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I. A motivating example: limit-
shape theorems for tilings

An Aztec diamond of order n is the
union of all the squares [n, n + 1] ×
[n, n + 1] that fall inside the region

{(x, y) : |x| + |y| ≤ n + 1}.
A domino is a union of two such squares
that share an edge. A domino-tiling of
an Aztec diamond of order n is a set of
n(n + 1) dominoes whose interiors are
disjoint and whose union is the Aztec
diamond.
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Theorem (Elkies, Kuperberg, Larsen, and
Propp): The Aztec diamond of order n

has exactly 2n(n+1)/2 domino-tilings.

The Elkies et al. article contained four
proofs, one of which (by Kuperberg and
Propp) used a combinatorial construc-
tion (“domino-shuffling”) that can also
be used to generate random domino-
tilings of Aztec diamonds.
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Theorem (Jockusch, Propp, Shor): As
one runs domino-shuffling for infinite time,
the boundary of the “temperate zone”
(informally, the part of the tiling where
horizontal and vertical dominoes are in-
termixed) of a random domino-tiling of
the Aztec diamond of order n converges
with probability 1 to a perfect circle.

Therefore, “most” domino tilings of a
large Aztec diamond have a temperate
zone that is “close to round”.

But, how can we generate a specific one
that has a close-to-round temperate zone?
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And: What deterministic procedure for
running domino-shuffling forever is guar-
anteed to yield a circle in the limit?

We want some way to derandomize the
random construction.

Let’s switch to a simpler random con-
struction.
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II. Derandomization of a simple
random walk

Simple random walk on Z2: For any
two vertices v, w ∈ Z2, the transition
probability p(v, w) (the probability that
a particle at v moves to w at the next
time step) is 1

4 if w is one of the four
nearest neighbors of v and 0 otherwise.

This random walk is recurrent : With
probability 1, each vertex in Z2 gets vis-
ited infinitely often.
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Fact (Polya?): If a particle starts at
(0, 0) and does random walk in Z2 until
it either hits (1, 1) or returns to (0, 0),
the probability that it hits (1, 1) before
returning to (0, 0) is exactly π/8.

Hence, if we modify the walk so that
whenever the particle arrives at (1, 1) it
gets shunted immediately to (0, 0), then
as N →∞ the number of visits to (1, 1)
up to time N divided by the number of
visits to (0, 0) up to time N converges
to π/8, with probability 1.

How can we make this constructive?

7



Propp-Schramm: Suppose a particle vis-
its sites s1, s2, s3, . . . in Z2, where s1 =
(0, 0) and sn+1 is a nearest neighbor of
sn for all n ≥ 1, except in the case
where sn is (1, 1), in which instance sn+1
is (0, 0).

Suppose each site in Z2 occurs in the
sequence s1, s2, s3, . . . infinitely often.

Suppose moreover that for every site
s ∈ Z2 other than (1, 1) and for every
site t adjacent to s, on any n successive
visits to s the particle next goes to t
n/4± o(n) times (“control of local dis-
crepancy”).

Then (0, 0) and (1, 1) both occur with
well-defined density in s1, s2, . . ., and
the ratio of the latter density to the for-
mer is π/8.
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By making the local discrepancy
(the “o(n)”) smaller, we can speed
the convergence to π/8.

The smallest possible local discrepancy
is gotten by using a “rotor-router” at
each site: e.g., each time the particle
leaves a site, it goes in the direction 90
degrees clockwise from whatever direc-
tion it went the last time it left that
site.

(Physicists invented this rule ten years
ago as an example of “self-organized crit-
icality”, and computer scientists intro-
duced it as a protocol for load-balancing
of processors; but neither group realized
that the rotor-walk mechanism is appli-
cable to estimation of properties of ran-
dom walk.)
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Ordinary Monte Carlo: If some quan-
tity of interest, µ, can be expressed as
E(X) for some random variable X , then
we can estimate µ by

µ̂n = (X1 + X2 + . . . + Xn)/n,

where X1, . . . are i.i.d. instances of X .

If Var(X) < ∞, the root-mean-square
error of our estimate is O(1/

√
n), and if

we have a bound on Var(X), the central
limit theorem will give us asymptotic
confidence intervals for µ.

In practice, the Xk are not really ran-
dom but are generated by a determin-
istic algorithm (whose output behaves
in many respects like the output of a
random process). This makes the ap-
plicability of the central limit theorem
harder to make sense of.
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Quasi Monte Carlo: Replace random
X1, X2, . . . by “quasirandom” x1, x2, . . .
to get |x1 +x2 + . . .+xn−nµ| smaller
than

√
n and |(x1+x2+. . .+xn)/n−µ|

smaller than 1/
√

n.

If we can find a constant c such that
|x1 + x2 + ... + xn − nµ| < cnα for
all n, with α < 1

2, then we get better
estimates for µ than are given by Monte
Carlo, surrounded by certainty intervals
rather than confidence intervals.

The best α we can hope for is α = 0;
in this case the discrepancy |(x1 + x2 +
. . . + xn)− nµ| is O(1), i.e., bounded .
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Recall: If a particle starts at (0,0) and
does unbiased random walk in the infi-
nite square grid, the probability p that
it will arrive at (1,1) before it ever re-
turns to (0,0) is π/8.

If we do n independent trials, the num-
ber of successes divided by the number
of trials should be close to π/8, with an
error on the order of 1/

√
n.

Equivalently, the number of successes
minus π/8 times the number of trials
(write this “global” discrepancy as Dn)
should be on the order of ±

√
n if we do

independent random trials.

For n = 104, under random simulation,
we expect |Dn| ≈ 50.
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Under quasirandom simulation, with rotor-
routers, the n trials aren’t independent,
or even random — yet Dn seems to be
bounded!

See demo at
http://www.math.wisc.edu/

∼propp/rotor-router-1.0
In 10,000 trials, |Dn| < 0.5 for 5, 070
of the trials. That is, more than half
the time, the number of successes after
n trials is equal to the integer closest to
p = π/8 times the number of trials.

We have |Dn| < 2.05 for all n ≤ 104.

Does |Dn| stay bounded as n →∞?

Unknown!
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III. Highly recurrent walk

For analogous processes in 1 dimension,
which have better recurrence properties
than 2 dimensional random walk, bound-
edness of Dn can be proved rigorously
using harmonic functions on Markov chains.
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Let h be the harmonic function on S
defined by h(s) = the probability that
the Markov chain started from s hits S1
before S2, and define

‖∇h‖ =
∑
x

max{|h(x)−h(y)| : p(x, y) > 0}.

Theorem (Holroyd and Propp): Sup-
pose

‖∇h‖ < ∞.

Then

|µ̂n − µ| ≤ ‖∇h‖/n.

This gives good results for various kinds
of one-dimensional biased and unbiased
random walk.

The theorem does not apply to our 2-D
example (which has ||∇h|| = ∞).
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IV. Quasirandom diffusion

It can be shown that rotor-router walk
is parallelizable.

Put some particles in Zd, where the sites
are equipped with rotors. (For techni-
cal reasons, the particles must all start
out on the same index-2 sublattice.)

Let the particles do rotor-router walk in
parallel for n steps.
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Cooper and Spencer show that the dif-
ference between (1) the number of par-
ticles at a site after n steps of rotor-
router walk, and (2) the expected num-
ber of particles at a site after n steps
of random walk, is bounded by a con-
stant C that doesn’t depend on n, or on
what the original distribution of parti-
cles was, or which way the rotors were
originally pointing. All it depends on is
d, the dimension of the lattice.

See “Simulating a random walk with
constant error”, by Joshua Cooper and
Joel Spencer:

arXiv:math.CO/0402323.
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When you fully parallelize the rotor-walk
algorithm, it essentially become heat flow
in fixed precision arithmetic, with a twist:
the rotors control the rounding of the
least significant bits.

Rotors actually give an improvement over
naive methods of simulating heat flow in
discrete space and discrete time. (The
method might generalize to variants of
diffusion that include convection and re-
action terms. But this will probably be
of only minor interest for PDE, since
rounding error isn’t as big an issue as er-
ror introduced by discretization of space
and time.)
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V. Quasirandom aggregation

Internal Diffusion-Limited Aggregation
(IDLA): To add a new bug to the (ini-
tially empty) blob, put the bug at the
origin and let it do random walk until
it hits an unoccupied site. Adjoin this
site to the blob. Repeat.

Theorem (Lawler, Bramson, and Grif-
feath, 1992): The n-bug IDLA blob in
Z2 is a disk of radius

√
n/π, to within

radial fluctuation that are o(n1/2).

Theorem (Lawler, 1995): We can re-

place o(n1/2) by O(n1/3) in the preced-
ing result.

It appears empirically that the radial
fluctuations are actually O(ln n).
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IDLA can be derandomized using rotor-
routers in the obvious way.

For one-dimensionsional derandomized
IDLA, (where the “disk” is an interval),
there is an absolute bound on the differ-
ence between the inner and outer radius
of the blob; this was proved by Lionel
Levine under my supervision as a Har-
vard honors thesis while he was still an
undergraduate.

Levine’s thesis also contains interesting
observations about the dynamics of rotor-
router aggregation.
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As a graduate student, working with
Yuval Peres, Levine succeeded in get-
ting a (highly non-trivial) result for higher
dimensions:

Theorem (Levine and Peres): For de-
randomized IDLA in any dimension, the
symmetric difference between the rotor-
router blob after n steps and the ball of
volume

√
n has area o(n).
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It appears that the radial fluctuations
for derandomized IDLA are even smaller
than for true IDLA.

E.g., after a million bugs have been added
to the system, the inradius is 563.5 and
the outradius is 565.1: these figures dif-
fer by 1.6 (about three tenths of one per-
cent).

There may be an absolute bound on the
difference between the inner and outer
radius of the IDLA blob, valid at every
time n.
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VI. Future goals

Formulate a basic general theory of dis-
crepancy for random walk and random
aggregation models, so that standard
probabilistic results can be derived as
corollaries.

Apply rotor-routers to estimation prob-
lems of interest to Quasi Monte Carlo
practitioners.

Find the right notion of discrepancy, and
the right local mechanisms, for construc-
tion of quasirandom tilings.

For more information, see

http://www.math.wisc.edu/

∼propp/quasirandom.html
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