a "reason for

being that color at time n".

This "reason" is just another square, namely, the

square s* (which could be s itself) such that our

sequence of recolorings forces the color of s at time n

to be the color of s* at time 0.

If it ever happens that for every non-pinned square s,

s* is one of the pinned squares, then this property will

hold forever after.

Consider for instance the 1-dimensional pinned

steppingstone model from the final problem of the

final homework assignment, where site 1 is pinned to

color 0 (red) and site 5 is pinned to color 1 (blue).

Imagine rolling a 6-sided die with faces are marked

"2 ¬1", "2 ¬3", "3 ¬2", "3 ¬4", "4 ¬3", and "4 ¬5",

signifying "give cell 2 whatever color cell 1 currently

has", "give cell 3 whatever colors cell 2 currently has",

etc. Suppose the first 8 die-rolls are
8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

3¬2

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

2¬1

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

3¬2

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

2¬3

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

3¬4

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

2¬1

4 Lec10.nb

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

4¬5

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

3¬4

Check that at this stage, the colors of all five cells are

determined (even if we don't know what the colors of

the three middle cells were at the start), and that sub-

sequent randomizations may change the coloring but

won't affect the fact that the coloring can be

deduced from the randomizations alone (without

knowledge of the initial coloring).

Lec10.nb 5

Check that at this stage, the colors of all five cells are

determined (even if we don't know what the colors of

the three middle cells were at the start), and that sub-

sequent randomizations may change the coloring but

won't affect the fact that the coloring can be

deduced from the randomizations alone (without

knowledge of the initial coloring).

Most of the time, we don't have to do too many random-

izations for this effect to kick in.

More importantly, if we're doing a long run of N recol -

orings, and it happens that the last n of these recolor -

ings (with n < N) have the property that they force

every square to have the color of one of the pinned

squares, then the result of applying the N recolorings

to any initial coloring is the same as the result of apply-

ing just the n recolorings to any initial coloring; earlier

recolorings get "washed out".

So one sneaky way to find out the outcome of an N-

step pseudorandom simulation with N huge, without hav-

ing to do anywhere close to N steps of actual simula-

tion, is to guess an n and just simulate the last n

steps of the simulation.

If n is large enough, then the last n recolorings will

wash out everything that came before, so applying

these n recolorings to the initial coloring (or indeed

ANY coloring) will give the same result as applying all

N recolorings to the initial coloring.

If n was not large enough, try again with a larger n, or

rather, keep going. Eventually, you'll find an n that

works, though if you're really unlucky it might be N

it self .

For instance, suppose the last 12 dice-rolls looks like

t his:

6 Lec10.nb

More importantly, if we're doing a long run of N recol -

orings, and it happens that the last n of these recolor -

ings (with n < N) have the property that they force

every square to have the color of one of the pinned

squares, then the result of applying the N recolorings

to any initial coloring is the same as the result of apply-

ing just the n recolorings to any initial coloring; earlier

recolorings get "washed out".

So one sneaky way to find out the outcome of an N-

step pseudorandom simulation with N huge, without hav-

ing to do anywhere close to N steps of actual simula-

tion, is to guess an n and just simulate the last n

steps of the simulation.

If n is large enough, then the last n recolorings will

wash out everything that came before, so applying

these n recolorings to the initial coloring (or indeed

ANY coloring) will give the same result as applying all

N recolorings to the initial coloring.

If n was not large enough, try again with a larger n, or

rather, keep going. Eventually, you'll find an n that

works, though if you're really unlucky it might be N

it self .

For instance, suppose the last 12 dice-rolls looks like

t his:
8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

3¬4

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

4¬5

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

4¬5

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

2¬3

Lec10.nb 7

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

2¬1

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

4¬5

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

2¬1

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

2¬3

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

4¬3

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

3¬2

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

2¬1

8"2¬1", "2¬3", "3¬2", "3¬4", "4¬3", "4¬5"<@@RandomInteger@81, 6<DDD

2¬3

8 Lec10.nb

Then we don't need to know what the preceding N-12

dice-rolls were to know what the final coloring is.

Note that as N grows, the typical size of the n that

works does not grow; so using this trick to sneakily sim-

ulate a trillion recolorings doesn't take much more

work on average than using the trick to sneakily simu-

late a billion recolorings (it only requires a willingness

to do more work in very, very, very rare cases).

In fact, there's a way to do this sneaky trick so that

N is effectively infinite, and instead of getting an N-

step approximation to Π, you get Π itself.

Lec10.nb 9

Then we don't need to know what the preceding N-12

dice-rolls were to know what the final coloring is.

Note that as N grows, the typical size of the n that

works does not grow; so using this trick to sneakily sim-

ulate a trillion recolorings doesn't take much more

work on average than using the trick to sneakily simu-

late a billion recolorings (it only requires a willingness

to do more work in very, very, very rare cases).

In fact, there's a way to do this sneaky trick so that

N is effectively infinite, and instead of getting an N-

step approximation to Π, you get Π itself.

This is the method of simulation from the past, more

commonly called "coupling from the past" or CFTP; see

Chapter 22 of Levin, Peres, and Wilmer.

Importance sampling

Knuth's trick

(this description is taken from chapter 17 of Engel)

General problem: How can we count the leaves of a

finite tree?

Sample application: How can we count the self-avoiding

paths from (0,0) to (10,10) in {(i,j): 1 ² i,j ² 10}?

Let the nodes at level n be the self-avoiding lattice

paths of length n that start at (0,0) and either end at

(10,10) or can be extended to give self-avoiding lattice

paths that end at (10,10). The node at level n-1 associ-

ated with path P is the parent of the node at level n

associated with path P¢ if P is obtained from P¢ by drop -

ping the last link in the path. Then the leaves of this

tree are precisely the self-avoiding paths from (0,0)

to (10,10).

10 Lec10.nb

Sample application: How can we count the self-avoiding

paths from (0,0) to (10,10) in {(i,j): 1 ² i,j ² 10}?

Let the nodes at level n be the self-avoiding lattice

paths of length n that start at (0,0) and either end at

(10,10) or can be extended to give self-avoiding lattice

paths that end at (10,10). The node at level n-1 associ-

ated with path P is the parent of the node at level n

associated with path P¢ if P is obtained from P¢ by drop -

ping the last link in the path. Then the leaves of this

tree are precisely the self-avoiding paths from (0,0)

to (10,10).

Knuth's trick: Take an unbiased directed walk in the

tree, starting from the root v0, taking v1 to be a uni-

form random child of v0, v2 to be a uniform random

child of v1, etc., until you hit a leaf v*= vn. Let mi be

the number of children of vi (0² i² n-1), so that the prob -

ability of our walk ending in that particular leaf v* is

1/ (m0m1...mn-1). Call m0m1...mn-1 the weight of the leaf

v*. Estimate the number of leaves in the tree as the

weight of the leaf v* you ended at. Repeat this many

times, and average the resulting estimates.

Lec10.nb 11

Knuth's trick: Take an unbiased directed walk in the

tree, starting from the root v0, taking v1 to be a uni-

form random child of v0, v2 to be a uniform random

child of v1, etc., until you hit a leaf v*= vn. Let mi be

the number of children of vi (0² i² n-1), so that the prob -

ability of our walk ending in that particular leaf v* is

1/ (m0m1...mn-1). Call m0m1...mn-1 the weight of the leaf

v*. Estimate the number of leaves in the tree as the

weight of the leaf v* you ended at. Repeat this many

times, and average the resulting estimates.

Why it works: Write M = m0m1...mn-1. Think of v* and

M as random variables. Let L be the (unknown) true

number of leaves in the tree. The expected value of M

is a sum of L terms Prob(v*=v) M(v), one for each leaf

v in the tree, and each such summand equals 1, since it

can be written as (1/ M(v))(M(v)) = 1, so the expected

value of M is exactly L.

Example: Take a tree whose root v has 2 children, w

and x ; w is a leaf, and x has 2 children, y and z, both

of which are leaves. Then M(w) = 2, M(y) = 2´2=4, and

M(z) = 2´2=4; so if we generate a leaf non-uniformly

by taking a random path through the tree (picking x , y,

and z with respective probabilities, 1
2

, 1
4

, and 1
4

), we

find that the expected value of M is
1
2

´2 + 1
4

´4 + 1
4

´4 = 3 = L.

Applying this method to self-avoiding lattice paths,

Knuth was able to show that the number of such paths

from (0,0) to (10,10) is probably 1.06±0.3 times 1024 .

12 Lec10.nb

Applying this method to self-avoiding lattice paths,

Knuth was able to show that the number of such paths

from (0,0) to (10,10) is probably 1.06±0.3 times 1024 .

Although the expected value of M is L (the quantity we

are trying to estimate), the variance of M is quite

large, so many samples are required.

One could partially quasirandomize this method of esti -

mation using rotors: when you come to a new node,

choose a random child, but on subsequent visits to the

parent, choose the next child in succession. (Note

that this scheme is not fully deterministic.) This

would ensure that subtrees get visited roughly equally,

so more of the full tree gets explored. (E.g., you won't

happen to visit the same leaf twice.) Unfortunately,

the main source of variance in M comes from the dis-

parate sizes of the subtrees themselves, so this

method of reducing variance probably won't achieve

much.

Lec10.nb 13

A more general view

We have two probability distributions on a set W: one

of them (p) is the one we're interested in, and one of

them (q) is the one that's convenient or helpful to sam-

ple from. (This should remind you of acceptance/rejec -

tion sampling and Metropolis chains.)

In the context of Knuth's trick, p is the uniform distri -

bution on the leaves, and q is the non-uniform distribu -

tion on the leaves that comes from repeatedly taking a

uniform random child of each successive node we visit.

We want to compute the expected value of some ran-

dom variable f ; that is, we want to compute Expp(f)

= ÚΩ in W f (Ω) p(Ω).

The obvious way to estimate this quantity is to use the

ordinary Monte Carlo estimator
1
n

Úi =1
n f (W i)

where W1,W2,...,Wn are i.i.d. elements of W distributed

according to p(.). Instead, we write Expp(f) as

ÚΩ in W [f (Ω)p(Ω)/ q(Ω)] q(Ω),

and estimate it as 1
n

Úi =1
n f (W i)p(W i)/ q(W i) where

W1,W2,...,Wn are i.i.d. elements of W distributed accord -

ing to q(.). This will give us an unbiased estimate of

Expp(f).

14 Lec10.nb

We want to compute the expected value of some ran-

dom variable f ; that is, we want to compute Expp(f)

= ÚΩ in W f (Ω) p(Ω).

The obvious way to estimate this quantity is to use the

ordinary Monte Carlo estimator
1
n

Úi =1
n f (W i)

where W1,W2,...,Wn are i.i.d. elements of W distributed

according to p(.). Instead, we write Expp(f) as

ÚΩ in W [f (Ω)p(Ω)/ q(Ω)] q(Ω),

and estimate it as 1
n

Úi =1
n f (W i)p(W i)/ q(W i) where

W1,W2,...,Wn are i.i.d. elements of W distributed accord -

ing to q(.). This will give us an unbiased estimate of

Expp(f).

If the ratio p(Ω)/ q(Ω) is never too much bigger than 1,

then the variance of f (W)p(W)/ q(W) isn't much bigger

than the variance of f (W), so the method will give an

unbiased estimate of Expp(f) fairly efficiently (i.e.,

without requiring n to be prohibitively large).

One way to think of
1
n

Úi =1
n f (W i)p(W i)/ q(W i)

is as
1
n

Úi =1
n f (W i)[p(W i)/ q(W i)] ;

we are weighing the sample-point f (W) by a ratio

p(W)/ q(W) that gives f (W) more weight when p(W)

(the probability of choosing W under the "true" distri -

bution p(.)) is large in comparison with q(W) (the proba -

bility of choosing W from the sampling distribution

q(.)). The importance sampling estimator

 1
n

Úi =1
n f (W i)[p(W i)/ q(W i)]

is not a true weighted average of f (W1),...,f (Wn), since

the ratios p(W i)/ q(W i) typically do not add up to n.

However, the intuition of a weighted average is not too

far off, since the expected sum of the ratios is indeed

n. Indeed, Expq(p(W)/ q(W)) = ÚΩ in W (p(Ω)/ q(Ω)) q(Ω)

= ÚΩ in W p(Ω) = 1.

Lec10.nb 15

One way to think of
1
n

Úi =1
n f (W i)p(W i)/ q(W i)

is as
1
n

Úi =1
n f (W i)[p(W i)/ q(W i)] ;

we are weighing the sample-point f (W) by a ratio

p(W)/ q(W) that gives f (W) more weight when p(W)

(the probability of choosing W under the "true" distri -

bution p(.)) is large in comparison with q(W) (the proba -

bility of choosing W from the sampling distribution

q(.)). The importance sampling estimator

 1
n

Úi =1
n f (W i)[p(W i)/ q(W i)]

is not a true weighted average of f (W1),...,f (Wn), since

the ratios p(W i)/ q(W i) typically do not add up to n.

However, the intuition of a weighted average is not too

far off, since the expected sum of the ratios is indeed

n. Indeed, Expq(p(W)/ q(W)) = ÚΩ in W (p(Ω)/ q(Ω)) q(Ω)

= ÚΩ in W p(Ω) = 1.

Knuth's trick revisited

In the case of Knuth's trick, where p is the uniform

distribution on the leaves and q is the non-uniform dis-

tribution on the leaves that comes from walking

through the tree, the "random variable" f whose

expected value we want to compute relative to the prob -

ability distribution p is the unknown constant L. With

importance sampling, we sample from the random vari -

able f (W)p(W)/ q(W), where W is distributed accord -

ing to q(). In this case f (W) and p(W) cancel (their

product of L and 1/ L is the constant 1), so we're just

sampling from 1/ q(W), which we called M.

16 Lec10.nb

In the case of Knuth's trick, where p is the uniform

distribution on the leaves and q is the non-uniform dis-

tribution on the leaves that comes from walking

through the tree, the "random variable" f whose

expected value we want to compute relative to the prob -

ability distribution p is the unknown constant L. With

importance sampling, we sample from the random vari -

able f (W)p(W)/ q(W), where W is distributed accord -

ing to q(). In this case f (W) and p(W) cancel (their

product of L and 1/ L is the constant 1), so we're just

sampling from 1/ q(W), which we called M.

Another example

(taken from Sheldon Ross' Introduction to Probability Models, Ninth Edition, pp. 714-719)

Consider a list of n entries, some of which are repeats

of others; we want to estimate d, the number of dis-

tinct elements in the list.

If m(i), also written as mi (1² i² n), is the number of

times that the element in position i appears on the

list, then d = Úi =1
n 1

mi
. So if we take X uniformly at ran-

dom between 1 and n, the expected value of 1/ m(X) is

Úi =1
n 1

n
1

mi
 = d

n

and the expected value of n/ m(X) is d. Hence if we

have an efficient way to determine m(X), we can gener-

ate k i.i.d. samples X1,...,Xk from {1,...,n} and estimate d

by the average 1
k

 Úi =1
k n/ m(X i).

Lec10.nb 17

If m(i), also written as mi (1² i² n), is the number of

times that the element in position i appears on the

list, then d = Úi =1
n 1

mi
. So if we take X uniformly at ran-

dom between 1 and n, the expected value of 1/ m(X) is

Úi =1
n 1

n
1

mi
 = d

n

and the expected value of n/ m(X) is d. Hence if we

have an efficient way to determine m(X), we can gener-

ate k i.i.d. samples X1,...,Xk from {1,...,n} and estimate d

by the average 1
k

 Úi =1
k n/ m(X i).

Now suppose each item in the list has some value associ-

ated with it; say vi is the value of the ith element. We

want to estimate the sum v of the values of the d dis-

tinct elements. (If vi = 1 for all i, this reduces to the

preceding problem.) We have v = Úi =1
n vi

mi
, so

Exp(v(X) / m(X)) = Úi =1
n 1

n
vi

mi
 = v

n
 and

Exp(n v(X) / m(X)) = v, and we can estimate v by
1
k

 Úi =1
k n v(X i) / m(X i).

18 Lec10.nb

Poisson processes

Bernoulli trials with p small and n large

Say we want to do n = 107 independent random trials

each of which is successful with probability p = 10-6,

so that the expected number of successes is 10.

(Think of p as the probability that a tossed coin lands

on its edge!) Mathematically, we want ten million inde-

pendent 0,1-valued random variables X1, ..., X10,000 ,000

each of which is 1 with probability p and 0 with proba -

bility 1-p, so that E(X1+...+X10,000 ,000) = np = 10.

The obvious way to simulate this on a computer

involves generating ten million "independent" pseudoran-

dom numbers Uk between 0 and 1; set Xk = 1 if Uk is

less than 10-6 and Xk = 0 otherwise.

(I put the word "independent" in quotation marks

because the notion of independence presumes r andom-

ness, whereas pseudorandom numbers are

det er minist ic!)

Lec10.nb 19

Timing@Total@Table@If@RandomReal@D < 10^H-6L, 1, 0D, 810^7<DDD

824.1584, 10<

H* 10 of the 10^7 Bernoulli random variables were equal to 1;
all the rest were equal to 0.
It took 24.1584 seconds for Mathematica to do this. *L

A more efficient way is to use a geometric random vari -

able describing the number of trials required until suc-

cess occurs.

Specifically, let L1 be a random variable with distribu -

tion Geom(p) (think: "L" is for "lag"), so that

Pr ob(L1=1) = p,

Pr ob(L1=2) = (1-p) p,

Pr ob(L1=3) = (1-p) 2 p,

...

Set Xk = 0 for k = 1, 2, ..., L1-1 and XL1
 = 1.

Then let L2 be another random variable with distribu -

tion Geom(p), independent of L1, and set Xk = 0 for k =

L1+1, L1+2, ..., L1+L2-1 and XL1+L2
 = 1.

And so on. That is, let L1, L2, L3, ... be independent ran-

dom variables with distribution Geom(p), let Xk = 1 for

k = L1, L1+L2, L1+L2+L3, ... and Xk = 0 for all other k.

How many Li 's do we need on average? ...

Just ten.

20 Lec10.nb

Just ten.

How many Li 's do we need in best case? ...

Just one.

How many Li 's do we need in worst case? ...

Let's try it (keeping in mind that Mat hemat ica's defini -

tion of GeometricDistribution differs from the stan -

dard one, i.e. the one that I am using in this course, by

an offset of 1):
L = Table@1 + RandomInteger@GeometricDistribution@10^H-6LDD, 8n, 20<D

8887 596, 488 412, 872 236, 877 393, 86 840, 174 800, 1 129 440, 457 490, 687 959,
1 352 323, 267 013, 61 457, 3092, 550 670, 408 720, 78 639, 44 965, 542 105, 2 396 885, 2 081 129<

Table@Sum@L@@kDD, 8k, 1, n<D, 8n, 1, 20<D

8887 596, 1 376 008, 2 248 244, 3 125 637, 3 212 477, 3 387 277, 4 516 717, 4 974 207, 5 662 166, 7 014 489,
7 281 502, 7 342 959, 7 346 051, 7 896 721, 8 305 441, 8 384 080, 8 429 045, 8 971 150, 11 368 035, 13 449 164<

In this case we get eighteen successes in our 107

t r ials.

This is a good approach when p is small, n is large, and

pn is not too large (i.e., not too much bigger than 1).

Recall from homework assignment #2 how we can effi -

ciently generate a Geom(p) random variable: pick a ran-

dom number U in [0,1], and output

1 if U lies in (1-p, 1],

2 if U lies in ((1-p) 2, 1-p] ,

3 if U lies in ((1-p) 3, (1-p) 2] ,

...

That is, take the log of U to the base 1-p and round up

to the next higher integer.

Lec10.nb 21

Recall from homework assignment #2 how we can effi -

ciently generate a Geom(p) random variable: pick a ran-

dom number U in [0,1], and output

1 if U lies in (1-p, 1],

2 if U lies in ((1-p) 2, 1-p] ,

3 if U lies in ((1-p) 3, (1-p) 2] ,

...

That is, take the log of U to the base 1-p and round up

to the next higher integer.

Taking the limit as p®0, n®¥: Poisson processes

Assume that we carry out kn trials of an event that

occurs independently on each trial with probability Λ/ n.

(In the preceding section, k was 10, Λ was 1, and n was

106.) Then we expect (kn)(Λ/ n) = kΛ successes (on

aver age).

Suppose that the trials take place at a rate of n per

second, so that all kn trials are completed in k seconds.

During any given second, the expected number of suc-

cesses is (n)(Λ/ n) = Λ, independent of n.

The probability that, during any given second, the num-

ber of successes is 0 is

(1 - Λ/ n) n,

which converges to e-Λ as n ® ¥.

22 Lec10.nb

The probability that, during any given second, the num-

ber of successes is 0 is

(1 - Λ/ n) n,

which converges to e-Λ as n ® ¥.

The probability that, during any given second, the num-

ber of successes is 1 is

n (Λ/ n) (1 - Λ/ n) n-1,

which converges to Λe-Λ as n ® ¥.

The probability that, during any given second, the num-

ber of successes is 2 is

(n(n-1)/2) (Λ/ n) 2 (1 - Λ/ n) n-2,

which converges to (Λ 2/ 2)e-Λ as n ® ¥.

It can be shown that the probability that, during any

given second, the number of successes is i converges to

(*)
Λi

i !
e-Λ

as n ® ¥.

(Check that if we sum (*) over all i, we get 1. So (*)

determines a probability distribution on the non-nega-

tive integers.)

More generally the probability that, during any given

time interval of width t, the number of successes is i

converges to

(* *)
HΛtLi

i !
e-Λt

as n ® ¥.

(You can also check that (**) sums to 1.)

Lec10.nb 23

More generally the probability that, during any given

time interval of width t, the number of successes is i

converges to

(* *)
HΛtLi

i !
e-Λt

as n ® ¥.

(You can also check that (**) sums to 1.)

You may recognize this distribution as ...

... the Poisson distribution with parameter Λt.

Now suppose that, rather than doing a fixed number of

trials, we just do trials (at a rate of n per second) until

we get our first success. Then the time T until the

first success occurs, under our earlier "log U " simula-

tion scheme, will be equal to 1/ n times the log of U to

the base 1 - Λ/ n (the rounding up to the nearest inte -

ger doesn't matter in the limit), which in the limit goes

to

limn®¥ log U
n log H1-Λ�nL

= log U
nH-Λ�nL

= log U
-Λ

(or log H1�U L
Λ

 if you prefer), so that

Pr ob[T ² t] = Prob[(log U)/(- Λ) ² t]

= Prob[log U ³ -Λt] = Prob[U ³ e-Λt]

= 1 - e-Λt,

and Prob[T ³ t] = e-Λt.

24 Lec10.nb

Now suppose that, rather than doing a fixed number of

trials, we just do trials (at a rate of n per second) until

we get our first success. Then the time T until the

first success occurs, under our earlier "log U " simula-

tion scheme, will be equal to 1/ n times the log of U to

the base 1 - Λ/ n (the rounding up to the nearest inte -

ger doesn't matter in the limit), which in the limit goes

to

limn®¥ log U
n log H1-Λ�nL

= log U
nH-Λ�nL

= log U
-Λ

(or log H1�U L
Λ

 if you prefer), so that

Pr ob[T ² t] = Prob[(log U)/(- Λ) ² t]

= Prob[log U ³ -Λt] = Prob[U ³ e-Λt]

= 1 - e-Λt,

and Prob[T ³ t] = e-Λt.

You may recognize this distribution as ...

... the exponential distribution with parameter Λ.

The time from the first success to the second is gov-

erned by the same probability distribution.

So if we take Bernoulli trials (with each trial having a

probability of Λ/n of success) occurring at a rate of n

trials per second, there's a sensible way of taking a con-

tinuous-time limit by sending n®¥.

Instead of referring to "successes", we refer to

"events". (Don't confuse this with the earlier way we

used the word "event".) The parameter Λ is sometimes

called "rate" or "intensity", and measures the

expected number of events per time-unit.

The first event occurs at time T1, the second event

occurs at time T1+T2, the third occurs at time

T1+T2+T3, etc., where T1, T2, T3, ... are independent posi-

tive real-valued random variables governed by the expo-

nential distribution with parameter Λ.

Lec10.nb 25

The first event occurs at time T1, the second event

occurs at time T1+T2, the third occurs at time

T1+T2+T3, etc., where T1, T2, T3, ... are independent posi-

tive real-valued random variables governed by the expo-

nential distribution with parameter Λ.

The number of events during any time-interval of

width t is a non-negative integer-valued random vari -

able governed by the Poisson distribution with parame-

ter Λt, with expected value Λt.

Example of a Poisson process: events correspond to

clicks of a Geiger counter that detects Λ decays per

second on average. We might get a lot of clicks in the

first second, or we might have to wait a century

before we hear the first click (though that's

extremely unlikely). But for ΛÅ 1, the number of clicks

in the first ten seconds, divided by 10, will be fairly

close to Λ, and the number of clicks in the first hun-

dred seconds, divided by 100, will be even closer to Λ,

et c.

There is an important analogy between Bernoulli trials

(in the discrete probability realm) and Poisson pro -

cesses (in the continuous probability realm), with

26 Lec10.nb

There is an important analogy between Bernoulli trials

(in the discrete probability realm) and Poisson pro -

cesses (in the continuous probability realm), with

 Bernoulli trials : Geometric r.v.'s : Binomial r.v.'s

:: Poisson process : Exponential r.v.'s : Poisson r.v.'s

If you're doing Bernoulli trials, then the time until the

next success is governed by a geometric distribution,

and the number of successes in any time interval is gov-

erned by a binomial distribution.

If you're running a Poisson process, then the time until

the next event is governed by an exponential distribu -

tion, and the number of events in any time interval is

governed by a Poisson distribution.

Simulation

One way to simulate a Poisson process is to sum the

inter-event times, just as we simulated a sparse

Bernoulli process; in the discrete (Bernoulli) case we

summed geometric random variables (with small p),

whereas in the continuous (Poisson) case we must sum

exponential random variables.

Lec10.nb 27

L = Table@RandomReal@ExponentialDistribution@1DD, 8n, 20<D

80.573687, 0.368184, 0.186157, 1.12351, 2.1707, 0.272957, 0.135981, 0.334544, 2.18378, 0.0454035,
0.0601858, 0.855446, 0.568263, 0.699012, 4.38447, 0.0375255, 1.54105, 0.20601, 0.921528, 1.76704<

Table@Sum@L@@kDD, 8k, 1, n<D, 8n, 1, 20<D

80.573687, 0.941871, 1.12803, 2.25154, 4.42224, 4.6952, 4.83118, 5.16573, 7.34951,
7.39491, 7.4551, 8.31055, 8.87881, 9.57782, 13.9623, 13.9998, 15.5409, 15.7469, 16.6684, 18.4354<

In this example, there are 14 events that occur in the

time-interval [0,10] (i.e., between time 0 and time 10).
UpTillTen@D := Module@8k = 0, PartialSum = 0<, While@PartialSum < 10,

k++; PartialSum += RandomReal@ExponentialDistribution@1DDD; Return@k - 1DD

N@Mean@Table@UpTillTen@D, 8100<DDD

10.08

N@Mean@Table@UpTillTen@D, 81000<DDD

10.027

N@Variance@Table@UpTillTen@D, 81000<DDD

10.2753

N@Variance@Table@UpTillTen@D, 810 000<DDD

10.3972

Another way is to first condition on the number of

events that occur in the time-interval [a,b], and then

figure out where they are, using three facts (the first

is just the definition of the Poisson distribution, and

the second and third are easy to derive from our defini -

tion of the Poisson process as a limit of Bernoulli pro -

cesses):

(a) The number of events that occurred in [a,b] is a

Poisson random variable with intensity parameter Λ(b-

a).

(b) The conditional probability that k events occurred

in time-interval J , given that n events occurred in time-

interval I (with J a subinterval of I), is n!/ k!(n-k)!

times (| J | / | I |) n.

That is, the conditional distribution on the number of

events that occurred in J , given that n events

occurred in I , is Binomial(n, | J | / | I |).

(c) Given that 1 event occurred in I , the conditional dis-

tribution of the time at which the event occurred is

uniform on I .

28 Lec10.nb

Another way is to first condition on the number of

events that occur in the time-interval [a,b], and then

figure out where they are, using three facts (the first

is just the definition of the Poisson distribution, and

the second and third are easy to derive from our defini -

tion of the Poisson process as a limit of Bernoulli pro -

cesses):

(a) The number of events that occurred in [a,b] is a

Poisson random variable with intensity parameter Λ(b-

a).

(b) The conditional probability that k events occurred

in time-interval J , given that n events occurred in time-

interval I (with J a subinterval of I), is n!/ k!(n-k)!

times (| J | / | I |) n.

That is, the conditional distribution on the number of

events that occurred in J , given that n events

occurred in I , is Binomial(n, | J | / | I |).

(c) Given that 1 event occurred in I , the conditional dis-

tribution of the time at which the event occurred is

uniform on I .

So, first figure out how many events occurred in

I =[a,b] (using the Poisson distribution).

Split I in half and figure out how many events

occurred in each half-interval (using the binomial distri -

but ion).

Split each half in half again and figure out how many

events occurred in each quarter-interval (again using

the binomial distribution).

Etc., splitting each number into approximate halves, fol -

lowing a binary tree.

(This should remind you a little bit of what we did last

time with card shuffling!).

When we reach the situation where a sub-sub-...-sub-

interval contains only 1 event, we don't keep splitting;

instead, we choose a (uniform) random point in that

sub-sub-...-sub-interval to be the instant at which an

event occurred.

Lec10.nb 29

So, first figure out how many events occurred in

I =[a,b] (using the Poisson distribution).

Split I in half and figure out how many events

occurred in each half-interval (using the binomial distri -

but ion).

Split each half in half again and figure out how many

events occurred in each quarter-interval (again using

the binomial distribution).

Etc., splitting each number into approximate halves, fol -

lowing a binary tree.

(This should remind you a little bit of what we did last

time with card shuffling!).

When we reach the situation where a sub-sub-...-sub-

interval contains only 1 event, we don't keep splitting;

instead, we choose a (uniform) random point in that

sub-sub-...-sub-interval to be the instant at which an

event occurred.

Yet another way, like the previous way but simpler, is:

first figure out how many events occurred in I =[a,b]

(using the Poisson distribution); then choose them inde-

pendently and uniformly in I .

30 Lec10.nb

CADLAG functions

For mathematical simplicity (not the same as realism!),

we'll focus on Poisson processes that run forever, start -

ing from time 0.

Let N(t) denote the number of events that have

occurred up to and including time t, so that

N(t) = 0 for 0 ² t < T1,

N(t) = 1 for T1 ² t < T1+T2,

N(t) = 2 for T1+T2 ² t < T1+T2+T3,

...

So for all t, N(t) equals the limit of N(t ¢) as t ¢

approaches t from the right; as t ¢ approaches t from

the left, N(t ¢) does approach some limit, but it need

not equal N(t).

Such an integer-valued function of a real variable is

called CADLAG ("continue a droit, limite a gauche") or

RCLL ("right continuous with left limits").

A Poisson counting process started from time 0 is a ran-

dom variable whose values aren't real numbers but

rather CADLAG functions N() from [0, ¥) to

{0,1,2,3,...}.

Lec10.nb 31

A Poisson counting process started from time 0 is a ran-

dom variable whose values aren't real numbers but

rather CADLAG functions N() from [0, ¥) to

{0,1,2,3,...}.
H* Here are the lags between one event and the next. *L

L = Table@RandomReal@ExponentialDistribution@1DD, 8n, 20<D

80.017245, 0.984541, 2.69391, 0.582312, 1.99226, 1.64209, 0.959098, 0.104667, 0.0733868,
1.803, 0.124619, 1.25705, 1.41894, 1.3682, 1.17099, 0.770198, 0.631614, 2.17124, 0.0826515, 0.585606<

H* Here are the times at which events occur. *L

Events = Table@Sum@L@@kDD, 8k, 1, n<D, 8n, 1, 20<D

80.017245, 1.00179, 3.6957, 4.27801, 6.27027, 7.91236, 8.87145, 8.97612, 9.04951,
10.8525, 10.9771, 12.2342, 13.6531, 15.0213, 16.1923, 16.9625, 17.5941, 19.7654, 19.848, 20.4336<

H* We write the counting process as a sum of
shifted Heavisde Theta functions where HeavisideTheta@xD is
1 if x > 0 and 0 if x < 0. *L

Plot@Sum@HeavisideTheta@x - Events@@nDDD, 8n, 1, 20<D, 8x, 0, 10<, AspectRatio ® AutomaticD

2 4 6 8 10

2

4

6

8

cadlag@D := Module@8L, Events<, L = Table@RandomReal@ExponentialDistribution@1DD, 8n, 100<D;
Events = Table@Sum@L@@kDD, 8k, 1, n<D, 8n, 1, 20<D;
Return@Sum@HeavisideTheta@x - Events@@nDDD, 8n, 1, 20<DDD

H* Here's what one Poisson CADLAG counting function looks like: *L

32 Lec10.nb

Plot@Evaluate@cadlag@DD, 8x, 0, 10<, AspectRatio ® AutomaticD

2 4 6 8 10

1

2

3

4

5

6

7

H* Here's an average of 10 of them: *L

Plot@Evaluate@Mean@Table@cadlag@D, 810<DDD, 8x, 0, 10<, AspectRatio ® AutomaticD

2 4 6 8 10

2

4

6

8

10

H* And here's an average of 100 of them: *L

Lec10.nb 33

Plot@Evaluate@Mean@Table@cadlag@D, 8100<DDD, 8x, 0, 10<, AspectRatio ® AutomaticD

2 4 6 8 10

2

4

6

8

10

H* As you can see the average is approaching the linear function
fHtL = t. *L

CADLAGs aren't differentiable, but the expected

value of a CADLAG-valued random variable can be a

nice differentiable function, amenable to calculus

met hods!

Suppose N() is a random CADLAG given by the Poisson

process. Then, for all t, the expected value of N(t) is ...

... Λt.

So, thinking now of averaging functions instead of just

numbers, the expected "value" of the random function

N is ...

... the linear function f (t) = Λt.

34 Lec10.nb

... the linear function f (t) = Λt.

This function satisfies the differential equation

f ' (t) = Λ. To see this directly (albeit a bit informally),

note that

f (t+Dt) - f (t) = Exp[N(t+Dt)] - Exp[N(t)]

= Exp[N(t+Dt) - N(t)]

= Λ Dt

whence (f (t+Dt) - f (t))/ Dt = Λ, which "goes to" 0 as Dt®

0.

Lec10.nb 35

