
Electrical networks and random walk

Voltage and probability

(adapted from Random Walks and Electric Networks  by Peter G. Doyle and J. Laurie Snell)

In  a finite  network  of  nodes connected  by  resistors,

with  two  of  the  nodes joined  to  opposite  poles of  a 1-

volt  battery,  each node x  eventually  settles  down to  a

voltage  vx .  If  nodes x   and y  are  connected  by a resis -

tor  with  resistance  Rx ,y , then  Ohm's  Law says that  the

amount of  current  ix ,y  flowing  through  this  resistor  in

the  direction  from  node x   to  node y   is  (vx -vy )/ Rx ,y .

If  we define  the  conductance as the  reciprocal  of  resis -

tance,  then  we can write  this  as ix ,y  = (vx -vy )Cx ,y .  

Note  that  Cy ,x  = Cx ,y , so that  iy ,x  = - ix ,y .

We  now associate  with  this  circuit  a  Markov  chain

whose states  correspond  to  the  nodes of  the  circuit.

Define  the  probability  of  a step  from  x   to  y  as px ,y  =

Cx ,y / Cx , where  Cx  = Úy  Cx ,y .  Then  we can check  that

Cx  is  a stationary  mass-distribution  for  mass-flow  gov-

erned  by the  matrix  P. Indeed,  Cx  is  a reversible  mea-

sure for  the  transition  matrix  P; that  is, for  all  x ,y  we

have the  detailed  balance condition

Cx  px ,y  = Cy  py ,x

(check:  this  is  just  the  assertion  Cx ,y=Cy ,x ).  So if  we

normalize  by  defining  w(x) = Cx  /  C  for  all  x , with  C =

Úx  Cx , we get  a stationary  probability  distribution  w.  



Define  the  probability  of  a step  from  x   to  y  as px ,y  =
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have the  detailed  balance condition
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normalize  by  defining  w(x) = Cx  /  C  for  all  x , with  C =

Úx  Cx , we get  a stationary  probability  distribution  w.  

Since  our  circuit  is  connected,  the  Markov  chain  is

er godic.

Suppose the  1-volt  battery  is  joined  to  nodes a  and b,

so that  va = 1 and vb = 0.

Claim (the  probabilistic  interpretation  of  voltage):  For

each x , vx   equals the  probability  that,  starting  from

state  x ,  the  Markov  chain  reaches  state  a   before

state  b.

Proof:  By Kirchhoff's  Current  Law, the  total  net  cur -

rent  flowing  into  any node x   other  than  a  or  b  must

equal 0:

Úy  Cx ,y (vx -vy ) = 0

so that

vx  Cx = vx  Úy  Cx ,y  = Úy  Cx ,yvx

= Úy  Cx ,yvy .
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Proof:  By Kirchhoff's  Current  Law, the  total  net  cur -

rent  flowing  into  any node x   other  than  a  or  b  must

equal 0:

Úy  Cx ,y (vx -vy ) = 0

so that

vx  Cx = vx  Úy  Cx ,y  = Úy  Cx ,yvx

= Úy  Cx ,yvy .

Dividing  by Cx , we get

vx  = Úy  (Cx ,y / Cx )vy  = Úy  px ,yvy

so that  the  voltage  vx  is  a harmonic  function  of  x   for

all x   other  than  a,b.

Let  hx  be the  probability,  starting  at  x , that  state  a  is

reached  before  b.  We  know that  hx  is  harmonic  away

from  a and b; that  is,

hx  = Úy  px ,yhy

Fur t her mor e

va = ha = 1

and

vb = hb = 0

Thus  if  we modify  P by  making a  and b   absorbing

states,  we obtain  an absorbing  Markov  chain, and v  and

h   are  both  harmonic  functions  for  the  absorbing

Markov  chain with  the  same boundary  values.  Hence v

= h.
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Thus  if  we modify  P by  making a  and b   absorbing

states,  we obtain  an absorbing  Markov  chain, and v  and

h   are  both  harmonic  functions  for  the  absorbing

Markov  chain with  the  same boundary  values.  Hence v

= h.

(For  a probabilistic  interpretation  of  the  current  ix ,y ,

see section  1.3.3 of  Doyle & Snell.)

This  relationship  between  voltage  and probability  some-

times  gives  an alternate  way of  computing  probabili -

ties,  as we will  shortly  see.
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Effective resistance

(also adapted from Random Walks and Electric Networks)

When  we  impose  a  voltage-difference  v   between

nodes a  and b, a voltage  va = v  is established  at  a  and

a voltage  vb  = 0  is  established  at  b, and a current  ia  =

Úx  ia,x  will  flow  into  the  circuit  from  the  outside

source  (or  battery).  The  amount of  current  that  flows

depends upon the  overall  resistance  in  the  circuit.   If

the  voltage  between  a  and b  is  multiplied  by  a con-

stant,  then  every  voltage  and current  in  the  circuit  is

multiplied  by  the  same constant,  so the  ratio  va/ ia  is

unaffected.   We  define  the  effective  resistance  Reff

between  a  and b   as va/ ia  and the  effective  conduc-

tance  Ceff  as the  reciprocal  quantity  ia/ va.

Claim (the  probabilistic  interpretation  of  effective  con-

ductance):  Ceff / Ca is  the  probability  ("escape-probabil -

ity")  that  the  Markov  chain,  started  at  a,  reaches  b

before  it  returns  to  a.

Proof:  For  simplicity  (and  without  loss  of  generality)

set  va = 1, so that

Ceff  = ia = Úx  ia,x  = Úx  (va-vx )Ca,x  

       = Úx  va Ca,x  -  Úx  vx  Ca,x .

Dividing  by Ca, we get

Ceff / Ca = Úx  va pa,x  -  Úx  vx  pa,x

  = 1 -  Úx  vx  pa,x
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Proof:  For  simplicity  (and  without  loss  of  generality)

set  va = 1, so that

Ceff  = ia = Úx  ia,x  = Úx  (va-vx )Ca,x  

       = Úx  va Ca,x  -  Úx  vx  Ca,x .

Dividing  by Ca, we get

Ceff / Ca = Úx  va pa,x  -  Úx  vx  pa,x

  = 1 -  Úx  vx  pa,x

Since  each  term  vx  pa,x  is  the  probability  that  the

Markov  chain takes  a step  from  a  to  x  and thereafter

hits  a  before  hitting  b, the  sum 

Úx  vx  pa,x  is  the  probability  that  the  Markov  chain

takes  one step  and thereafter  hits  a  before  hitting  b,

so Ceff / Ca  is  the  complementary  probability,  namely,

the  probability  that  the  Markov  chain  hits  b  before

returning  to  a.

One reason this  interpretation  can help  us is  that  we

can use formulas  governing effective  resistance/conduc -

tance  to  compute  probabilities  about  Markov  chains

and random walk.

The  two  most  useful  such formulas  are  the  series  and

parallel  formulas:

when we  add  two  circuits  in  ser ies,  their  ef f ect ive

r esist ances add;

when we add two  circuits  in par allel, their  effective               con-

duct ances add.
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The  two  most  useful  such formulas  are  the  series  and

parallel  formulas:

when we  add  two  circuits  in  ser ies,  their  ef f ect ive

r esist ances add;

when we add two  circuits  in par allel, their  effective               con-

duct ances add.

(If  I  teach  this  topic  in the  future,  I  may ask students

to  derive these  circuit  laws from  facts  about  random

walk on circuits!)

Ladder graphs

These ideas can also be applied to  some infinite  graphs.

Consider the  infinite  ladder  graph shown in ht t p:/ / f acul-

t y.uml.edu/ j pr opp/ 584/ conduct .ht ml

The  rules  for  series  and parallel  combination  of  cir -

cuits  let  us  show  that  the  effective  conductance

between  nodes A and B is 3 , and Ceff /  Ca = 3 / 3.

To see this,  first  consider  a one-sidedly  infinite  ladder

graph,  L. The  infinite  network  is  electrically  equivalent

to  a single  resistor  of  unknown resistance  R.  But  we

can also view L as consisting  of  a "smaller"  (also infi -

nite)  copy of  L  joined  to  a and b  by  1-ohm resistors

(where  a and b  are  also joined  to  one another  by  a 1-

ohm resistor).   If  we replace  the  copy of  L by an electri -

cally  equivalent  R-ohm resistor,  we see that  the  num-

ber  R must  have the  property  that  an R-ohm resistor

joining  a and b is electrically  equivalent  to  a 4-node  cir -

cuit  (with  nodes a, b, a' , and b' ) consisting  of  a 1-ohm

resistor  joining  a and b, a 1-ohm resistor  joining  a and

a' , a 1-ohm resistor  joining  b and b' , and an R-ohm resis -

tor  joining  a'  and b' .  By the  rule  for  series  composi-

tion,  the  path  joining  a and b  in  this  circuit  by  way of

a'  and  b'  has  effective  resistance  1+R+1 = 2+R,  i.e.

effective  conductance  1/(2+R),  and since there  is  also

a 1-ohm resistor  joining  a and b  directly,  the  rule  for

parallel  composition  tells  us that  the  whole circuit  has

effective  conductance  1/(2+R)  + 1.  But  we also know

that  the  circuit  has effective  resistance  R and hence

effective  conductance  1/ R.   Therefore  1/(2+R)  + 1 =

1/ R.

We can easily solve this  for  R:
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In[202]:= Solve@81 � H2 + RL + 1 � 1 � R<, 8R<D

Out[202]= ::R ® -1 - 3 >, :R ® 3 - 1>>

The  negative  root  is  spurious,  so  we must  have R =

3 - 1.  Hence the  one-sided  ladder  circuit  has effec -

tive  conductance 

C = 1/( 3 - 1) = ( 3 + 1)/ 2.

Now the  doubly-infinite  ladder  network  can be viewed

as the  parallel  composition  of  a left  half,  a 1-ohm resis -

tor  in the  middle,  and a right  half,  where  the  left  half

and right  half  can each be viewed as the  series  composi-

tion  of  a 1-ohm resistor,  an R-ohm resistor,  and a 1-

ohm resistor;  so its  effective  conductance  is  1/(2+R) +

1 + 1/(2+R) = 3  and its  effective  resistance  is  1/ 3

= 3 /  3.
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In[206]:= Simplify@2 � H2 + HSqrt@3D - 1LL + 1D

Out[206]= 3

Now turn  the  graph  into  a Markov  chain  by  putting  a

unit  resistor  between  any two  nodes that  are  joined  by

an edge.  Then  the  Markov  chain is  just  unbiased ran-

dom walk on the  nodes.  (Since  this  is  a Markov  chain

with  infinite  state  space, the  principles  we will  be invok-

ing  require  a more  rigorous  treatment  than  we have

given so far;  we were  implicitly  assuming that  our  cir -

cuits  had only finitely  many nodes.  However,  the  calcu-

lation  that  follows  can be justified.)   So the  probabil -

ity  that  a random  walker  who starts  at  A  will  hit  B

before  returning  to  A is 3 /3.  

For  a proof  of  this  that  avoids electrical  analysis, see 

http://faculty.uml.edu/jpropp/584/ladders.html  .

Other  geometries  are  possible  (ladders  built  of  trian -

gles  instead  of  squares,  etc.);  they  all  give  nice

quadratic  irrationals.   Rotor-walk  on  these  graphs

should be susceptible  to  analysis, just  as in the  case of

the  "Goldbugs"  walk (although  the  analysis for  ladder-

graphs is likely  to  be more complicated).

Course evaluation
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Course evaluation

Any topics  you'd  like  to  have seen less of?   More  of?

Any of  at  all? (E.g., branching  processes.)

Should  the  computational  part  of  the  class  be

improved,  and if  so, how?
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