
Poisson processes

CADLAG functions

Consider  a Poisson process  that  runs  forever  starting

from  time  0.

Let  N(t)  denote  the  number  of  events  that  have

occurred  up to  and including time  t, so that

N(t) = 0 for  0 ²  t < T1,

N(t) = 1 for  T1 ²  t < T1+T2,

N(t) = 2 for  T1+T2 ²  t < T1+T2+T3,

...

where   T1,T2,T3,  ... are  i.i.d.  r.v.'s,  each exponentially

distributed  with  parameter  Λ.

Here  N() is a random CADLAG function.   

For  all  t, the  expected  value of  N(t)  is  Λt, so (thinking

now of  averaging  functions  instead  of  just  numbers),

the  expected  "value"  of  the  random function  N  is  the

linear  function  f (t) = Λt.

We saw last  time  that  this  function  satisfies  the  differ -

ential  equation f  ' (t) = Λ.  

A more interesting  example is the  function  [N(t)] 2, tak -

ing its  values in  {0,1,4,9,...};  note  that  Exp[[ N(t)] 2]  is

the  expected  value of  the  square of  a Poisson random

variable  with  parameter  Λt.   Write  [N(t)] 2  as N 2(t).
Let's  view Exp[ N 2(t)]  as a function  of  t  and find  the

differential  equation  it  satisfies  (continuing  to  use

loose but  justifiable  reasoning).   First  let's  condition

on the  event  N(t) = k ; then  for  small Dt > 0,  it's  nearly

true  that  N(t+Dt)  is  either  N(t)  or  N(t)+1, so  that

N 2(t+Dt) -  N 2(t) is  either  k 2  -  k 2  = 0  or  Hk + 1L2  -  k 2  =

2k+1, where  the  respective  probabilities  of  these  two

cases are  Å  1 -  Λ Dt and Λ Dt.  Hence the  conditional

expected  value of  N 2(t+Dt) -  N 2(t), given N(t) = k, is  (Λ

Dt)(2k+1) = (Λ  Dt)(2N(t)+1).  Hence  the  unconditional

expected  value  of  N 2(t+Dt)  -  N 2(t)  is  the  expected

value of  (Λ Dt)(2N(t)+1), which is 

(Λ Dt)(2Λt+1) (since (Λ Dt)(2N(t)+1) is linear  in N(t)).  

Dividing  by Dt and taking  the  limit,  we see that  

g(t) := Exp[ N 2(t)]  satisfies  

g' (t) = lim (g(t+Dt)-g(t))/ Dt

       = lim (Exp[ N 2(t+Dt)]  -  Exp[ N 2(t)] )/ Dt

       = lim (Exp[ N 2(t+Dt) -  N 2(t)] )/ Dt
        = Λ(2Λt+1) = 2Λ2t + Λ.

Since g(0)  = 0 (make sure you see why!), we get

g(t) = Λ2t2 + Λt.
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(Check this  by simulation:
cadlag@D := Module@8L, Events<, L = Table@RandomReal@ExponentialDistribution@1DD, 8n, 100<D;

Events = Table@Sum@L@@kDD, 8k, 1, n<D, 8n, 1, 20<D;
Return@Sum@HeavisideTheta@x - Events@@nDDD, 8n, 1, 20<DDD

Show@Plot@Evaluate@Mean@Table@cadlag@D^2, 810<DDD, 8x, 0, 10<D, Plot@x^2 + x, 8x, 0, 10<DD

2 4 6 8 10

20

40

60

Lec11.nb   3



Show@Plot@Evaluate@Mean@Table@cadlag@D^2, 8100<DDD, 8x, 0, 10<D, Plot@x^2 + x, 8x, 0, 10<DD
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Show@Plot@Evaluate@Mean@Table@cadlag@D^2, 81000<DDD, 8x, 0, 10<D, Plot@x^2 + x, 8x, 0, 10<DD
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Note  that  the  average  of  the  squares  of  n  Poisson

counting functions  appears to  be converging to  the  func -

tion  g(t) = Λ2t2 + Λt, as predicted.)

In  particular,  the  variance of  a Poisson random variable

with  parameter  Λt is 

Exp[N(t) 2]  -  [Exp[ N(t)] ] 2 = g(t) -  [ f (t)] 2 

= (Λ2t2  + Λt)  -  Λ2t2  = Λt,  which  recovers  the  (perhaps

familiar)  result  that  the  variance  of  a Poisson random

variable  is always equal to  its  mean.

We  can also  compute  the  variance  of  N(t)  by  going

back to  the  original  Bernoulli  trials  picture.   The  num-

ber  of  Poisson events  up to  time  t, for  a Poisson pro -

cess of  rate  Λ, can be approximated  by  the  number  of

successes in n t  independent  random trials,  where  the

probability  of  success on each trial  is  Λ/ n.  Write  this

as X1+X2+...+Xnt  where  X i  is  1 if  the  ith  trial  is  a suc-

cess and 0 otherwise.

Since  the  trials  are  independent,  the  variance  of  the

sum is  the  sum of  the  variances,  or  n t times  the  vari -

ance of  each X i , or  (n t)(Λ/ n)(1-Λ/ n), which goes to  Λt as

n®¥.
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Memorylessness

Having computed  the  expected  value of  N(t)  N(t),  we

can ask, what  about  the  expected  value of  

N(s) N(t) with  s < t ?

Since

N(s) = the  #  of  successes from  time  0 to  time  s
and

N(t) -  N(s) = the  #  of  successes from  time  s to  time  t,
the  random  variables  N(s)  and  N(t)  -  N(s)  are

independent  of  each  other  (think  about  Bernoulli

trials:  the  number  of  successes in  the  first  ns  trials

and the  number  of  successes in  the  next  n(t-s)  trials

are independent),  we have

E[N(s) (N(t) -  N(s))]  = E[N(s)]  E[N(t) -  N(s)]

= (Λs) (Λ(t-s)) = Λ2s(t-s).
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Since

N(s) = the  #  of  successes from  time  0 to  time  s
and

N(t) -  N(s) = the  #  of  successes from  time  s to  time  t,
the  random  variables  N(s)  and  N(t)  -  N(s)  are

independent  of  each  other  (think  about  Bernoulli

trials:  the  number  of  successes in  the  first  ns  trials

and the  number  of  successes in  the  next  n(t-s)  trials

are independent),  we have

E[N(s) (N(t) -  N(s))]  = E[N(s)]  E[N(t) -  N(s)]

= (Λs) (Λ(t-s)) = Λ2s(t-s).

So E[N(s) N(t)]  = E[N(s) (N(t) -  N(s)) + N(s) N(s)]

= E[N(s) (N(t) -  N(s))]  + E[N(s) N(s)]

= Λ2s(t-s) + (Λ2s2 + Λs) = Λ2st + Λs

So Cov(N(s), N(t)) = E[N(s) N(t)]  -  E[N(s)]  E[N(t)]
= Λ2st + Λs -  Λs Λt  = Λs.

(Check: as s goes to  t, this  recovers  the  formula  Var( -

N(t)) = Λt.) 

More  generally,  for  any numbers t1 < t2  < t3, ... , the  ran-

dom  variables  N(t1),  N(t2)-N(t1),  N(t3)-N(t2),  ...  are

independent .

Calling these  random  variables  "increments",  we  say

that  a Poisson counting  process "has independent incre -

ments". 
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Calling these  random  variables  "increments",  we  say

that  a Poisson counting  process "has independent incre -

ments". 

The  independence of  N(s)  and N(t)  -  N(s)  means that

no matter  how many, or  how few,  events  occurred  from

time  0  to  time  s, the  expected  number  of  events  that

will  occur  between  time  s and time  t is still  Λ(t-s).

We say that  the  Poisson process is memoryless.

Suppose bus-arrivals  on some route  are  governed  by  a

Poisson process  of  intensity  Λ  (a  dubious  assumption,

since  buses tend  to  cluster  for  well-understood  rea -

sons). Suppose Λ has units  of  arrivals  per  hour.   When

you arrive  at  the  bus stop,  how long should you expect

to  have to  wait?  ...

... 1/ Λ hours.

Now  suppose that  when you arrive  at  the  bus  stop,

someone tells  you that  a bus on that  route  just  left  5

minutes  ago.  How long should  you expect  to  have to

wait?  ...

... 1/ Λ hours.

Or,  suppose someone tells  you  that  no  bus  on that

route  has  been  there  in  the  past  hour.   How  long

should you expect  to  have to  wait?  ...
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Or,  suppose someone tells  you  that  no  bus  on that

route  has  been  there  in  the  past  hour.   How  long

should you expect  to  have to  wait?  ...

... Still  1/ Λ hours!

This  may  seem  counterintuitive,  but  that's  mostly

because buses in real  life  aren't  governed by  a Poisson

process.   If  the  result  still  seems surprising,  consider

Bernoulli  trials:  regardless  of  whether  the  last  10

tosses  of  a fair  coin have come up heads, or  the  last  10

tosses  have come up tails,  or  any outcome in between,

the  expected  number of  tosses  required  until  you next

toss  heads is still  2.

Likewise:  No  matter  what  a Poisson process  of  rate  Λ

did  prior  to  time  t,  the  expected  time  until  the  next

event  occurs  is 1/ Λ.
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The M/M/1 queueing model

(adapted from section 8.3.1 of "Introduction to Probability Models" by Sheldon M. Ross (9th edition)

Suppose that  customers  arrive  at  a single-server  ser -

vice  station  in  accordance  with  a Poisson process  hav-

ing rate  Λ (so that  on average Λ customers  arrive  per

hour,  and the  average time  from  one customer-arrival

to  the  next  is  1/ Λ).  When  a customer  arrives,  he/she

joins  a  queue of  customers  awaiting  service.   Upon

reaching  the  head  of  the  queue,  the  customer  is

served  in a random amount of  time  in accordance  with

an exponential  distribution  with  parameter  Μ  (so that

the  expected  time  to  serve  a  customer  who  has

reached  the  head of  the  queue, aka the  expected  ser -

vice time,  is 1/ Μ).

This  is  called  an M/ M/1  queue because the  interarrival

times  are  memoryless,  the  service  times  are  memory-

less,  and there  is  just  1 server.   We'll  assume that

there  is no bound on the  queue-length.

For  n = 0,  1, 2,  ..., let  Pn(t) be the  probability  that  the

queue is of  length  n at  time  t (with  t ³  0).   (Thus,  if  we

wanted  to  assume that  the  queue is  empty  at  time  0,

we would take  initial  conditions  P0(t) = 1 and P1(t) = P2(t)
= ... = 0.)   The  state  of  the  system  (the  current  queue-

length)  is  always a non-negative  integer,  and it  always

changes by +1 or  -1: for  n ³  0, state  n goes to  state  n+1

at  rate  Λ, and for  n ³  1, state  n goes to  state  n-1 at

rate  Μ.  We  call  Λ and Μ the  transition  rates  associated

with  increase  by 1 and decrease  by 1, respectively.
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For  n = 0,  1, 2,  ..., let  Pn(t) be the  probability  that  the

queue is of  length  n at  time  t (with  t ³  0).   (Thus,  if  we

wanted  to  assume that  the  queue is  empty  at  time  0,

we would take  initial  conditions  P0(t) = 1 and P1(t) = P2(t)
= ... = 0.)   The  state  of  the  system  (the  current  queue-

length)  is  always a non-negative  integer,  and it  always

changes by +1 or  -1: for  n ³  0, state  n goes to  state  n+1

at  rate  Λ, and for  n ³  1, state  n goes to  state  n-1 at

rate  Μ.  We  call  Λ and Μ the  transition  rates  associated

with  increase  by 1 and decrease  by 1, respectively.

(A  nonnegative-integer-valued  stochastic  process

whose jumps  are  always +1 or  -1 is  also called  a birth-

and-death  process,  if  we think  of  n as being  the  size

of  a population instead  of  the  size of  a queue.) 

The  quantities  P0(t),P1(t),P2(t),...  evolve  over  time  in

accordance with  a system  of  differential  equations: 

dP0 /  d t = Μ P1 -  Λ P0

dP1 /  d t = Λ P0 + Μ P2 -  Λ P1 -  Μ P1

dP2 /  d t = Λ P1 + Μ P3 -  Λ P2 -  Μ P2

...

(It  takes  a little  bit  of  work  to  get  from  the  Poisson

process  model to  the  differential  equations;  I'll  come

back to  this  point  if  there's  time.)
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(It  takes  a little  bit  of  work  to  get  from  the  Poisson

process  model to  the  differential  equations;  I'll  come

back to  this  point  if  there's  time.)

Thus we can say what  the  equilibrium  looks like  by set -

ting  dPn /  d t = 0  for  all  n, using each successive equa-

tion  to  simplify  the  next:

Μ P1 = Λ P0

Λ P0 + Μ P2 = Λ P1 + Μ P1 Þ Μ P2 = Λ P1

Λ P1 + Μ P3 = Λ P2 + Μ P2 Þ Μ P3 = Λ P2

...

Hence P1 = (Λ/ Μ) P0,  P2 = (Λ/ Μ) P1,  P3 = (Λ/ Μ) P2,  ... so

Pi  = (Λ/ Μ) i  P0 for  all i.

If  Λ < Μ, then  letting

Z = Úi =0
¥ (Λ/ Μ) i  = 1 /  (1 -  Λ/ Μ) = Μ

Μ-Λ

we get  stationary  distribution

Pi  = (Λ/ Μ) i  /  Z

for  the  continuous-time  M/ M/1  queue, exactly  as  in

the  case of  a discrete-time  queue where  Λ  and Μ  are

transition  probabilities  rather  than  transition  rates.

(Caveat: continuous-time  processes  and their  discrete-

time  analogues don't  usually agree this  precisely!)
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(Caveat: continuous-time  processes  and their  discrete-

time  analogues don't  usually agree this  precisely!)

This  is  an example of  a continuous-time  Markov  chain,

governed by transition  r at es instead  of  transition  pr ob-

abilit ies.   In  a  future  semester,  I  would  probably

sketch  out  the  theory  of  finite-state  continuous-time

Markov  chains,  highlighting  its  resemblances  to  dis-

crete-time  Markov  chain theory,  as well  as the  differ -

ences.  Some technical  details  differ,  but  for  both  the

discrete-time-and  continuous-time  versions,  linear  alge-

bra  methods  play a major  role.
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Splitting and thinning Poisson processes

In  the  preceding  example,  we had  a Poisson process

for  arrivals  of  new customers  at  the  queue and, for

each  customer,  an  exponential  process  that  starts

when that  customer  reaches  the  head of  the  line.   (To

be  fanciful,  imagine that  each customer  who reaches

the  head of  the  queue is  handed a lump of  some mildly

radioactive  stuff  and  a  Geiger  counter;  when  the

Geiger  counter  clicks,  the  super-efficient  but  lazy

clerk  services  him/her  instantly  and  sends  the  cus-

tomer  home.)

What  if  each customer  gets  a radioactive  lump when

joining  the  queue, rather  than  when reaching  its  head,

and that  the  clerk's  policy  is to  instantly  service  a cus-

tomer  who reaches  the  head  of  the  queue the  next

time  the  customer's  Geiger  counter  clicks?   Would

this  lead to  shorter  wait-times,  or  longer  wait  times?  ...

...  There'd  be  no  difference,  because  Poisson pro -

cesses are  memoryless!

What  if  the  business has just  one radioactive  lump and

just  one Geiger  counter,  kept  behind  the  desk,  and

when a customer  reaches  the  head of  the  queue, that

customer  gets  serviced  the  very  next  time  that  the

Geiger  counter  clicks?   Would  this  lead  to  shorter

wait-times,  or  longer  wait  times?  ...
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What  if  the  business has just  one radioactive  lump and

just  one Geiger  counter,  kept  behind  the  desk,  and

when a customer  reaches  the  head of  the  queue, that

customer  gets  serviced  the  very  next  time  that  the

Geiger  counter  clicks?   Would  this  lead  to  shorter

wait-times,  or  longer  wait  times?  ...

... Again, there'd  be no difference,  because Poisson pro -

cesses are  memoryless.

So one way to  simulate  the  M/ M/1  queue is to  simulate

two  independent  Poisson processes,  one  for  arrivals

and one for  departures,  which  we think  of  as "Poisson

timers"  that  "go off"  at  unpredictable  times  (just  like

Geiger  counters);  when the  first  Poisson timer  goes

off,  we add a person to  the  end of  the  queue, and when

the  second Poisson timer  goes off,  we remove the  per -

son at  the  head  of  the  queue (unless there's  no one

there,  in which case nothing  happens).

"But  wouldn't  it  make more  sense to  stop  the  second

timer  when the  queue is  empty,  and re-start  it  again

after  someone actually  arrives?"  ...

... You could, but  it  wouldn't  affect  the  probability  dis-

tribution  governing how the  queue evolves, because ...
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... You could, but  it  wouldn't  affect  the  probability  dis-

tribution  governing how the  queue evolves, because ...

... Poisson processes have no memory!

In  fact,  to  simulate  the  M/ M/1  queue, we can get  by

with  just  a  single  Poisson process  handling  both  the

arrivals  and the  departures.   Take  a Poisson process

with  rate  Λ+Μ, and each time  it  "goes off",  toss  a coin

with  bias  Λ:Μ  (that  is,  the  coin  comes up heads  with

probability  Λ

Λ+Μ
 and tails  with  probability  Μ

Λ+Μ
);  if  the

coin comes up heads, add a person to  the  queue, and if

it  comes up tails,  remove a person from  the  queue.

It's  fairly  intuitive  that  if  you take  a Poisson process

with  rate  Λ+Μ  and accept  only  Λ

Λ+Μ
 of  the  events,  the

resulting  thinned  process  will  be a Poisson process  with

rate  (Λ+Μ) ( Λ

Λ+Μ
) = Λ.

(Think  about  Bernoulli  trials:  if  you generate  Bernoulli

trials  where  each trial  has probability  of  success equal

to  p, and each time  you get  a success you toss  a coin

and "accept"  the  success with  probability  q, the  result -

ing sequence of  "accepted  successes" is a Bernoulli  pro -

cess with  parameter  pq; if  you make the  Bernoulli  tri -

als happen faster  and faster,  you see that  a randomly

thinned  Poisson process is again a Poisson process.)

But  what's  counter-intuitive  is  that  in  the  continuous

time  context,  when you split  a Poisson process  into  two

thinner  Poisson processes,  the  two  processes are  inde-

pendent !

(This  is  false  for  Bernoulli  trials:  E.g.,  consider

Bernoulli  trials  with  parameter  p = 1/10,  and every  time

there's  a success, use a coin  flip  to  decide  whether

it's  a "red  success" or  a "blue  success".  The  sequence

of  red  successes is  a sequence of  Bernoulli  trials  with

parameter  p' = 1/20,  with  all  trials  independent  of  each

other;  and  the  sequence  of  blue  successes  is  a

sequence of  Bernoulli  trials  with  parameter  p'  = 1/20,

with  all  trials  independent  of  each other;  but  the  blue

sequence is  NOT  independent  of  the  red  sequence,

because if  it  were,  then  1 out  of  400  trials  would have

to  give  a success that's  BOTH  red  and blue,  and our

scheme won't  permit  that.)
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The  preceding  analysis might  make us doubt  the  claim

about  splitting  Poisson processes,  but  examined  more

closely,  it  shows us the  "escape-hatch",  namely, that

for  two  independent  Poisson processes  with  rate  Λ

(unlike  two  independent  Bernoulli  processes with  proba -

bility  p),  the  chance of  success occurring  simultane -

ously in both  processes must  be zero.

In  fact,  if  you repeat  the  construction  of  Poisson pro -

cesses as a limit  of  Bernoulli  processes,  you'll  get  a

proof  of  the  claim about  splitting  Poisson processes.

Going in the  other  direction,  if  you have a Poisson pro -

cess of  rate  Λ and an independent  Poisson process  of

rate  Μ,  and you take  the  set  of  all  event-times  for

both  processes and lump them  together,  the  result  is a

Poisson process of  rate  Λ + Μ.
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Non-homogeneous Poisson processes

Recall that  a Poisson process  is a counting  process  that

associates  some (random)  finite  non-negative  integer

with  every  interval  I ;  the  Poisson process  of  intensity

Λ is characterized  by two  properties  (plus a few  techni -

cal hypotheses  I  won't  worry  about  here):

(1) if  I  = [ t1, t2],  the  expected  number of  events  in the

time-interval  I  is Λ(t2-t1); and

(2)  for  any two  disjoint  time-intervals  I 1 and I 2,  the

number of  events  occurring  in I 1 is  independent  of  the

number of  events  occurring  in I 2 (we saw this  in the  spe-

cial  case of  the  intervals  from  0  to  s and from  s to  t).
This  is called  the  independent  increments  property.

(If  this  looks unfamiliar,  recall  that  last  time  we repre -

sented  a Poisson process  as a function  N(t) that  signi-

fies,  for  each t³ 0, the  number of  events  that  occurred

in [0, t].   So the  number  of  events  that  occurred  in [ t1,

t2]  is just  N(t2) -  N(t1).)
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sented  a Poisson process  as a function  N(t) that  signi-

fies,  for  each t³ 0, the  number of  events  that  occurred

in [0, t].   So the  number  of  events  that  occurred  in [ t1,

t2]  is just  N(t2) -  N(t1).)

So  for  a  Poisson process,  the  expected  number  of

events  from  time  t to  time  t+Dt is  exactly  ΛDt.  That

is, the  expected  number  of  events  from  time  t to  time

t+Dt, divided  by Dt, equals Λ.

More  generally,  we can have a counting  process  with

independent  increments  such that  the  expected  num-

ber  of  events  from  time  t to  time  t+Dt, divided  by  Dt,
converges to  some function  Λ(t), rather  than  some con-

stant  Λ, as Dt goes to  0.

This  is called  a nonhomogeneous                          Poisson             process.

In  the  case where  we have an upper  bound L  on Λ(t)
valid  for  all  t, we can use the  thinning  trick  (also called

the  sampling trick)  discussed earlier:  generate  an ordi -

nary  Poisson process  of  rate  L, and if  the  timer  goes

off  at  time  t, accept  the  event  with  probability  Λ(t)/ L

and reject  it  otherwise.   (If  Λ(t) is  some constant  less

than  L,  this  is  ordinary  Poisson thinning.)   Note  the

resemblance to  acceptance/rejection  sampling.
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than  L,  this  is  ordinary  Poisson thinning.)   Note  the

resemblance to  acceptance/rejection  sampling.

Application:  Recall that  the  expected  number  of  Pois-

son events  in  a time-interval  I  is  proportional  to  the

length  of  I .  But  don't  think  of  I  as a time-interval  any-

more; think  of  it  as an interval  in a 1-dimensional space,

and think  of  the  Poisson process  as defining  a way of

throwing  "darts"  at  the  line  and seeing how many of

them  land in I .  Analogously, define  a 2-dimensional  Pois-

son  process  with  intensity  Λ  as  a  random  variable

whose "values"  are  sets  of  points  in  the  plane, such

t hat :

(1) for  any subset  S  of  the  plane with  area  A,  the

expected  number of  darts  landing in S is ΛA; and

(2)  for  any two  disjoint  subsets  S1 and S2 of  the  plane,

the  number of  darts  landing in S1 is independent  of  the

number  of  darts  landing in  S2  (compare  this  with  the

comparable  statement  in  1 dimension about  the  inter -

vals I 1 and I 2); and

... (some technical  hypotheses  I  won't  include here).
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(2)  for  any two  disjoint  subsets  S1 and S2 of  the  plane,

the  number of  darts  landing in S1 is independent  of  the

number  of  darts  landing in  S2  (compare  this  with  the

comparable  statement  in  1 dimension about  the  inter -

vals I 1 and I 2); and

... (some technical  hypotheses  I  won't  include here).

For  a nice applet  showing the  2-dimensional  Poisson pro -

cess on a rectangle,  see
ht t p:/ / www.mat h.uah.edu/ st at / applet s/ Poisson2DExper iment .xht ml

How do we simulate  a 2-dimensional  Poisson process  on

a rectangle?

You can use 2-dimensional  versions  of  the  methods  we

used in 1 dimension last  time.    E.g., use a Poisson ran-

dom variable  (not  to  be  confused  with  a Poisson pro -

cess!) to  decide  how many points  the  Poisson process

will  assign to  the  whole  rectangle,  and  then  choose

that  many points  uniformly  and independent  from  the

rectangle,  where  choosing a point  (x ,y) uniformly  in the

rectangle  [a,b] [́c,d]  means choosing  x  uniformly  in

[a,b]  and choosing y (independently)  uniformly  in [c,d] .
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How do we simulate  a 2-dimensional  Poisson process  on

the  disk  of  radius  R?

Answer  #1:  Simulate  a 2-dimensional  Poisson process

on the  square of  side-length  2R, and throw  out  all  the

points  that  lie  outside  the  concentric  disk  of  radius  R

(a version  of  acceptance/rejection  sampling).

Answer  #2:  Construct  the  points  radially  from  the  cen-

ter.   Note  that  the  annulus from  radius  r  to  radius

r +Dr  has area  Å  2Πr  Dr , so the  annuli further  out  are

more likely  to  contain  points  than  the  ones further  in,

even if  they  have the  same thickness  Dr.   Sending Dr ®

0, we find  that  if  we replace  the  random points  in the

disk  by  their  distances  r  from  the  center,  and order

these  distances  by  size,  the  result  is  a  nonhomoge-

neous Poisson process with  rate  Λ(r ) = Cr  for  some suit -

able constant  C.  (Note  that  distance  r   plays the  role

of  time  t  here.)   To  simulate  this  sequence of  dis-

tances,  simulate  a Poisson process  of  rate  CR and apply

non-homogeneous thinning,  accepting  a proposed r  with

probability  r / R.  (This  ceases to  be feasible  when r  > R,

since  then  r / R is  not  a probability,  but  this  is  okay,

since we're  only interested  in points  inside  the  disk  of

radius  R; once our  proposed distances  from  the  center

exceed  R, we can stop  generating  proposed  distances.)

Then take  the  resulting  sequence of  random distances

r 1, r 2, ... and choose a random point  uniformly  on the  cir -

cle of  radius  r 1, a random point  uniformly  on the  circle

of  radius  r 2,  etc.;  the  result  will  be  a finite  set  of

points  in  the  disk  governed  by  the  2-dimensional  Pois-

son distribution  of  rate  Λ  (so  that,  in  particular,  for

any subset  S of  the  disk  of  area A, the  expected  num-

ber  of  points  in  the  randomly-chosen  subset  that  will

lie  in S equals ΛA).
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Application to a variant Polya urn model

Recall the  Polya urn model: starting  with  an urn contain -

ing at  least  one white  ball  and at  least  one black  ball,

we repeatedly  draw  a ball  from  the  urn  and replace  it

by two  balls  of  that  same color,  increasing  the  number

of  balls  in the  urn  by 1.  Thus, if  the  urn  currently  con-

tains  a white  balls  and b black  balls,  the  operation  adds

a white  ball  with  probability  a/ (a+b)  and adds a black

ball  with  probability  b/ (a+b).
Polya@n_D := Module@8X, k, a, b<, X = Table@1, 8n<D; k = 2; While@k < n, a = X@@kDD;

b = k - X@@kDD; X@@k + 1DD = X@@kDD + RandomInteger@BernoulliDistribution@a � Ha + bLDD;
H* Print@"X is now ",XD; *L k++D; Return@XDD

Polya@16D

81, 1, 2, 2, 3, 4, 4, 4, 4, 4, 5, 5, 6, 7, 8, 8<
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ListPlot@Polya@100D, PlotRange ® 880, 100<, 80, 100<<, AspectRatio ® Automatic, Joined ® TrueD
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If  we let  the  random  variable  Xn  be  the  number  of

white  balls  in the  urn  when the  total  number of  balls  in

the  urn  is  n,  then  one can show that  Xn/ n converges

almost  surely  to  a (random)  real  number W   that  is uni-

formly  distributed  in [0,1].  

Here's  a variant  procedure:  Starting  with  an urn  con-

taining  at  least  one white  ball  and at  least  one black

ball,  repeat  the  following  operation:  Draw a ball,  put  it

back, and draw  a ball  again (so that  the  second draw  is

independent  of  the  first  draw,  and in particular  it's  pos-

sible  that  we drew  the  same ball  both  times).   If  we

drew  the  same color  ball  on both  draws,  add two  balls

of  that  color  (the  one we just  removed plus a new one);

otherwise  just  put  the  ball  back,  restoring  the  urn  to

its  previous condition.

Thus, if  the  urn  currently  contains  a white  balls  and b

black  balls,  the  operation  adds a white  ball  with  proba -

bility  [a/ (a+b)] 2,  adds  a  black  ball  with  probability

[b/ (a+b)] 2,  and  does  nothing  with  probability  1  -

[a/ (a+b)] 2 -  [b/ (a+b)] 2 = 2ab/ (a+b) 2.

In  the  third  case, we can keep trying  again, until  eventu -

ally we succeed in drawing two  balls  of  the  

same color  and we get  to  increase  the  number  of  balls

in the  urn  by 1.  When this  happens, the  operation  adds

a white  ball  with  probability

[a/ (a+b)] 2 /  ( [a/ (a+b)] 2 + [b/ (a+b)] 2 ) = a2/ (a2+b2)

and adds a black  ball  with  probability

[b/ (a+b)] 2 /  ( [a/ (a+b)] 2 + [b/ (a+b)] 2 ) = b2/ (a2+b2).

Lec11.nb   25



Here's  a variant  procedure:  Starting  with  an urn  con-

taining  at  least  one white  ball  and at  least  one black

ball,  repeat  the  following  operation:  Draw a ball,  put  it

back, and draw  a ball  again (so that  the  second draw  is

independent  of  the  first  draw,  and in particular  it's  pos-

sible  that  we drew  the  same ball  both  times).   If  we

drew  the  same color  ball  on both  draws,  add two  balls

of  that  color  (the  one we just  removed plus a new one);

otherwise  just  put  the  ball  back,  restoring  the  urn  to

its  previous condition.

Thus, if  the  urn  currently  contains  a white  balls  and b

black  balls,  the  operation  adds a white  ball  with  proba -

bility  [a/ (a+b)] 2,  adds  a  black  ball  with  probability

[b/ (a+b)] 2,  and  does  nothing  with  probability  1  -

[a/ (a+b)] 2 -  [b/ (a+b)] 2 = 2ab/ (a+b) 2.

In  the  third  case, we can keep trying  again, until  eventu -

ally we succeed in drawing two  balls  of  the  

same color  and we get  to  increase  the  number  of  balls

in the  urn  by 1.  When this  happens, the  operation  adds

a white  ball  with  probability

[a/ (a+b)] 2 /  ( [a/ (a+b)] 2 + [b/ (a+b)] 2 ) = a2/ (a2+b2)

and adds a black  ball  with  probability

[b/ (a+b)] 2 /  ( [a/ (a+b)] 2 + [b/ (a+b)] 2 ) = b2/ (a2+b2).

26   Lec11.nb



Here's  a variant  procedure:  Starting  with  an urn  con-

taining  at  least  one white  ball  and at  least  one black

ball,  repeat  the  following  operation:  Draw a ball,  put  it

back, and draw  a ball  again (so that  the  second draw  is

independent  of  the  first  draw,  and in particular  it's  pos-

sible  that  we drew  the  same ball  both  times).   If  we

drew  the  same color  ball  on both  draws,  add two  balls

of  that  color  (the  one we just  removed plus a new one);

otherwise  just  put  the  ball  back,  restoring  the  urn  to

its  previous condition.

Thus, if  the  urn  currently  contains  a white  balls  and b

black  balls,  the  operation  adds a white  ball  with  proba -

bility  [a/ (a+b)] 2,  adds  a  black  ball  with  probability

[b/ (a+b)] 2,  and  does  nothing  with  probability  1  -

[a/ (a+b)] 2 -  [b/ (a+b)] 2 = 2ab/ (a+b) 2.

In  the  third  case, we can keep trying  again, until  eventu -

ally we succeed in drawing two  balls  of  the  

same color  and we get  to  increase  the  number  of  balls

in the  urn  by 1.  When this  happens, the  operation  adds

a white  ball  with  probability

[a/ (a+b)] 2 /  ( [a/ (a+b)] 2 + [b/ (a+b)] 2 ) = a2/ (a2+b2)

and adds a black  ball  with  probability

[b/ (a+b)] 2 /  ( [a/ (a+b)] 2 + [b/ (a+b)] 2 ) = b2/ (a2+b2).
VarPolya@n_D :=

Module@8X, k, a, b<, X = Table@1, 8n<D; k = 2; While@k < n, a = X@@kDD; b = k - X@@kDD; X@@k + 1DD =

X@@kDD + RandomInteger@BernoulliDistribution@Ha^2L � Ha^2 + b^2LDD; k++D; Return@XDD

ListPlot@VarPolya@100D, PlotRange ® 880, 100<, 80, 100<<,
AspectRatio ® Automatic, Joined ® TrueD
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Histogram@Table@VarPolya@100D@@100DD, 81000<D, 10D

20 40 60 80 100

100

200

300

400

500

If  we let  the  random  variable  Xn  be  the  number  of

white  balls  in the  urn  when the  total  number of  balls  in

the  urn  is  n, then  it  can be shown that  Xn/ n converges

almost surely  to  0 or  1 (each with  probability  1/2).  

Indeed,  it  can be shown that  with  probability  1, either

the  values Xn stay  bounded as n®¥ or  the  values n -  Xn

stay  bounded as n®¥.

A cute  way to  prove this  is to  recast  the  discrete-time

variant  Polya urn  process  as a sequence of  snapshots

of  a continuous  time  process  where  each color  is  gov-

erned  by its  own Poisson arrival  process,  with  both  col-

ors evolving independently.

Over  continuous  time,  associate  with  each  color  an

arrival  process  where  the  waiting  time  from  ball  m to

ball  m+1 is exponentially  distributed  with  parameter  m2

(mean m-2).  Let  ai (t) (resp.  bi (t)) denote  the  number of

white  (resp.  black)  balls  at  time  t.  At  any time  t, the

next  arrival  is  white  with  probability  proportional  to

(ai (t)
2)/ (ai (t)

2+bi (t)
2),  so  if  we look  only  at  moments

when a ball  arrives,  this  discrete-time  process  is  an

instance  of  the  variant  Polya process introduced  above. 

The  expected  time  until  the  urn  acquires  N  new white

balls is 
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A cute  way to  prove this  is to  recast  the  discrete-time

variant  Polya urn  process  as a sequence of  snapshots

of  a continuous  time  process  where  each color  is  gov-

erned  by its  own Poisson arrival  process,  with  both  col-

ors evolving independently.

Over  continuous  time,  associate  with  each  color  an

arrival  process  where  the  waiting  time  from  ball  m to

ball  m+1 is exponentially  distributed  with  parameter  m2

(mean m-2).  Let  ai (t) (resp.  bi (t)) denote  the  number of

white  (resp.  black)  balls  at  time  t.  At  any time  t, the

next  arrival  is  white  with  probability  proportional  to

(ai (t)
2)/ (ai (t)

2+bi (t)
2),  so  if  we look  only  at  moments

when a ball  arrives,  this  discrete-time  process  is  an

instance  of  the  variant  Polya process introduced  above. 

The  expected  time  until  the  urn  acquires  N  new white

balls is 

â
m=1

N

m-2.

Indeed,  with  probability  1 there  will  come a time  when

the  urn  contains  infinitely  many white  balls,  and the

time  TW  at  which this  first  occurs  has expected  value

â
m=1

¥

m-2 = Π2 � 6 < ¥.

Likewise,  with  probability  1 there  will  come a  time

when the  urn  contains  infinitely  many black  balls,  and

the  time  TB  at  which  this  first  occurs  has expected

value E(TB) = E(TW ) = Π2/ 6.

The  event  TB = TW  has probability  0,  since TB and TW

are  independent  and since  each of  them  (being  a sum

of  infinitely  many  independent  exponentially-dis -

tributed  random variables)  is a continuous random vari -

able  of  positive  variance;  so with  probability  1 there

will  come a moment  when the  urn  contains  infinitely

many balls  of  one color  and only  finitely  many of  the

ot her .

In  the  discrete-time  ball-arrival  model,  this  means

that,  after  a last  arrival  of  one color,  every  new ball  is

of  the  other  color.  

More  generally,  one can take  a variant  Polya model in

which the  probability  that  the  next  ball  is  white  (resp.

black)  is  aΓ/ (aΓ+bΓ)  (resp.  bΓ/ (aΓ+bΓ)).   The  standard

case is  Γ = 1 and the  variant  we looked  at  above is  Γ =

2.   For  any Γ  > 1, the  series  Úm=1
¥ m-Γ  converges,  and the

same reasoning as above can be used to  show that  with

probability  1,  either  the  number  of  white  balls  is

bounded  and  every  subsequent  ball  is  black  or  vice

ver sa.
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Likewise,  with  probability  1 there  will  come a  time

when the  urn  contains  infinitely  many black  balls,  and

the  time  TB  at  which  this  first  occurs  has expected

value E(TB) = E(TW ) = Π2/ 6.

The  event  TB = TW  has probability  0,  since TB and TW

are  independent  and since  each of  them  (being  a sum

of  infinitely  many  independent  exponentially-dis -

tributed  random variables)  is a continuous random vari -

able  of  positive  variance;  so with  probability  1 there

will  come a moment  when the  urn  contains  infinitely

many balls  of  one color  and only  finitely  many of  the

ot her .

In  the  discrete-time  ball-arrival  model,  this  means

that,  after  a last  arrival  of  one color,  every  new ball  is

of  the  other  color.  

More  generally,  one can take  a variant  Polya model in

which the  probability  that  the  next  ball  is  white  (resp.

black)  is  aΓ/ (aΓ+bΓ)  (resp.  bΓ/ (aΓ+bΓ)).   The  standard

case is  Γ = 1 and the  variant  we looked  at  above is  Γ =

2.   For  any Γ  > 1, the  series  Úm=1
¥ m-Γ  converges,  and the

same reasoning as above can be used to  show that  with

probability  1,  either  the  number  of  white  balls  is

bounded  and  every  subsequent  ball  is  black  or  vice

ver sa.
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Likewise,  with  probability  1 there  will  come a  time

when the  urn  contains  infinitely  many black  balls,  and

the  time  TB  at  which  this  first  occurs  has expected

value E(TB) = E(TW ) = Π2/ 6.

The  event  TB = TW  has probability  0,  since TB and TW

are  independent  and since  each of  them  (being  a sum

of  infinitely  many  independent  exponentially-dis -

tributed  random variables)  is a continuous random vari -

able  of  positive  variance;  so with  probability  1 there

will  come a moment  when the  urn  contains  infinitely

many balls  of  one color  and only  finitely  many of  the

ot her .

In  the  discrete-time  ball-arrival  model,  this  means

that,  after  a last  arrival  of  one color,  every  new ball  is

of  the  other  color.  

More  generally,  one can take  a variant  Polya model in

which the  probability  that  the  next  ball  is  white  (resp.

black)  is  aΓ/ (aΓ+bΓ)  (resp.  bΓ/ (aΓ+bΓ)).   The  standard

case is  Γ = 1 and the  variant  we looked  at  above is  Γ =

2.   For  any Γ  > 1, the  series  Úm=1
¥ m-Γ  converges,  and the

same reasoning as above can be used to  show that  with

probability  1,  either  the  number  of  white  balls  is

bounded  and  every  subsequent  ball  is  black  or  vice

ver sa.

Brownian motion

(very loosely adapted from Introduction to Probability Models  by Sheldon Ross, section 10.1)

Definition of Wiener process

One-dimensional  Brownian  motion  is  like  one-dimen-

sional random walk, except  that  the  step-sizes  and the

time-scale  on  which  the  steps  occur  both  go  to  0

(although,  as we'll  see, it's  important  that  they  go to  0

at  different  rates).

Suppose at  each Dt time-step  we go either  Dx to  the

left  or  Dx to  the  right,  each with  probability  1
2

, with

successive steps  being  independent.   Let  X(t)  be  the

position  of  the  walker  at  time  t (so in particular  X(0)

= 0).   The  random variable  X(t) is a sum of  t/ Dt steps,

each with  mean 0  and variance  (Dx) 2, and so has mean

0 and variance  (t/ Dt) (Dx) 2.
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Suppose at  each Dt time-step  we go either  Dx to  the

left  or  Dx to  the  right,  each with  probability  1
2

, with

successive steps  being  independent.   Let  X(t)  be  the

position  of  the  walker  at  time  t (so in particular  X(0)

= 0).   The  random variable  X(t) is a sum of  t/ Dt steps,

each with  mean 0  and variance  (Dx) 2, and so has mean

0 and variance  (t/ Dt) (Dx) 2.

If  we let  Dx = Dt ,  then  (t/ Dt) (Dx) 2  = (t/ Dt) Dt =

t.

If  we send Dt to  0  and apply the  Central  Limit  Theo-

rem,  the  following  properties  of  the  limiting  behavior

of  X(t) seem reasonable:

(1) For  all  t³ 0, X(t) is normal (aka Gaussian) with  mean

0 and variance t.

(2)  The  process  {X(t),  t³ 0}  has  independent  incre -

ments,  in the  sense that  for  all  t1< t2< ...< tn, the  incre -

ments  X(tn)-X(tn-1),  X(tn-1)-X(tn-2),  ...,  X(t2)-X(t1),

X(t1)  are  independent.   In  fact,  each increment  X(t)-

X(s) (with  s < t) is normal with  mean 0 and variance  t-

s.

It  turns  out  that  there  is  exactly  one continuous-time

stochastic  process  satisfying  (1)  and (2);  it  is  called

the  (unit-variance)  Wiener             process,  aka  Br ownian

mot ion.
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It  turns  out  that  there  is  exactly  one continuous-time

stochastic  process  satisfying  (1)  and (2);  it  is  called

the  (unit-variance)  Wiener             process,  aka  Br ownian

mot ion.

The  technical  construction  involves a (big!)  probability

space W whose elements  are  function  f   from  [0, ¥) to

R and a probability  measure ("Wiener  measure")  on W

such that,  for  each fixed  0² s<t, if  we pick  f   from  W

in  accordance  with  Wiener  measure, the  derived  ran-

dom variable  f (t)- f (s)  is  normal  with  mean 0  and vari -

ance t-s.

It  can be shown that,  with  probability  1, such a random

f   is  continuous  EVERYWHERE and  differentiable

NOWHERE.

Gaussians are  "universal",  in  a sense made precise  by

the  Central  Limit  Theorem:  if  you add lots  of  i.i.d.  ran-

dom variables  with  finite  mean and variance,  the  distri -

bution  of  the  sum looks more  and more  Gaussian, even

if  the  individual  summands didn't  have this  property.

Likewise,  Brownian motion  is universal:  if  you look at  all

the  partial  sums of  an infinite  sequence of  i.i.d.  random

variables  with  finite  mean and  variance  and  rescale

time  and space appropriately,  you get  Brownian motion

in the  limit.
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Gaussians are  "universal",  in  a sense made precise  by

the  Central  Limit  Theorem:  if  you add lots  of  i.i.d.  ran-

dom variables  with  finite  mean and variance,  the  distri -

bution  of  the  sum looks more  and more  Gaussian, even

if  the  individual  summands didn't  have this  property.

Likewise,  Brownian motion  is universal:  if  you look at  all

the  partial  sums of  an infinite  sequence of  i.i.d.  random

variables  with  finite  mean and  variance  and  rescale

time  and space appropriately,  you get  Brownian motion

in the  limit.

Constructing Brownian paths

If  we're  only  interested  in  graphing  f (t)  for  t in  Z ,

we can let  f (1) = X1, f (2)  = X1+X2, f (3)  = X1+X2+X3, etc.,

where  X1,X2, X3,... are  normal with  mean 0 and variance

1 (recall  that  a Brownian process  has independent,  nor -

mal increments).   But  what  if  we want  to  know f (t) for

values of  t not  in Z ?

E.g., if  we have taken  f (1)  = B, how should  we pick

f ( 1
2

)?

We can answer this  with  facts  about  conditional  expec-

tation  of  Gaussians.

Recall that,  before  we conditioned  on the  value of  f (1),

the  definition  of  Brownian  motion  told  us that  f ( 1
2

)-

f (0)  and f (1)- f ( 1
2

) are  independent  Gaussians of  mean 0

and variance  1
2

.  Let  Y1 and Y2  denote  these  indepen-

dent  Gaussians, so that  f (0)  = 0,  f ( 1
2

)  = Y1, and f (1) =

Y1+Y2.  So in conditioning  on f (1)=B  we are  conditioning

on Y1+Y2=B, and in  trying  to  simulate  f ( 1
2

)  we need to

know "If  Y1 and Y2  are  independent  Gaussians of  mean

0  and variance  1
2

, and B is  some real  number,  what  is

the  conditional  distribution  of  Y1, given that  Y1+Y2=B?"
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E.g., if  we have taken  f (1)  = B, how should  we pick

f ( 1
2

)?

We can answer this  with  facts  about  conditional  expec-

tation  of  Gaussians.

Recall that,  before  we conditioned  on the  value of  f (1),

the  definition  of  Brownian  motion  told  us that  f ( 1
2

)-

f (0)  and f (1)- f ( 1
2

) are  independent  Gaussians of  mean 0

and variance  1
2

.  Let  Y1 and Y2  denote  these  indepen-

dent  Gaussians, so that  f (0)  = 0,  f ( 1
2

)  = Y1, and f (1) =

Y1+Y2.  So in conditioning  on f (1)=B  we are  conditioning

on Y1+Y2=B, and in  trying  to  simulate  f ( 1
2

)  we need to

know "If  Y1 and Y2  are  independent  Gaussians of  mean

0  and variance  1
2

, and B is  some real  number,  what  is

the  conditional  distribution  of  Y1, given that  Y1+Y2=B?"

It  can be shown that  the  conditional  distribution  of  Y1

is Gaussian with  mean B/2  (that  makes intuitive  sense,

by symmetry)  and with  variance 1
2

.  So we can pick  f ( 1
2

)

to  be  f (0)=0  plus  a random  increment  governed  by  a

Gaussian distribution  with  mean f (1)/2  and variance 1
2

.
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It  can be shown that  the  conditional  distribution  of  Y1

is Gaussian with  mean B/2  (that  makes intuitive  sense,

by symmetry)  and with  variance 1
2

.  So we can pick  f ( 1
2

)

to  be  f (0)=0  plus  a random  increment  governed  by  a

Gaussian distribution  with  mean f (1)/2  and variance 1
2

.

More  generally,  suppose we have already  specified  the

values of  f (.) at  points  ...<s<u<..., and we want  to  specify

the  value of  f (.)  at  some point  t  in  (s,u)  (it  could  be

the  midpoint  (s+u)/2  or  it  could  be  something  else).

Say we have chosen f (s)=A and f (u)=B.  Then we should

pick f (t) to  be a Gaussian with  mean
u-t
u-s

A + t-s
u-s

B

and variance
Hu-tL Ht-sL

u-s
 

Brownian motion  on an interval  (s,u),  conditioned  upon

the  endpoint  values f (s)=A  and f (u)=B, is  called  Br own-

ian     bridge .  Constructing  a Brownian motion  by  repeat -

edly  subdividing  intervals  via Brownian bridges  is called

the  Levy        construction  of  Brownian motion.

If  u = s + 1/ n and t is  the  midpoint  of  [s,u],  then  we

should  pick  f (t)  to  be  a  Gaussian  with  mean

(f (s)+f (u))/2  and variance 1/(4 n).
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If  u = s + 1/ n and t is  the  midpoint  of  [s,u],  then  we

should  pick  f (t)  to  be  a  Gaussian  with  mean

(f (s)+f (u))/2  and variance 1/(4 n).

When  we try  it  on the  interval  [0,1],  we get  functions

that  look like  this:

2000 4000 6000 8000

-2.0

-1.5

-1.0

-0.5

0.0

More  on this  next  time!
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