BRIEF COMMUNICATIONS

On the Laurent Phenomenon for Somos-4 and Somos-5 Sequences

V. A. Bykovskii and A. V. Ustinov

Received February 20, 2019; in final form, February 20, 2019; accepted May 16, 2019
Abstract. In this paper we strengthen the result of Fomin and Zelevinsky (2002) on the Laurent phenomenon for Somos-4 and Somos- 5 sequences.
Key words: Somos sequence, elliptic function, addition theorem, Laurent phenomenon.
DOI: 10.1134/S0016266319030067

1. Introduction. A Somos- k sequence is a sequence $\left\{s_{n}\right\}$ satisfying a k th order $(k \geqslant 2)$ quadratic recurrence relation of the form

$$
\begin{equation*}
s_{n+k} s_{n}=\sum_{1 \leqslant j \leqslant k / 2} \alpha_{j} s_{n+k-j} s_{n+j}, \tag{1}
\end{equation*}
$$

where the $\alpha_{j}(1 \leqslant j \leqslant k / 2)$ are constants.
One distinguishes the important class of Somos sequences that have the Laurent property; i.e., all terms are Laurent polynomials in the initial conditions, $s_{n} \in \mathbb{Z}\left[s_{1}^{ \pm 1}, \ldots, s_{n}^{ \pm 1}, \alpha_{1}, \ldots, \alpha_{[k / 2]}\right]$.

The Laurent property of the Somos-2 and Somos-3 sequences follows from the explicit formulas

$$
s_{n}=\alpha_{1}^{n(n-1) / 2} s_{0}^{1-n} s_{1}^{n}
$$

for $k=2$ and

$$
s_{n}= \begin{cases}\alpha_{1}^{n^{2} / 4} s_{-1}^{-n / 2} s_{0} s_{1}^{n / 2} & \text { if } n \text { is even } \\ \alpha_{1}^{\left(n^{2}-1\right) / 4} s_{-1}^{(1-n) / 2} s_{1}^{(n+1) / 2} & \text { if } n \text { is odd }\end{cases}
$$

for $k=3$. There are no such simple formulas for $k \geqslant 4$. Based on the theory of cluster algebras, Fomin and Zelevinsky [3] proved the Laurent property of the Somos- k sequence for $k=4,5,6,7$. In particular, it follows that the Somos- k sequences $(k=4,5,6,7)$ are integer-valued for $s_{1}=\cdots=$ $s_{k}=\alpha_{1}=\cdots=\alpha_{\lfloor k / 2\rfloor}=1$. In the present paper, we prove a stronger version of this statement for $k=4,5$.

Theorem 1. Define a Somos-4 sequence by the initial conditions $s_{-1}=u, s_{0}=x, s_{1}=y$, and $s_{2}=v$ and the recurrence relation

$$
\begin{equation*}
s_{n+2} s_{n-2}=\alpha s_{n+1} s_{n-1}+\beta s_{n}^{2} \tag{2}
\end{equation*}
$$

where $\alpha=u v x y w, \beta=u v x y z$, and u, v, w, x, y, and z are independent formal variables. Then

$$
s_{n} \in \mathbb{Z}[u, v, w, x, y, z] .
$$

Theorem 2. Define a Somos-5 sequence by the initial conditions $s_{-2}=u, s_{-1}=x, s_{0}=t$, $s_{1}=y$, and $s_{2}=v$ and the recurrence relation

$$
\begin{equation*}
s_{n} s_{n-5}=\alpha s_{n-1} s_{n-4}+\beta s_{n-2} s_{n-3}, \tag{3}
\end{equation*}
$$

where $\alpha=u v x y w, \beta=u v x y z$, and t, u, v, w, x, y, and z are independent formal variables. Then $s_{n} \in \mathbb{Z}[t, u, v, w, x, y, z]$.

Remark 1. Special cases of Theorem 1 were considered earlier by Somos [6] ($w=z$ and $x=y=1)$ and Monina [1] $(x=y=1)$.
2. Somos-4. For this sequence $\left\{s_{n}\right\}_{n=-\infty}^{\infty}$, we define the matrices

$$
M_{s}^{(0)}=\left(s_{m+n} s_{m-n}\right)_{m, n=-\infty}^{\infty}, \quad M_{s}^{(1)}=\left(s_{m+n+1} s_{m-n}\right)_{m, n=-\infty}^{\infty}
$$

By

$$
M_{s}^{(0)}\binom{m_{1}, \ldots, m_{k}}{n_{1}, \ldots, n_{k}} \quad \text { and } \quad M_{s}^{(1)}\binom{m_{1}, \ldots, m_{k}}{n_{1}, \ldots, n_{k}}
$$

we denote the finite submatrices of $M_{s}^{(0)}$ and $M_{s}^{(1)}$, respectively, formed by the entries at the intersections of rows m_{1}, \ldots, m_{k} and columns n_{1}, \ldots, n_{k}.

Set

$$
D_{s}^{(j)}\binom{m_{1}, \ldots, m_{k}}{n_{1}, \ldots, n_{k}}=\operatorname{det} M_{s}^{(j)}\binom{m_{1}, \ldots, m_{k}}{n_{1}, \ldots, n_{k}}, \quad j=0,1 .
$$

A key property of Somos-4 sequences is that the rank of the matrices $M_{s}^{(j)}, j=0,1$, does not exceed 2 (and is 2 in general position). This follows, for example, from the general formula

$$
\begin{equation*}
s_{n}=A B^{n} \frac{\sigma\left(z_{0}+n z\right)}{\sigma(z)^{n^{2}}} \tag{4}
\end{equation*}
$$

expressing the elements of the sequence via the Weierstrass sigma function (see [8] and [4]).
For elementary proofs, see [7] and [2].
Theorem 3. Let $\left\{s_{l}\right\}$ be an arbitrary Somos-4 sequence. Then

$$
\begin{equation*}
D_{s}^{(j)}\binom{m_{1}, m_{2}, m_{3}}{n_{1}, n_{2}, n_{3}}=0, \quad j=0,1, \tag{5}
\end{equation*}
$$

for any integers m_{1}, m_{2}, m_{3} and n_{1}, n_{2}, n_{3}.
Proof of Theorem 1. It follows from the relations

$$
s_{3}=x y v\left(y^{2} w+x v z\right), \quad s_{-2}=x y u\left(x^{2} w+y u z\right), \quad s_{-3}=x u^{2} v\left(x^{4} y w z+x^{2} y^{2} u z^{2}+u w\right)
$$

that the assertion of the theorem holds for the numbers l with $|l| \leqslant 3$. Therefore, we assume that $|l|>3$ in what follows. We will prove the theorem by induction, assuming that the desired statement has already been proved for numbers with absolute value less than $|l|$.

For even numbers $l=2 n(|n| \geqslant 2)$, we use the relation

$$
D_{s}^{(0)}\binom{n, 1,0}{n, 1,0}=\left|\begin{array}{ccc}
s_{2 n} x & s_{n+1} s_{n-1} & s_{n}^{2} \tag{6}\\
s_{1+n} s_{1-n} & x v & y^{2} \\
s_{n} s_{-n} & y u & x^{2}
\end{array}\right|=0,
$$

which is a special case of Eq. (5). This relation can be reduced by equivalence transformations to the form

$$
x\left(x^{3} v-y^{3} u\right) s_{2 n}=\left|\begin{array}{cc}
x v s_{n}^{2}-y^{2} s_{n+1} s_{n-1} & s_{1+n} s_{1-n} \tag{7}\\
y u s_{n}^{2}-x^{2} s_{n+1} s_{n-1} & s_{n} s_{-n}
\end{array}\right| .
$$

Let us show that the resulting determinant is divisible without remainder by $x^{3} v-y^{3} u$. Consider the right-hand side of Eq. (7) as a polynomial in the variable v. Dividing it with remainder by $x^{3} v-y^{3} u$, we obtain the relation

$$
\begin{equation*}
x\left(x^{3} v-y^{3} u\right) s_{2 n}=\left(x^{3} v-y^{3} u\right) q(u, v, w, x, y, z)+r(u, w, x, y, z), \tag{8}
\end{equation*}
$$

where $q(u, v, w, x, y, z) \in \mathbb{Z}\left[u, v, w, x^{ \pm 1}, y, z\right]$ and $r(u, w, x, y, z) \in \mathbb{Z}\left[u, w, x^{ \pm 1}, y, z\right]$. For positive initial conditions u, v, x, and y and positive values of the parameters w and z, the recurrence relation (2) defines a two-way infinite positive sequence $\left\{s_{n}\right\}$. In particular, all elements of this sequence are well defined. (Division by zero never occurs when computing these elements.) Therefore, by setting $v=y^{3} u / x^{3}$ in (7), we find that the remainder $r(u, w, x, y, z)$ is identically zero. Thus, $x s_{2 n} \in \mathbb{Z}\left[u, v, w, x^{ \pm 1}, y, z\right]$.

Considering the right-hand side of (7) as a polynomial in the variable u, we find in a similar way that $x s_{2 n} \in \mathbb{Z}\left[u, v, w, x, y^{ \pm 1}, z\right]$. Therefore, $x s_{2 n} \in \mathbb{Z}[u, v, w, x, y, z]$. If we reproduce the entire argument replacing the determinant (6) with the determinant

$$
D_{s}^{(0)}\binom{n+1,1,0}{n-1,1,0}=\left|\begin{array}{ccc}
s_{2 n} v & s_{n+2} s_{n} & s_{n+1}^{2} \\
s_{n} s_{2-n} & x v & y^{2} \\
s_{n-1} s_{1-n} & y u & x^{2}
\end{array}\right|=0,
$$

then we obtain $v s_{2 n} \in \mathbb{Z}[u, v, w, x, y, z]$. Thus, $s_{2 n} \in \mathbb{Z}[u, v, w, x, y, z]$.
For odd $l=2 n+1(-2 \leqslant n \leqslant 1)$, the assertion of the theorem can be proved in a similar way based on the relations

$$
\begin{aligned}
D_{s}^{(0)}\binom{n+1,1,0}{n, 1,0} & =\left|\begin{array}{ccc}
s_{2 n+1} y & s_{n+2} s_{n} & s_{n+1}^{2} \\
s_{1+n} s_{1-n} & x v & y^{2} \\
s_{n} s_{-n} & y u & x^{2}
\end{array}\right|=0, \\
D_{s}^{(0)}\binom{n, 1,0}{n+1,1,0} & =\left|\begin{array}{ccc}
s_{2 n+1} x & s_{n+1} s_{n-1} & s_{n}^{2} \\
s_{n+2} s_{-n} & x v & y^{2} \\
s_{n+1} s_{-1-n} & y u & x^{2}
\end{array}\right|=0 .
\end{aligned}
$$

3. Somos-5. Hone [5] found general formulas for the elements of the Somos-5 sequence defined by the recurrence relation (3). They can be written as

$$
\begin{equation*}
s_{2 n}=A_{0} B_{0}^{n} \frac{\sigma\left(z_{0}+2 n z\right)}{\sigma(z)^{(2 n)^{2}}}, \quad s_{2 n+1}=A_{1} B_{1}^{n} \frac{\sigma\left(z_{0}+(2 n+1) z\right)}{\sigma(z)^{(2 n+1)^{2}}} . \tag{9}
\end{equation*}
$$

A comparison with (4) shows that an arbitrary Somos- 5 sequence can be viewed as a Somos-4 sequence whose odd-numbered elements are multiplied by some geometric progression. It follows from formulas (9) that the matrix $M_{s}^{(0)}$ has rank 4 in general position. However, each entry of $M_{s}^{(1)}$ is a product of even- and odd- numbered elements of the Somos- 5 sequence. Therefore, the rank of the matrix $M_{s}^{(1)}$ for the Somos-5 sequence coincides with that of the matrix $M_{s}^{(1)}$ constructed from the Somos-4 sequence. Thus, the following assertion holds.

Theorem 4. One has

$$
\begin{equation*}
D_{s}^{(1)}\binom{m_{1}, m_{2}, m_{3}}{n_{1}, n_{2}, n_{3}}=0 \tag{10}
\end{equation*}
$$

for an arbitrary Somos-5 sequence $\left\{s_{l}\right\}$ and any integers m_{1}, m_{2}, m_{3} and n_{1}, n_{2}, n_{3}.
Remark 2. For the relation

$$
\begin{equation*}
D_{s}^{(0)}\binom{m_{1}, m_{2}, m_{3}}{n_{1}, n_{2}, n_{3}}=0 \tag{11}
\end{equation*}
$$

to hold, one must additionally require that at least one of the two conditions $m_{1} \equiv m_{2} \equiv m_{3}$ $(\bmod 2)$ and $n_{1} \equiv n_{2} \equiv n_{3}(\bmod 2)$ be satisfied. In this case, the proof of (11) also follows from (9).

Proof of Theorem 2. We simultaneously prove that the elements of the sequence $\left\{s_{l}\right\}$ belong to the ring $\mathbb{Z}[t, u, v, w, x, y, z]$ and that t divides s_{l} for $|l| \geqslant 3$. The proof will be carried out by induction, assuming that the desired assertions have already been proved for numbers with absolute value less than $|l|$. We will also assume that $|l|>5$, because the assertion of the theorem for small l admits a straightforward verification.

For even $l=2 n(|n| \geqslant 3)$, we use the relation

$$
D_{s}^{(1)}\binom{n, 0,-1}{n-1,1,0}=\left|\begin{array}{ccc}
s_{2 n} y & s_{n+2} s_{n-1} & s_{n+1} s_{n} \\
s_{n} s_{1-n} & x v & t y \\
s_{n-1} s_{-n} & y u & t x
\end{array}\right|=0,
$$

which is a special case of Eq. (10). This relation can be reduced by equivalence transformations to the form

$$
y t\left(x^{2} v-y^{2} u\right) s_{2 n}=\left|\begin{array}{cc}
x v s_{n+1} s_{n}-t y s_{n+2} s_{n-1} & s_{n} s_{1-n} \\
y u s_{n+1} s_{n}-t x s_{n+2} s_{n-1} & s_{n-1} s_{-n}
\end{array}\right| .
$$

The divisibility of the resulting determinant by $x^{2} v-y^{2} u$ can be justified in the same way as in the proof of Theorem 1. By the inductive assumption, all entries of a 2×2 matrix are divisible by t, which means that $s_{2 n} y \in t \mathbb{Z}[t, u, v, w, x, y, z]$. In a similar way, considering the relation

$$
D_{s}^{(1)}\binom{n-1,0,-1}{n, 1,0}=\left|\begin{array}{ccc}
s_{2 n} x & s_{n+1} s_{n-2} & s_{n} s_{n-1} \\
s_{n+1} s_{-n} & x v & t y \\
s_{n} s_{-1-n} & y u & t x
\end{array}\right|=0
$$

we find that $s_{2 n} x \in t \mathbb{Z}[t, u, v, w, x, y, z]$. Therefore, $s_{2 n} \in t \mathbb{Z}[t, u, v, w, x, y, z]$.
For odd $l=2 n+1(-4 \leqslant n \leqslant 3)$, the induction step is justified based on the relations

$$
\begin{aligned}
D_{s}^{(1)}\binom{n-1,0,-1}{n+1,1,0} & =\left|\begin{array}{ccc}
s_{2 n+1} u & s_{n+1} s_{n-2} & s_{n} s_{n-1} \\
s_{n+2} s_{-n-1} & x v & t y \\
s_{n+1} s_{-n} & y u & t x
\end{array}\right|=0, \\
D_{s}^{(1)}\binom{n+1,0,-1}{n-1,1,0} & =\left|\begin{array}{ccc}
s_{2 n+1} v & s_{n+3} s_{n} & s_{n+2} s_{n+1} \\
s_{n} s_{1-n} & x v & t y \\
s_{n-1} s_{-n} & y u & t x
\end{array}\right|=0 .
\end{aligned}
$$

Funding

Supported by RFBR grant no. 17-01-00225. The second author's research was carried out in the framework of State Contract no. 1.557.2016/1.4.

References

[1] M. D. Monina, Dal'nevost. Mat. Zh., 18:1 (2018), 85-89.
[2] A. V. Ustinov, Trudy Mat. Inst. Steklov., 2019 (to appear).
[3] S. Fomin and A. Zelevinsky, Adv. Appl. Math., 28:2 (2002), 119-144.
[4] A. Hone, Bull. Lond. Math. Soc., 37:2 (2005), 161-171.
[5] A. Hone, Trans. Amer. Math. Soc., 359:10 (2007), 5019-5034.
[6] M. Somos, Somos polynomials, http://grail.eecs.csuohio.edu/~somos/somospol.html.
[7] A. J. van der Poorten and C. S. Swart, Bull. London Math. Soc., 38:4 (2006), 546-554.
[8] C. S. Swart, Elliptic curves and related sequences, PhD Thesis, Royal Holloway, University of London, 2003.

Far Eastern Branch of the Russian Academy of Sciences, Institute of Applied Mathematics Khabarovsk Division, Khabarovsk, Russia
e-mail: vab@iam.khv.ru
Pacific National University, Khabarovsk, Russia
Far Eastern Branch of the Russian Academy of Sciences, Institute of Applied Mathematics Khabarovsk Division, Khabarovsk, Russia
e-mail: ustinov@iam.khv.ru, ustinov.alexey@gmail.com

Translated by V. E. Nazaikinskii

