
Brownian motion

Constructing Brownian paths

Let  W  be  the  set  of  continuous  real-valued  functions

on [0,1].   We  want  to  pick  a function  f  from  W at  ran-

dom in accordance  with  Wiener  measure (the  probabil -

ity  measure underlying  the  mathematical  definition  of

Brownian motion).

Suppose we have already  specified  the  values of  f (.) at

points  ...<s<u<..., and we want  to  specify  the  value of  f (.)

at  some point  t  in  (s,u)  (it  could  be  the  midpoint

(s+u)/2  or  it  could be something  else).  Say we have cho-

sen f (s)=A  and  f (u)=B.   Then  the  Levy  construction

says we should pick  f (t) to  be a Gaussian with  mean
u-t
u-s

A + t-s
u-s

B

and variance
Hu-tL Ht-sL

u-s
 

If  u = s + 1/ n and t is  the  midpoint  of  [s,u],  then  we

should  pick  f (t)  to  be  a  Gaussian  with  mean

(f (s)+f (u))/2  and variance 1/(4 n).



If  u = s + 1/ n and t is  the  midpoint  of  [s,u],  then  we

should  pick  f (t)  to  be  a  Gaussian  with  mean

(f (s)+f (u))/2  and variance 1/(4 n).

Try  it  on the  interval  [0,1]:
In[2]:= Bisect@L_D :=

H* L is the list whose kth element H1 £ k £ nL is the value of X at time k�n,
where X is a Brownian motion. Note that XH0L is omitted from the list. *L
Module@8n, k, M<,
n = Length@LD;
M = Table@0, 82 n<D; H* the answer *L
For@k = 1, k £ n, k++, M@@2 kDD = L@@kDDD;
M@@1DD = RandomReal@NormalDistribution@L@@1DD � 2, Sqrt@1 � H4 nLDDD;
For@k = 2, k £ n, k++,
M@@2 k - 1DD = RandomReal@NormalDistribution@

HL@@k - 1DD + L@@kDDL � 2, Sqrt@1 � H4 nLDDDD;
Return@MDD

In[3]:= B = 8RandomReal@NormalDistribution@0, 1DD<

Out[3]= 80.643338<

In[4]:= B = Bisect@BD

Out[4]= 80.758701, 0.643338<

In[14]:= B = Bisect@BD; ListPlot@B, Joined ® True, PlotRange ® 880, Length@BD<, 8Min@BD, Max@BD<<D

Out[14]=
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For  a picture  of  Brownian motion,  see e.g. ht t p:/ / www.nbi.dk-

/ ~t weezer / pics/ br ownian-mot ion.j pg .

One interesting  feature  of  this  construction  is  that

the  quadratic  variation
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â
k=0

n-1

HBk+1 - BkL2

converges to  1 almost  surely  (i.e. with  probability  1):
In[22]:= B = Bisect@BD; Sum@HB@@k + 1DD - B@@kDDL^2, 8k, 1, Length@BD - 1<D

Out[22]= 1.00097

When we pass to  the  limit  and make B a continuous func -

tion  of  time,  this  turns  into  the  strange  integral

equat ion

à
0

1

HB¢L2 dt2 = 1

The left  hand side  has two  anomalous features:  it  fea -

tures  the  squared time-differential  dt2 instead  of  the

usual dt, and it  features  B',  the  time-derivative  of  B,

which I  said earlier  does not  exist!

These  two  anomalies  cancel  each  other  out  if  we

replace  the  integral  by  Riemann sums:  the  jumps

B(t+Dt) -  B(t) are  larger  than  we'd  get  if  B were  a dif -

ferentiable  function,  but  it's  multiplied  by  (Dt) 2

squared  which  is  smaller  than  the  usual Dt.  (If  you

like  this,  you'll  love the  Ito  calculus!) 

One interesting  feature  of  Brownian motion  — a kind

of  "Law of  Large  Numbers  in  the  small"  — is  that  on

any time-interval  [ t1,t2]  the  quadratic  variation
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à
t1

t2

HB¢L2 dt2

is almost  surely  equal to  t2- t1.

So the  graph of  Brownian motion  isn't  just  any old wig-

gly function;  it's  a wiggly function  that  bears  a special

kind of  imprint  (the  quadratic  variation  on any subinter -

val is equal to  the  length  of  the  subinterval),  and every

excerpt  of  this  graph,  no matter  how small, bears  this

imprint  on each and every  part  of  it.

The  Levy construction  is  not  the  only way to  simulate

Brownian motion.   Something  I'm  trying  to  do  in  my

own research  is  to  find  a way to  construct  Brownian

motion  via birth-death  processes  (aka random walk on

Z) by  successively  approximating  Brownian motion  on R

by continuous-time  random walks on Z, Z/2,  Z/4,  ... .

Two-dimensional Brownian motion

So far,  the  Brownian motion  we've  discussed  is  taking

place in 1 dimension.

If  x(t)  and y(t)  are  independently  doing 1-dimensional

Brownian motion,  then  (x(t),y(t))  is  said to  be doing 2-

dimensional Brownian motion.

For  a picture,  see e.g. 
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For  a picture,  see e.g. 
http://www.crm.umontreal.ca/~physmath/images/gallery.dir/Brownian_motion.gif  .

2-dimensional  Brownian motion  can also be derived  as a

continuum limit  of  2-dimensional  random walk on a grid,

as the  grid-spacing  gets  finer  and finer.

It  can be shown that  2-dimensional  Brownian motion  is

rotationally  invariant.   Indeed,  each  time-increment

(x(t+Dt)-x(t),  y(t+Dt)-y(t))  is  just  a  2-dimensional

Gaussian, and one of  the  basic properties  of  a Gaussian

is  that  a 2-dimensional  Gaussian (X,Y)  consisting  of  a

pair  of  independent  mean 0,  variance  1 Gaussian ran-

dom variables  has rotational  symmetry  in R2.

Note  that  something  genuinely  surprising  is  going on

here,  because random walk  on a 2-dimensional  grid  is

NOT  rotationally  invariant  (because  the  grid  isn't!).

Somehow as you make the  grid  finer  and finer,  and

rescale  time  appropriately  so that  you get  a sensible

(albeit  fractal)  sort  of  walk-like  process  in  the  limit,

the  effect  of  the  grid  disappears!

One way to  see this  directly  is  to  look  at  where  you

are  likely  to  be  after  n steps  of  random  walk  in  the

grid,  with  n reasonably large:
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One way to  see this  directly  is  to  look  at  where  you

are  likely  to  be  after  n steps  of  random  walk  in  the

grid,  with  n reasonably large:
In[23]:= ListPlot@Table@2 8HRandomInteger@BinomialDistribution@200, 1 � 2DD - 100L,

HRandomInteger@BinomialDistribution@200, 1 � 2DD - 100L<,
8100 000<D, AspectRatio ® AutomaticD

Out[23]=
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Brownian motion  can also be  defined  in  higher  dimen-

sions, but  one thing  that's  special  about  2-dimensional

Brownian motion  is  that  it  exhibits  conformal  invari -

ance.  That  is,  if  D  and D¢  are  simply-connected  sub-

sets  of  the  plane and j:D®D¢  is  a conformal  (one-to-

one and onto)  map between  those  domains (i.e., an orien -

tation-preserving  map that  preserves  angles),  then  j

carries  Brownian motion  on D   to  Brownian motion  on

D¢, modulo time-parametrization.   That  is,  the  behavior

of  Brownian motion  under  a conformal  map is  a time-

changed Brownian motion  that  sometimes goes "faster"

and sometimes  goes "slower"  according  to  where  it  is,

but  whose itinerary,  viewed  as a time-ordered  set  of

points,  is  statistically  indistinguishable  from  the

itinerary  of  Brownian  motion.   (I  put  "faster"  and

"slower"  in  quotes  because  Brownian  motion  doesn't

have speed of  the  ordinary  kind;  with  probability  1 it's

not  differentiable  anywhere.)
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Brownian motion  can also be  defined  in  higher  dimen-

sions, but  one thing  that's  special  about  2-dimensional

Brownian motion  is  that  it  exhibits  conformal  invari -

ance.  That  is,  if  D  and D¢  are  simply-connected  sub-

sets  of  the  plane and j:D®D¢  is  a conformal  (one-to-

one and onto)  map between  those  domains (i.e., an orien -

tation-preserving  map that  preserves  angles),  then  j

carries  Brownian motion  on D   to  Brownian motion  on

D¢, modulo time-parametrization.   That  is,  the  behavior

of  Brownian motion  under  a conformal  map is  a time-

changed Brownian motion  that  sometimes goes "faster"

and sometimes  goes "slower"  according  to  where  it  is,

but  whose itinerary,  viewed  as a time-ordered  set  of

points,  is  statistically  indistinguishable  from  the

itinerary  of  Brownian  motion.   (I  put  "faster"  and

"slower"  in  quotes  because  Brownian  motion  doesn't

have speed of  the  ordinary  kind;  with  probability  1 it's

not  differentiable  anywhere.)

In  two  dimensions, ANY  two  simply-connected  compact

subsets  of  the  plane are  related  by  a conformal  map,

so this  gives a very  large  set  of  symmetries  for  Brown-

ian motion  --  much bigger  than  the  symmetry  group of

any deterministic  path  (or  any other  sort  of  geometric

object)  could  be!  In  higher  dimensions, there  are  far

fewer  conformal  maps.  So  there's  something  rather

special about  two-dimensional  Brownian motion.
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