
Math 584, Problem Set #4
(due in class Mon., 12/6/10)

You may use computers for any and all of these problems, but you should
include explicit description of the steps you took and the code you entered.

Also: You must write down the number of minutes you spent working on
each problem. This will help me keep the work-load at an appropriate level.

A. Consider the random walk on {0, 1, 2, 3, ...} starting from 1 with ab-
sorption at 0, in which pij = 1/2 if j = i−1 or j = i+2 and pij = 0 otherwise.
(a) Using the method we used in class to study one-dimensional random walk,
show that the probability of absorption pa is either 1 or (

√
5 − 1)/2 ≈ .608.

(b) Do a pseudorandom simulation of the random walk, with a cut-off at 100.
Which value of pa does your experiment support?

B. In class we saw how we can use the simple random walk on {1, 2, 3}
(with stationary probability measure (1/4, 1/2, 1/4)) to derive a Metropo-
lis chain with stationary measure (1/3, 1/3, 1/3); this derived Markov chain
turned out to be nothing more than semi-reflecting random walk on {1, 2, 3}.
Turn this around by using the semi-reflecting random walk on {1, 2, 3} (with
stationary probability measure (1/3, 1/3, 1/3)) to derive a Metropolis chain
with stationary measure (1/4, 1/2, 1/4). Check your answer by verifying di-
rectly that (1/4, 1/2, 1/4) is a stationary measure for your Metropolis chain.

C. Show that

||π − π′||TV :=
1

2

∑

s∈S

|π(s) − π′(s)|

is also equal to the maximum of |π(E) − π′(E)| over all subsets E of S.
D. Consider a semireflecting random walk on {1, 2, 3, 4}with pi,max(i−1,1) =

pi,min(i+1,4) = 1
2

for all i, implemented via a coin toss: when the particle is
in site i, toss a coin, and move the particle to site max(i − 1, 1) if the coin
comes up heads and move the particle to site min(i + 1, 4) if the coin comes
up tails. Suppose two particles execute this walk simultaneously starting
from 1 and 4 respectively. Assume the coin used by the first particle is in-
dependent of the coin used by the second particle. Let the random variable
X be the number of steps each of the two particles takes until they both
arrive at the same site for the first time. Use linear algebra to compute the



expected value of X exactly, and compare with the results of a 1000-run
pseudorandom simulation.

E. Repeat problem D, but this time, assume that the two particles use
the same coin at each step (instead of independent coins). That is, if one
particle is at i and the other at j, then with probability 1

2
the first moves

to site max(i − 1, 1) and the second moves to site max(j − 1, 1) and with
probability 1

2
the first moves to site min(i + 1, 4) and the second moves to

site min(j + 1, 4).
F. Repeat problem E, so that once again, the second particle uses the

same coin as the first particle, but this time, the second particle uses the
opposite side of the coin. That is, if one particle is at i and the other at j,
then with probability 1

2
the first moves to site max(i − 1, 1) and the second

moves to site min(j + 1, 4) and with probability 1
2

the first moves to site
min(i + 1, 4) and the second moves to site max(j − 1, 1).

G. Consider the pinned steppingstone model on {1, 2, 3, 4, 5}. Site 1 is
pinned to color 0 and site 5 is pinned to color 1; sites 2, 3, and 4 can each
have color 0 or color 1. At each time step, we roll a 6-sided die to pick one
of the six pairs (i, j) with 2 ≤ i ≤ 4 and j = i ± 1 and we change the color
of site i to the color of site j. Describe this as an 8-state Markov chain.
What are the transient states, what are the recurrent states, and what is the
stationary distribution?


