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I use the term “quasirandom” in the
sense introduced by Niederreiter et al.
in the late ’70s (e.g., quasirandom sets
of sample points for derandomized Monte
Carlo integration), not in the sense in-
troduced by Chung, Graham, and Wil-
son in the late ’80s (e.g., quasirandom
graphs).

Theme of talk: One can design a de-
terministic process that mimics desired
aspects of a stochastic process by re-
placing random sequences of choices by
low-discrepancy sequences of choices.
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I. Derandomization of finite Markov

chains

Recall that the archetype for discrete
randomness is an “unpredictable” fair
coin.

The archetype for discrete quasirandom-

ness is the deterministic sequence H, T,
H, T, H, T, . . . (or, equally good, T, H,
T, H, T, H, . . . ).

This is almost as far from random as it
can be, but it’s still “fair”!

After N tosses of a “quasirandom coin”,
the number of heads is N/2 + O(1);
i.e., the empirical estimate of the bias
is 1/2 + O(1/N ).
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Consider a strongly connected finite di-
rected graph in which each vertex has
outdegree 2. A bug moving through the
directed graph chooses which way to go
at each vertex by using a quasirandom
coin sitting at that vertex.

For fixed vertex v, let sN be the number
of times the bug visits v during the first
N steps of its quasirandom walk.

Fact: |sN − Np| = O(1), where p is
the steady-state probability associated
with v under random walk. That is,
|sN/N − p| = O(1/N ).

Note that O(1/N ) is the best one could
hope for (and that O(1/

√
N ) is what

one gets from ordinary random simula-
tion).
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More generally, the simplest kind of quasir-
andom variable with m different equally
probable values is a sequence that ro-
tates through the m allowed values in
some fixed order:

1, 2, 3, . . . ,m − 1,m,
1, 2, 3, . . . ,m − 1,m,
1, 2, 3, . . . ,m − 1,m,
. . .

We call this a rotor.

If these m values are the m arcs ema-
nating from v, we call this quasirandom
variable a rotor-router, and we pic-
ture it as an arrow that points at the
neighbors of v in some fixed cyclic or-
der.
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We advance the rotor at a vertex before

we move the bug.

Thus, the rotor at an unoccupied site
that has been visited before always points
in the direction in which the bug left the
vertex on its most recent visit.
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Fact: Quasirandom walk on any strongly
connected finite directed graph gives dis-
crepancy

|sN − Np| = O(1)

where sN is the number of times the
bug visits vertex v during the first N
steps of its quasirandom walk, and p is
the steady-state probability associated
with v under random walk.

This generalizes to finite Markov chains
with rational transition probabilities in
a straightforward way.

7



A similar fidelity property holds for quan-
tities such as expected hitting time (if
a finite Markov chain starts in state x,
what is the expected time until it first
enters state y?) and hitting probability
(if a finite Markov chain starts in state
x, what is the probability that it enters
state y before it enters state z?).
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II. Derandomization of random

walk in two dimensions

Simple random walk on Z2: For any
two vertices v, w ∈ Z2, the transition
probability p(v, w) (the probability that
a particle at v moves to w at the next
time step) is 1

4 if w is one of the four
nearest neighbors of v and 0 otherwise.

This random walk is recurrent : With
probability 1, each vertex in Z2 gets vis-
ited infinitely often.
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Fact (Polya?): If a particle starts at
(0, 0) and does random walk in Z2 until
it either hits (1, 1) or returns to (0, 0),
the probability that it hits (1, 1) before
returning to (0, 0) (“escape”) is exactly
π/8.

Hence, if we modify the walk so that
whenever the particle arrives at (1, 1) it
gets shunted immediately to (0, 0), then
the number of escapes divided by the
number of trials (call this denominator
n) converges to π/8 with probability 1,
with error falling like 1/

√
n.
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Equivalently, the number of escapes mi-
nus π/8 times the number of trials (write
this “global” discrepancy as Dn) should
be on the order of ±√

n if we do inde-
pendent random trials.

For n = 104, under random simulation,
we expect |Dn| ≈ 50.
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We can get good approximations to π/8
faster if we replace random choices by
low-discrepancy choices. Specifically, we
insure that for each vertex v, the choices
we make each successive time we visit v
(regarding where to go next) form a low-
discrepancy sequence (“control of local
discrepancy”).
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The smallest possible local discrepancy
is gotten by using a “rotor-router” at
each site: e.g., each time the particle
leaves a site, it goes in the direction 90
degrees clockwise from whatever direc-
tion it went the last time it left that
site.

(Physicists invented this rule ten years
ago as an example of “self-organized crit-
icality”, and computer scientists intro-
duced it as a protocol for load-balancing
of processors; but neither group realized
that the rotor-walk mechanism is appli-
cable to estimation of properties of ran-
dom walk.)
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Under quasirandom simulation, with rotor-
routers, the n trials aren’t independent,
or even random — yet Dn is provably
O(log n) (rather than O(

√
N )) and in-

deed seems to be bounded!

See demo at
http://jamespropp.org

∼propp/rotor-router-1.0

In 10,000 trials, |Dn| < 0.5 for 5, 070
of the trials. That is, more than half
the time, the number of escapes after n
trials is equal to the integer closest to
p = π/8 times the number of trials.

We have |Dn| < 2.05 for all n ≤ 104.

Does |Dn| stay bounded as n → ∞?

Unknown!
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Extra wrinkle: In the standard theory
of random walk, the probability that a
walker who starts at (0, 0) will never
reach (1, 1) or return to (0, 0) is 0 and
can be ignored. In the quasirandom
theory, such paths can occur in a se-
quence of trials (and hence cannot be
ignored), but their frequency provably
must go to 0.
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III. Quasirandom diffusion

It can be shown that rotor-router walk
is parallelizable.

Put some particles in Zd, where the sites
are equipped with rotors. (For techni-
cal reasons, the particles must all start
out on the same index-2 sublattice.)

Let the particles do rotor-router walk in
parallel for n steps.
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Cooper and Spencer show that the dif-
ference between (1) the number of par-
ticles at a site after n steps of rotor-
router walk, and (2) the expected num-
ber of particles at a site after n steps
of random walk, is bounded by a con-
stant C that doesn’t depend on n, or on
what the original distribution of parti-
cles was, or which way the rotors were
originally pointing. All it depends on is
d, the dimension of the lattice.

See “Simulating a random walk with
constant error”, by Joshua Cooper and
Joel Spencer:

arXiv:math.CO/0402323.
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When you fully parallelize the rotor-walk
algorithm, it essentially become heat flow
in fixed precision arithmetic, with a twist:
the rotors control the rounding of the
least significant bits.

Rotors actually give an improvement over
naive methods of simulating heat flow in
discrete space and discrete time. (The
method might generalize to variants of
diffusion that include convection and re-
action terms. But this will probably be
of only minor interest for PDE, since
rounding error isn’t as big an issue as er-
ror introduced by discretization of space
and time.)
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Puzzle: Suppose n units of mass flow
in {0, 1, 2, ...} starting at 1 and moving
with flow-proportions p(k, k − 1) = 1

3
and p(k, k +1) = 2

3 for all k > 0, where
mass that arrives at 0 stays there. If
mass is infinitely divisible, the amount
of mass that eventually arrives at 0 is n

2
(corresponding to the fact that a “two-
to-one-rightward-biased” random walker
who starts at 1 has a 50% chance of ever
reaching 0), but suppose mass must al-
ways be a whole number (non-integer
quantities m

3 or 2m
3 are immediately rounded

to the next closest integer). For what n
does the amount of mass that eventu-
ally arrives at 0 equal n

2? (2, 8, 48, 50, 200, . . .)
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V. Quasirandom aggregation

Internal Diffusion-Limited Aggregation
(IDLA): To add a new bug to the (ini-
tially empty) blob, put the bug at the
origin and let it do random walk until
it hits an unoccupied site. Adjoin this
site to the blob. Repeat.

Theorem (Lawler, Bramson, and Grif-
feath, 1992): The n-bug IDLA blob in
Z2 is a disk of radius

√

n/π, to within

radial fluctuation that are o(n1/2).

Theorem (Lawler, 1995): We can re-

place o(n1/2) by O(n1/3) in the preced-
ing result.

It appears empirically that the radial
fluctuations are actually O(ln n).
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IDLA can be derandomized using rotor-
routers in the obvious way.

For one-dimensionsional derandomized
IDLA, (where the “disk” is an interval),
there is an absolute bound on the differ-
ence between the inner and outer radius
of the blob; this was proved by Lionel
Levine under my supervision as a Har-
vard honors thesis while he was still an
undergraduate.

Levine’s thesis also contains interesting
observations about the dynamics of rotor-
router aggregation.
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As a graduate student, working with
Yuval Peres, Levine succeeded in get-
ting a (highly non-trivial) result for higher
dimensions:

Theorem (Levine and Peres): For de-
randomized IDLA in any dimension, the
rotor-router blob after n steps lies inside
a ball of volume n + o(n) and contains
a ball of volume n − o(n).
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It appears that the radial fluctuations
for derandomized IDLA are even smaller
than for true IDLA.

E.g., after a million bugs have been added
to the system, the inradius is 563.5 and
the outradius is 565.1: these figures dif-
fer by 1.6 (about three tenths of one per-
cent).

There may be an absolute bound on the
difference between the inner and outer
radius of the IDLA blob, valid at every
time n.
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VI. Future goals

Formulate a basic general theory of dis-
crepancy for random walk and random
aggregation models, so that standard
probabilistic results can be derived as
corollaries.

Apply rotor-routers to estimation prob-
lems of interest to Quasi Monte Carlo
practitioners.

Find the right notion of discrepancy, and
the right local mechanisms, for construc-
tion of other derandomized random ob-
jects (such as derandomized random tilings).

For more information, see

http://jamespropp.org/

quasirandom.html
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