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Abstract. In this paper we strengthen the result of Fomin and Zelevinsky (2002) on the Laurent
phenomenon for Somos-4 and Somos-5 sequences.
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1. Introduction. A Somos-k sequence is a sequence {sn} satisfying a kth order (k � 2)
quadratic recurrence relation of the form

sn+ksn =
∑

1�j�k/2

αjsn+k−jsn+j, (1)

where the αj (1 � j � k/2) are constants.
One distinguishes the important class of Somos sequences that have the Laurent property; i.e.,

all terms are Laurent polynomials in the initial conditions, sn ∈ Z[s±1
1 , . . . , s±1

n , α1, . . . , α�k/2�].
The Laurent property of the Somos-2 and Somos-3 sequences follows from the explicit formulas

sn = α
n(n−1)/2
1 s1−n

0 sn1

for k = 2 and

sn =

{
α
n2/4
1 s

−n/2
−1 s0s

n/2
1 if n is even,

α
(n2−1)/4
1 s

(1−n)/2
−1 s

(n+1)/2
1 if n is odd

for k = 3. There are no such simple formulas for k � 4. Based on the theory of cluster algebras,
Fomin and Zelevinsky [3] proved the Laurent property of the Somos-k sequence for k = 4, 5, 6, 7. In
particular, it follows that the Somos-k sequences (k = 4, 5, 6, 7) are integer-valued for s1 = · · · =
sk = α1 = · · · = α�k/2� = 1. In the present paper, we prove a stronger version of this statement for
k = 4, 5.

Theorem 1. Define a Somos-4 sequence by the initial conditions s−1 = u, s0 = x, s1 = y ,
and s2 = v and the recurrence relation

sn+2sn−2 = αsn+1sn−1 + βs2n, (2)

where α = uvxyw , β = uvxyz , and u, v , w , x, y , and z are independent formal variables. Then

sn ∈ Z[u, v, w, x, y, z].

Theorem 2. Define a Somos-5 sequence by the initial conditions s−2 = u, s−1 = x, s0 = t,
s1 = y , and s2 = v and the recurrence relation

snsn−5 = αsn−1sn−4 + βsn−2sn−3, (3)

where α = uvxyw , β = uvxyz , and t, u, v , w , x, y , and z are independent formal variables. Then
sn ∈ Z[t, u, v, w, x, y, z].

Remark 1. Special cases of Theorem 1 were considered earlier by Somos [6] (w = z and
x = y = 1) and Monina [1] (x = y = 1).
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2. Somos-4. For this sequence {sn}∞n=−∞ , we define the matrices

M (0)
s = (sm+nsm−n)

∞
m,n=−∞, M (1)

s = (sm+n+1sm−n)
∞
m,n=−∞

By

M (0)
s

(
m1, . . . ,mk

n1, . . . , nk

)
and M (1)

s

(
m1, . . . ,mk

n1, . . . , nk

)

we denote the finite submatrices of M
(0)
s and M

(1)
s , respectively, formed by the entries at the

intersections of rows m1, . . . ,mk and columns n1, . . . , nk .
Set

D(j)
s

(
m1, . . . ,mk

n1, . . . , nk

)
= detM (j)

s

(
m1, . . . ,mk

n1, . . . , nk

)
, j = 0, 1.

A key property of Somos-4 sequences is that the rank of the matrices M
(j)
s , j = 0, 1, does not

exceed 2 (and is 2 in general position). This follows, for example, from the general formula

sn = ABnσ(z0 + nz)

σ(z)n2 (4)

expressing the elements of the sequence via the Weierstrass sigma function (see [8] and [4]).
For elementary proofs, see [7] and [2].

Theorem 3. Let {sl} be an arbitrary Somos-4 sequence. Then

D(j)
s

(
m1,m2,m3

n1, n2, n3

)
= 0, j = 0, 1, (5)

for any integers m1 , m2 , m3 and n1 , n2 , n3 .

Proof of Theorem 1. It follows from the relations

s3 = xyv(y2w + xvz), s−2 = xyu(x2w + yuz), s−3 = xu2v(x4ywz + x2y2uz2 + uw)

that the assertion of the theorem holds for the numbers l with |l| � 3. Therefore, we assume
that |l| > 3 in what follows. We will prove the theorem by induction, assuming that the desired
statement has already been proved for numbers with absolute value less than |l|.

For even numbers l = 2n (|n| � 2), we use the relation

D(0)
s

(
n, 1, 0
n, 1, 0

)
=

∣∣∣∣∣∣

s2nx sn+1sn−1 s2n
s1+ns1−n xv y2

sns−n yu x2

∣∣∣∣∣∣
= 0, (6)

which is a special case of Eq. (5). This relation can be reduced by equivalence transformations to
the form

x(x3v − y3u)s2n =

∣∣∣∣
xvs2n − y2sn+1sn−1 s1+ns1−n

yus2n − x2sn+1sn−1 sns−n

∣∣∣∣ . (7)

Let us show that the resulting determinant is divisible without remainder by x3v − y3u. Consider
the right-hand side of Eq. (7) as a polynomial in the variable v. Dividing it with remainder by
x3v − y3u, we obtain the relation

x(x3v − y3u)s2n = (x3v − y3u)q(u, v, w, x, y, z) + r(u,w, x, y, z), (8)

where q(u, v, w, x, y, z) ∈ Z[u, v, w, x±1, y, z] and r(u,w, x, y, z) ∈ Z[u,w, x±1, y, z]. For positive
initial conditions u, v, x, and y and positive values of the parameters w and z , the recurrence
relation (2) defines a two-way infinite positive sequence {sn}. In particular, all elements of this se-
quence are well defined. (Division by zero never occurs when computing these elements.) Therefore,
by setting v = y3u/x3 in (7), we find that the remainder r(u,w, x, y, z) is identically zero. Thus,
xs2n ∈ Z[u, v, w, x±1, y, z].
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Considering the right-hand side of (7) as a polynomial in the variable u, we find in a similar
way that xs2n ∈ Z[u, v, w, x, y±1, z]. Therefore, xs2n ∈ Z[u, v, w, x, y, z]. If we reproduce the entire
argument replacing the determinant (6) with the determinant

D(0)
s

(
n+ 1, 1, 0
n− 1, 1, 0

)
=

∣∣∣∣∣∣

s2nv sn+2sn s2n+1

sns2−n xv y2

sn−1s1−n yu x2

∣∣∣∣∣∣
= 0,

then we obtain vs2n ∈ Z[u, v, w, x, y, z]. Thus, s2n ∈ Z[u, v, w, x, y, z].
For odd l = 2n+ 1 (−2 � n � 1), the assertion of the theorem can be proved in a similar way

based on the relations

D(0)
s

(
n+ 1, 1, 0
n, 1, 0

)
=

∣∣∣∣∣∣

s2n+1y sn+2sn s2n+1

s1+ns1−n xv y2

sns−n yu x2

∣∣∣∣∣∣
= 0,

D(0)
s

(
n, 1, 0

n+ 1, 1, 0

)
=

∣∣∣∣∣∣

s2n+1x sn+1sn−1 s2n
sn+2s−n xv y2

sn+1s−1−n yu x2

∣∣∣∣∣∣
= 0.

3. Somos-5. Hone [5] found general formulas for the elements of the Somos-5 sequence defined
by the recurrence relation (3). They can be written as

s2n = A0B
n
0

σ(z0 + 2nz)

σ(z)(2n)
2 , s2n+1 = A1B

n
1

σ(z0 + (2n + 1)z)

σ(z)(2n+1)2
. (9)

A comparison with (4) shows that an arbitrary Somos-5 sequence can be viewed as a Somos-4
sequence whose odd-numbered elements are multiplied by some geometric progression. It follows

from formulas (9) that the matrix M
(0)
s has rank 4 in general position. However, each entry of M

(1)
s

is a product of even- and odd- numbered elements of the Somos-5 sequence. Therefore, the rank

of the matrix M
(1)
s for the Somos-5 sequence coincides with that of the matrix M

(1)
s constructed

from the Somos-4 sequence. Thus, the following assertion holds.

Theorem 4. One has

D(1)
s

(
m1,m2,m3

n1, n2, n3

)
= 0 (10)

for an arbitrary Somos-5 sequence {sl} and any integers m1 , m2 , m3 and n1 , n2 , n3 .

Remark 2. For the relation

D(0)
s

(
m1,m2,m3

n1, n2, n3

)
= 0 (11)

to hold, one must additionally require that at least one of the two conditions m1 ≡ m2 ≡ m3

(mod 2) and n1 ≡ n2 ≡ n3 (mod 2) be satisfied. In this case, the proof of (11) also follows
from (9).

Proof of Theorem 2. We simultaneously prove that the elements of the sequence {sl} belong
to the ring Z[t, u, v, w, x, y, z] and that t divides sl for |l| � 3. The proof will be carried out by
induction, assuming that the desired assertions have already been proved for numbers with absolute
value less than |l|. We will also assume that |l| > 5, because the assertion of the theorem for small l
admits a straightforward verification.

For even l = 2n (|n| � 3), we use the relation

D(1)
s

(
n, 0,−1
n− 1, 1, 0

)
=

∣∣∣∣∣∣

s2ny sn+2sn−1 sn+1sn
sns1−n xv ty
sn−1s−n yu tx

∣∣∣∣∣∣
= 0,
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which is a special case of Eq. (10). This relation can be reduced by equivalence transformations to
the form

yt(x2v − y2u)s2n =

∣∣∣∣
xvsn+1sn − tysn+2sn−1 sns1−n

yusn+1sn − txsn+2sn−1 sn−1s−n

∣∣∣∣ .

The divisibility of the resulting determinant by x2v − y2u can be justified in the same way as in
the proof of Theorem 1. By the inductive assumption, all entries of a 2× 2 matrix are divisible by
t, which means that s2ny ∈ tZ[t, u, v, w, x, y, z]. In a similar way, considering the relation

D(1)
s

(
n− 1, 0,−1

n, 1, 0

)
=

∣∣∣∣∣∣

s2nx sn+1sn−2 snsn−1

sn+1s−n xv ty
sns−1−n yu tx

∣∣∣∣∣∣
= 0,

we find that s2nx ∈ tZ[t, u, v, w, x, y, z]. Therefore, s2n ∈ tZ[t, u, v, w, x, y, z].
For odd l = 2n+ 1 (−4 � n � 3), the induction step is justified based on the relations

D(1)
s

(
n− 1, 0,−1
n+ 1, 1, 0

)
=

∣∣∣∣∣∣

s2n+1u sn+1sn−2 snsn−1

sn+2s−n−1 xv ty
sn+1s−n yu tx

∣∣∣∣∣∣
= 0,

D(1)
s

(
n+ 1, 0,−1
n− 1, 1, 0

)
=

∣∣∣∣∣∣

s2n+1v sn+3sn sn+2sn+1

sns1−n xv ty
sn−1s−n yu tx

∣∣∣∣∣∣
= 0.
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