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ABSTRACT. In this paper we strengthen the result of Fomin and Zelevinsky (2002) on the Laurent
phenomenon for Somos-4 and Somos-5 sequences.

KEY WORDS: Somos sequence, elliptic function, addition theorem, Laurent phenomenon.

DOI: 10.1134/50016266319030067

1. Introduction. A Somos-k sequence is a sequence {s,} satisfying a kth order (k > 2)
quadratic recurrence relation of the form

SntkSn = D OGSnik—jSntis (1)
1<j<k/2
where the o (1 < j < k/2) are constants.
One distinguishes the important class of Somos sequences that have the Laurent property; i.e.,
all terms are Laurent polynomials in the initial conditions, s, € Z[slﬂ, Y e aOéLk/2J]'
The Laurent property of the Somos-2 and Somos-3 sequences follows from the explicit formulas

n(n—1)/2 1—
sn:al( )/ 5o st

for k =2 and
n?/4 —n/2 2 . .
o/ s_n/ sosn/ if n is even
5 — 1 1 1 )
n

a§n2_1)/48(_1_n)/2sgn+1)/2 if n is odd

for k = 3. There are no such simple formulas for & > 4. Based on the theory of cluster algebras,
Fomin and Zelevinsky [3] proved the Laurent property of the Somos-k sequence for k = 4,5,6,7. In
particular, it follows that the Somos-k sequences (k = 4,5,6,7) are integer-valued for s; = --- =

Sg = a1 =+ = |}z = 1. In the present paper, we prove a stronger version of this statement for
k=4,5.

Theorem 1. Define a Somos-4 sequence by the initial conditions s_1 = u, $g = x, S1 = ¥,
and sy = v and the recurrence relation

Sn42Sn—2 = XSp415n-1 + B, (2)
where a = wvryw, B = wvxryz, and u, v, w, x, y, and z are independent formal variables. Then
Sy, € Lu,v,w, x,y, z].

Theorem 2. Define a Somos-5 sequence by the initial conditions s_o = u, s_1 = x, sg = t,
s1 =19y, and sy = v and the recurrence relation
SpSn—5 = ASp—1Sn—4 + 53n—23n—37 (3)

where o = wvryw, [ = wvryz, and t, u, v, w, x, y, and z are independent formal variables. Then
Sn € Z[t,u,v, w, x,y, z].

Remark 1. Special cases of Theorem 1 were considered earlier by Somos [6] (w = z and
x =y =1) and Monina [1] (z =y =1).
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2. Somos-4. For this sequence {s,}72 we define the matrices

—00)

Méo) = (3m+n3m—n)%,n:—oo7 Ms(l) = (3m+n+15m—n)%,n:—oo

MS(O) <m17...,mk> and Ms(l) <m1,...,mk>
Nyy...,Ng ny, ..., Nk

we denote the finite submatrices of Méo) and Mégl), respectively, formed by the entries at the

By

intersections of rows mq,...,m; and columns ny,...,ng.
Set
DY) (T TR — Qe pg ) (TP TR 5= )1,
NnNyy..., N nNyy...,Ng

A key property of Somos-4 sequences is that the rank of the matrices M, §j ), 7 =0,1, does not
exceed 2 (and is 2 in general position). This follows, for example, from the general formula
o(zp +nz)

a(2)"*

S, = AB" (4)

expressing the elements of the sequence via the Weierstrass sigma function (see [8] and [4]).
For elementary proofs, see [7] and [2].

Theorem 3. Let {s;} be an arbitrary Somos-4 sequence. Then

() (M, M2, M3\ _ o
D () —o. =0 )

for any integers my, ma, ms and ny, na, ns.
Proof of Theorem 1. It follows from the relations
s3 = zyv(y’w + 2vz), s o = zyu(riw + yuz), s_3 = zu’v(ztywz + 2*yPuz® + uw)

that the assertion of the theorem holds for the numbers [ with |I[| < 3. Therefore, we assume
that |I| > 3 in what follows. We will prove the theorem by induction, assuming that the desired
statement has already been proved for numbers with absolute value less than |I].

For even numbers [ = 2n (|n| > 2), we use the relation

2
SoanT Sn+1S5n—1 Sy
1,0
Dgo) ) $14nS1-n v y?| =0, (6)
n,1,0 2
SnS—n yu T

which is a special case of Eq. (5). This relation can be reduced by equivalence transformations to

the form

2 2
TUS, — Y Sp+1Sn—1 S14+nS1—n (7)

2 2
Yussy — T“Sp+1Sn—1  SnS—n

3

(2’0 — y’u)sz, =

Let us show that the resulting determinant is divisible without remainder by 23v — y3u. Consider
the right-hand side of Eq. (7) as a polynomial in the variable v. Dividing it with remainder by

x3v — y3u, we obtain the relation

3

IL’(.’E v = ygu)52n = (x3,v - ygu)Q(u7 v,w,,Y, Z) + T(’U,, w, Y, Z)a (8)

where q(u,v,w,z,y,2) € Z[u,v,w,z*,y,2] and r(u,w,z,y,2) € Z[u,w,z*',y,2]. For positive
initial conditions u, v, z, and y and positive values of the parameters w and z, the recurrence
relation (2) defines a two-way infinite positive sequence {s,}. In particular, all elements of this se-
quence are well defined. (Division by zero never occurs when computing these elements.) Therefore,
by setting v = y3u/z3 in (7), we find that the remainder r(u,w,x,y,2) is identically zero. Thus,
T892, € Zu,v,w,zt y, 2].
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Considering the right-hand side of (7) as a polynomial in the variable u, we find in a similar
way that xs, € Z[u,v,w,z,y*", 2]. Therefore, xs9, € Z[u,v,w,z,y, z]. If we reproduce the entire
argument replacing the determinant (6) with the determinant

2
SonU Sn+25n  Sp+1
) (n+ 1,1,0 _ }' _
Dy <n 110 SnS2_n U y2 0,
Sn—181—n yu x

then we obtain vsy, € Z[u,v,w,z,y, z|. Thus, sop, € Z[u,v,w,x,y, z].
For odd I =2n+1 (=2 < n < 1), the assertion of the theorem can be proved in a similar way
based on the relations

)

2
Son4+1Y  Sn42Sn Sp4q
n+1,1,0 n
DY < n 1 > = |S14+nS1-n TV y—f =0

SnS_n YU x

3N

Sn+25—n v Yy

© n.1.0 S2n+1T Sn+18n—1 S
Pt _

3 < > B

Sn+18—1-n yu T

[CEN)
I
)

3. Somos-5. Hone [5] found general formulas for the elements of the Somos-5 sequence defined
by the recurrence relation (3). They can be written as
o(z0 + 2nz)
o(z)@n)? 7

olzo+ (2n+1)z
( (0)-(2)((271-1-1)2) ) ’ (9)

sop, = Ao By Sopy1 = A1 B
A comparison with (4) shows that an arbitrary Somos-5 sequence can be viewed as a Somos-4
sequence whose odd-numbered elements are multiplied by some geometric progression. It follows
from formulas (9) that the matrix M, O has rank 4 in general position. However, each entry of M, M
is a product of even- and odd- numbered elements of the Somos-5 sequence. Therefore, the rank

of the matrix Ms(l) for the Somos-5 sequence coincides with that of the matrix Mél) constructed
from the Somos-4 sequence. Thus, the following assertion holds.
Theorem 4. One has
D(l) mi,ma,Mms3 —0 (10)
s ni,n2,n3

for an arbitrary Somos-5 sequence {s;} and any integers my, mo, ms and ni, na, ns.

Remark 2. For the relation

DO mi,m2, M3\ _ 0 (11)
5\ ni,n2,n3

to hold, one must additionally require that at least one of the two conditions m; = mo = mg

(mod 2) and n1 = ng = n3 (mod 2) be satisfied. In this case, the proof of (11) also follows

from (9).

Proof of Theorem 2. We simultaneously prove that the elements of the sequence {s;} belong
to the ring Z[t, u,v,w,z,y, z] and that ¢ divides s; for |I| > 3. The proof will be carried out by
induction, assuming that the desired assertions have already been proved for numbers with absolute
value less than |I|. We will also assume that || > 5, because the assertion of the theorem for small
admits a straightforward verification.

For even | = 2n (|n| > 3), we use the relation

n.0. —1 Sanly Sn+4285n—1 Sn+1Sn
Dgl) v = | SpSi_n v ty =0,
n—110
Sn—15—n Yyu tr
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which is a special case of Eq. (10). This relation can be reduced by equivalence transformations to
the form

TUSp+15n — ZL/y571—i-23n—1 SnS1—n

YUSp41Sn — tTSp128n—1 Sn—15—n|

The divisibility of the resulting determinant by z?v — 3%u can be justified in the same way as in
the proof of Theorem 1. By the inductive assumption, all entries of a 2 x 2 matrix are divisible by
t, which means that so,y € tZ[t,u,v,w,z,y, z]. In a similar way, considering the relation

yt(az% — y2u)52n =

Sond Sn+15n—2 SnSn—1
—1,0,—-1
Dgl) n—-10 = [Sn+15—n Tv ty | =0,
n,1,0
SnS_1—n YU tr

we find that so,x € tZ[t,u,v,w,x,y, z]. Therefore, s9, € tZ[t,u,v,w,z,y,z].
For odd I =2n+1 (—4 < n < 3), the induction step is justified based on the relations

Soan4+1U Sn4+15n—2 SnSn—1
n—1,0-1
D ( n+i 10 > = |Sn425-n-1 v ty | =0,
B Sn41S—n YU tx
Son+1v Sn+3Sn  Sn4+2Sn+1
n+1,0,—1
Dgl) ( n—11.0 > = | 8$,S1-n v ty = 0.
e Sn—18—n Yyu tx
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