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Slide 1 of 47See

http://mathoverflow.net/questions/23124/
sums-involving-the-nearest-integer-function

http://mathoverflow.net/questions/24517/
dedekind-esque-sums

http://mathoverflow.net/questions/26608/
a-specific-dedekind-esque-sum

http://mathoverflow.net/questions/36929/
accelerated-convergence-to-the-mean-using-quadratic-weights

http://mathoverflow.net/questions/54731/
sums-of-fractional-parts-of-linear-functions-of-n

http://mathoverflow.net/questions/55535/
inferring-the-slope-of-a-digitized-line

to get a sense of how MathOverflow helped me shape my inquiry as it progressed.
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Slide 2 of 47In[12]:=

I. Digital lines

The digital line associated with the (Euclidean) line 

{(x, ax+b): x Î R}

(with a, b Î R) is the set of lattice points

{(i, nint(ai+b)): i Î Z}

where nint(x) is the integer nearest to x.

(If x = k +
1

2
so that the integers k = x -

1

2
 and k + 1 = x +

1

2
 are equally close to x, we take nint(x) = x -

1

2
 = k.)

A digital line segment is the set of such lattice points
where i ranges over some interval in Z; typically we take the interval [0, n - 1] or [1, n] or [0, n], and we call the
digital line segment a “digital line” for short.
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Slide 3 of 47For most of this talk, we’ll assume

0 < a < 1.

Example: a = .3, b = .2, n = 4:
(0, nint(0.2)) = (0, 0)
(1, nint(0.5)) = (1, 0)
(2, nint(0.8)) = (2, 1)
(3, nint(1.1)) = (3, 1)

1 2 3

0.2

0.4

0.6

0.8

1.0

1.2
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Slide 4 of 47There is a large literature on digital lines, with strong ties to the theory of Sturmian words; in that setting, a digital line
corresonds to a balanced word from an alphabet of two letters (see below).

Recognition problem: Given a set of points, determine whether it is a digital line.

This is solved in

Kim, C.E. and Rosenfeld, A. (1982),
Digital straight lines and convexity of digital regions,
IEEE Trans. Pattern Anal. Machine Intell. 4, 149-153

with an algorithm that runs in time O(n) (other solutions appear in the literature as well).

Reconstruction problem: Given a digital line, recover a and b (to the extent that this is possible).

I have found very little literature on this.
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Slide 5 of 47Quickest way to estimate the slope of a digital line: take the slope of the line joining the two farthest points.

That is, if the leftmost point is (i, j) and the rightmost point is (i¢, j¢), estimate the slope by 
j¢- j

i¢-i
.

The error is likely to be on the order of 1

n
.

Example: a = .3, b = .2, n = 4:

1 2 3

0.2

0.4

0.6

0.8

1.0

1.2

Estimated slope = 1-0

3-0
 = 1

3
 » .3.
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Slide 6 of 47Can we do better job of estimating the slope a of a line y = ax + b, given its digitization?

If you’re trying to estimate the intercept b, you can’t do better than O(1/n).

We can see this using a simple geometry-of numbers-argument: What happens as you gradually increase b  by 1,
holding the slope a fixed?

ç ç

ç ç

1 2 3

0.5

1.0

1.5

2.0

The digitization changes at most n times.
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Slide 7 of 47Note however that this argument yields a different conclusion if the roles of a and b are reversed.

What happens as you gradually increase a by Ε, holding the slope a fixed?

ç ç

ç ç

1 2 3

-1.0

-0.5

0.5

1.0

1.5

2.0

2.5

The area swept out by the line is Ε n2.

The digitization changes about Ε n2 times.

So if you’re trying to estimate the slope a, you can’t do better than O(1/n2).
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Slide 8 of 47The most accurate way to approach the problem of estimating a and b is linear programming.

Each of the n points on the digital line gives two linear inequalities satisfied by a and b.

Example: a = .3, b = .2, n = 4:
The digital line consists of (0,0), (1,0), (2,1), (3,1).

(0)   - 1

2
 £ 0 a + b £ 1

2

(1)   - 1

2
 £ 1 a + b £ 1

2

(2)     1

2
 £ 2 a + b £ 3

2
 

(3)     1

2
 £ 3 a + b £ 3

2
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Slide 9 of 47Example (continued): 

In[18]:= RegionPlot@-1 � 2 £ 0 a + b && 0 a + b £ 1 � 2 &&
-1 � 2 £ 1 a + b && 1 a + b £ 1 � 2 && 1 � 2 £ 2 a + b &&
2 a + b £ 3 � 2 && 1 � 2 £ 3 a + b && 3 a + b £ 3 � 2,

8a, -.1, .8<, 8b, -.6, .6<, PlotPoints ® 100D

Out[18]=

0.0 0.2 0.4 0.6 0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

In this case a ranges from 0 to 2

3
 (and b ranges from - 1

2
 to 1

2
).
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Slide 10 of 47The feasible region for (a,b) is always a polygon with 4 or fewer sides (Berstel and Pocchiola, 1996).

Experiments suggest that the median width of the interval for a has width about 10/n2.

The mean is bigger (because when a is close to a rational number with small denominator the interval tends to have

width more like O(1/n) than O(1/n2)) but not horrendously so; we suspect that the mean behaves like (log n) / n2.
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Slide 11 of 47Why the linear programming method of estimating a isn’t so suited to my purposes:

(a) It might take a long time to compute (say for n = 106) (or are there efficient ways to do the computation?).
(b) The assumptions it relies on don’t apply in the context that most interests me (rotor-routing).
(c) It is not easy to analyze.

More useful to me is the least squares method of estimating the slope a, which can be found in the literature as far
back as 

Melter, R.A., Stojmenovi , I., and Z
Ç
uni , J. (1993),

A new characterization of digital lines by least square fits,
Pattern Recognition Letters 14, 83-88.

This method has linearity properties that make it especially tractable and useful.

We treat the n points on the digital line as a scatter diagram and compute the line of the form y = ax + b that minimizes
the sum of the squares of the vertical displacements of the n points with respect to the line.
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Slide 12 of 47Example (n=4):
Data points: (0, p), (1, q), (2, r), (3, s).
Points on line: (0, b), (1, a+b), (2, 2a+b), (3, 3a+b).
Vertical displacements: b-p, a+b-q, 2a+b-r, 3a+b-s.

In[3]:= f = Hb - pL^2 + Ha + b - qL^2 + H2 a + b - rL^2 + H3 a + b - sL^2

Out[3]= Ha + b - qL2
+ H2 a + b - rL2

+ H3 a + b - sL2
+ Hb - pL2

In[4]:= Solve@8D@f, aD � 0, D@f, bD � 0<, 8a, b<D

Out[4]= ::a ®
1

10
H-3 p - q + r + 3 sL, b ®

7 p

10
+

2 q

5
+

r

10
-

s

5
>>

So our estimate of the slope is a = (-3p-q+r+3s)/10.
Applying this to our running example (p=q=0, r=s=1) we get a = .4 .

More generally, if our data points are
(0, y0), (1, y1), (2, y2), ..., (n-1, yn-1)

then a is equal to
- (n-1)y0 - (n-3)y1 - (n-5)y2 ... + (n-1)yn-1

divided by

(n3-n)/6.
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Slide 13 of 47
There’s a nice interpretation of a as a weighted average of all the secant-slope estimators that gives the estimator 

j¢- j

i¢-i

weight proportional to i¢ - i.  
E.g., for n = 4:

In[5]:= Simplify@1 HHq - pL � 1L + 1 HHr - qL � 1L +

1 HHs - rL � 1L + 2 HHr - pL � 2L + 2 HHs - qL � 2L + 3 HHs - pL � 3LD

Out[5]= -3 p - q + r + 3 s
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Slide 14 of 47
Curiously, if you give the estimator 

j¢- j

i¢-i
 weight proportional to Hi¢ - iL2 you get the same average!

E.g., for n = 4:

In[6]:= Simplify@1 HHq - pL � 1L + 1 HHr - qL � 1L +

1 HHs - rL � 1L + 4 HHr - pL � 2L + 4 HHs - qL � 2L + 9 HHs - pL � 3LD

Out[6]= -6 p - 2 q + 2 r + 6 s

The weighting by Hi¢ - iL2  may be more convincing if you’re fond of Gaussians: when averaging Gaussians with the
same mean, you get the best estimate when weights are inversely proportional to variance.

(Bibliographic question: What's a reference for this last fact?  It must be standard.)
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Slide 15 of 47We can compute a in time O(n) (if we ignore the complexity of arithmetic operations), and the space requirements are
quite minimal.

Question: How close to a does a tend to be?

Try it:

In[7]:= d@n_, a_, b_D := Sum@H-Hn - 1L + 2 iL Round@i a + bD, 8i, 0, n - 1<D � HHn^3 - nL � 6L - a

In[8]:= Table@Log@StandardDeviation@Table@N@d@10^k, RandomReal@D, RandomReal@DDD,

810 000<DDD � Log@10^kD, 8k, 1, 3<D

Out[8]= 8-1.49288, -1.50551, -1.50402<

The governing exponent appears to be about -1.5.
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Slide 16 of 47Theorem: If a and b are chosen uniformly at random in [0,1], then the root-mean-square error for the slope-estimate a
derived from the n sample-points

{(i, nint(ai+b)): 1 £ i £ n}

is O(1/n3�2).

Remark: You may be wondering how this is possible.  Specifically, if you hold a fixed (assume for simplicity that a is
irrational) and vary b, sliding the line upward, at some point the digitization changes (when the line passes through a
point of the form (i, j+1/2)); won’t this cause a big jump in a?  No it won’t: the numerator of a is

- (n-1)y0 - (n-3)y1 - (n-5)y2 ... + (n-1)yn-1

which changes by O(n) when yi increases by 1, and the denominator of a is (n3-n)/6, so the change in a is 

O(1/n2).

Proof idea: If a and b are independent random variables, uniform in [0,1], then the fractional parts of ai+b and aj+b
are uncorrelated for i ¹ j.  (In fact, we could take a,b independent with a uniform in [0,m] and b uniform in [0,n] for

arbitrary positive integers m,n, and get root-mean-square error O(1/n3�2) by the same argument.)
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Slide 17 of 47
Proof: We will prove an equivalent result, where nint(ai+b) is replaced by nint(ai+b-

1

2
); since the error only depends

on b mod 1, and since b varies uniformly over [0,1] mod 1 iff b-
1

2
 does, this doesn’t change anything.

Also, define

  8x< = :
x - dxt -

1

2
x Ï Z

0 x Î Z

so that

     nint(x) = x - {x + 1

2
}.

-2 -1 1 2

-0.4

-0.2

0.2

0.4
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Slide 18 of 47Then (by way of example with n = 4)

- 3 nint(1a+b-
1

2
) - 1 nint(2a+b-

1

2
) 

+ 1 nint(3a+b-
1

2
) + 3 nint(4a+b-

1

2
)

(=10a) is equal to

-3 (1a+b-
1

2
) - 1 (2a+b-

1

2
) 

+ 1 (3a+b-
1

2
) + 3 (4a+b-

1

2
)

(=10a) minus
  -3 {a+b} - 1 {2a+b} + 1 {3a+b} + 3 {4a+b},
so that the error a - a equals
(-3 {a+b} - 1 {2a+b} + 1 {3a+b} + 3 {4a+b})/10.

This function of a and b (which we can think of as a random variable) is easily seen to have mean 0 over [0,1] × [0,1];
to find its variance, we integrate its square.
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Slide 19 of 47
All the cross-terms vanish when we integrate, while all the diagonal terms integrate to 1

12
.

So the variance of the error

(-3 {a+b} - 1 {2a+b} + 1 {3a+b} + 3 {4a+b})/10

is equal to ((9+1+1+9) 1

12
) / 102 = 1/60.

More generally, we get variance 1/(n3-n), so the standard deviation is Q(1/n3�2).  à

In fact, an easy application of Lagrange multipliers shows that among all the estimators of a that are linear combina-
tions of the y-coordinates of the points on the digital line, a as defined above is the unique choice that minimizes the
mean-squared error (when a and b are chosen uniformly at random in [0,1]).

(Open question: What if we restrict to b = 0?)

But where’s the “averaging kernel”? ...
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Slide 20 of 47II. Bit-strings

Recall that we’re assuming that the slope a of our digital line is between 0 and 1, so as we go from left to right, the
ordinate increases by 0 or 1.

Thus we get a bit-string of length n - 1 associated with a digital line {(0, y0), ..., (n-1, yn-1)}, where the ith bit is 
nint(ia+b) - nint((i-1)a+b)   (1 £ i £ n-1)

(example: the digital line with ordinates 0,0,1,1 yields the bit-string 0-0, 1-0, 1-1 = 0, 1, 0).
The bit-string associated with a digital line is highly non-random (e.g., the substring 0, 0, 1, 1 never occurs).
More specifically, the bit-string is balanced: two substrings of the same length have sums that differ by at most 1.

The bit-strings obtained from digital  lines in this  way are highly repetitive;  and the exceptions to repetitivity are
themselves repetitive at a higher scale; etc.

Note that we can reconstruct the digital line (up to an additive constant) from the bit-string by taking partial sums: e.g.,
0, 1, 0 ® 0, 0, 0+1, 0+1+0 = 0, 0, 1, 1.
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Slide 21 of 47In this context, 

a = the slope of the digital line
   = the asymptotic density of 1’s in the bit-string
   = the asymptotic average of the bits.

We’re trying to estimate the asymptotic average of a string of bits, given the first n-1 bits, on the assumption that the
bit-string is balanced.

Surprise: One can do better than simply average the bits with equal weight.

Recall that our least-squares estimator of the slope of the digital line (0, p), (1, q), (2, r), (3, s) is 
(-3p-q+r+3s)/10.  

Replacing p, q, r, s by p, p+x, p+x+y, p+x+y+z (where x, y, z are the bits in our bit-string), this becomes 
(3x+4y+3z)/10.

In this weighted average, the middle bit y has greater weight than x and z.
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Slide 22 of 47More generally, the least-squares estimator of the asymptotic mean of an infinite balanced bit-string, based on its first
n-1 bits x1, x2, ..., xn-1, is

(1)(n-1)x1+(2)(n-2)x2+(3)(n-3)x3+ ...+(n-1)(1)xn-1

divided by (n3-n)/6.

We may call this the nth “quadratic average” of the initial segment of the bit-string, in contrast to the uniform average
(1)x1+(1)x2 +(1)x3 + ...+(1)xn-1 divided by n-1.

The earlier Theorem implies that for a and b chosen uniformly at random in [0,1], the nth quadratic average usually

differs from a by about 1/n3�2.
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Slide 23 of 47It should be stressed that balanced bit strings are rather special.  One way to see this is to take a Fourier transform.

Question: Is there an established theory of Fourier transforms of bit-strings?

Here is the Fourier transform of a balanced (i.e., Sturmian) bit-string:

In[9]:= Plot@Abs@Sum@Exp@I 2 Pi t Hk - 1LD * HRound@Hk + 1L Pi � 8D - Round@k Pi � 8DL, 8k, 1, 10^3<DD,
8t, 0, 0.5<, PlotRange ® FullD

Out[9]=

0.1 0.2 0.3 0.4 0.5

100

200

300

400

Compare this with what we get with a pseudorandom bit-string:
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Slide 24 of 47III. Almost periodic functions

Problem: Suppose f is almost periodic (a sum of sine-waves with incommensurable periods, plus a constant C).  We’re
given f(0), f(1), f(2), ..., f(n-1).
How do we estimate C (the mean value of f)?

Simplest interesting case: f(t) = A + B sin (Ωt + Φ),
where A, B, Ω, Φ are unknown real numbers
(and where in particular there’s no reason to think
the period is rational).

To make things conceptually clearer, let’s replace A and B by complex numbers and write
f(t) = Α + Β exp(iΩt)

so that
f(n) = Α + Β zn

where z = exp(iΩ) (so that |z| = 1).  Assume that Ω is not a multiple of 2Π, so that z¹1.
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Slide 25 of 47First we’ll consider the ordinary average:
(f(0) + f(1) + f(2) + ... + f(n-1))/n

      = Α + Β (1 + z + z2 + ... + zn-1) / n
      = Α + Β ((1 - zn) / (1 - z)) / n
      = Α + O(1/n).

Now we’ll consider the quadratic average (where for concision I’ll write (n3-n)/6 as Tn):

((1)(n-1) f(1) + (2)(n-2) f(2) + ... + (n-1)(1) f(n-1)) / Tn

= Α + Β((1)(n-1)z+(2)(n-2)z2+...+(n-1)(1)zn-1) / Tn

= Α + Β(((n-1)z-(n+1)z2+(n+1)zn+1-(n-1)zn+2)/(1-zL3)/Tn

= Α + O(1/n2).

So if f(t) is given by an infinite sum
f(t) = Α + Sk Βk exp(iΩkt)

where the numbers Βk/(1- exp(iΩk)) are absolutely summable, then the quadratic weighted average of f(1), ..., f(n-1)

is an asymptotically better estimate of Α (with error O(1/n2)) than the unweighted average (with error O(1/n)).

Question: Can this really be new?
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Slide 26 of 47IV. Integrals

Suppose f is a continuous periodic function on R with period 1, written as a function on [0,1).  We’re given
f(x0), f(x1), f(x2), ..., f(xn-1), 

where xi is an arithmetic progression mod 1 with irrational difference.  How do we estimate the integral of f on [0,1)
(which can be thought of as the expected value of f(x) if x is chosen uniformly from [0,1))?

The quadratically weighted average
((1)(n-1)f(x1) + (2)(n-2)f(x2) + ... + (n-1)(1)f(xn-1)) / Tn

(typical error O(1/n2)) does better than the uniform average
(f(x0) + f(x1) + f(x2) + ... + f(xn-1)) / n
(typical error O(1/n)), though neither does as well as
(f(0) + f(1/n) + f(2/n) + ... + f((n-1)/n)) / n.

This method of integrating can also be applied to integrate functions on (-¥,+¥) that fall  off at  ±¥  sufficiently
quickly (by change of variables), and can also be applied in a multidimensional setting, though it does not appear to be

superior to traditional approaches (the error looks to be O(1/n1+1�d)).
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Slide 27 of 47V. How many dots in a digital disk?

The number of lattice points in a disk of radius n  is about Πn, so Π is close to the number of lattice points in the disk
divided by n; the error is on the order of nc where c » -.6 (finding c exactly is Gauss’ Circle Problem, still unsolved).

Suppose we use a quadratic weighting instead of a uniform weighting, and give the lattice point (i, j) weight n-i2- j2 if

(i, j) is in the disk of radius n  and weight 0 otherwise.  

If we take the sum of the weights of the lattice points and divide by the integral of the weighting function (a quadratic

function that vanishes on the circle of radius n), we get an approximation to Π whose error seems to be about n-1.2.

To put this exponent into perspective, note that in the context of counting lattice points in a disk of radius Π and area

Πn, a single lattice point contributes relative error on the order of n-1.  So a relative error of n-1.2 is less than a lattice
point’s worth of error.
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Slide 28 of 47An equivalent way to describe this approximation to Π is as the sum of (n-k) r2(k) with k going from 0 to n divided by

n2/2, where r2(k) denotes the number of ways to write k as a sum of two squares.  That is, it’s a kind of Cesaro average
of r2(k), and many of the other examples from this talk can be viewed as variants of Cesaro averaging.
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Slide 29 of 47VI. A(lmost)periodic point sets

One version of the 5-fold symmetric Penrose tiling of the plane is a tiling composed of 2 kinds of rhombuses.  Here is
a patch of this tiling, showing the vertices of the rhombuses.
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-2

2

4

How  can  we  best  estimate  the  density  of  dots  empirically?   (Its  actual  value  is  2 2 J3 + 5 N  divided  by

2 5 - 5 + J1 + 5 N 5 + 5 , or about 1.231, but suppose we didn’t know this.)
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Slide 30 of 47
If we count the dots that occur in a disk of radius R, and divide by ΠR2, we get a highly discontinuous function that
converges to the true density rather slowly:

1 2 3 4

0.5

1.0

1.5

But if we give each dot that occurs at distance r from the origin weight max(R - r, 0)  (a linear weighting function), we
get faster convergence:

1 2 3 4

0.2

0.4

0.6

0.8

1.0

1.2

E.g., the error near R = 4 drops by a factor of 15.
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Slide 31 of 47Here are the results of a larger calculation, using the 18,946 dots within distance 70 of the origin (computed using
Mathematica  code provided by Uwe Grimm).  The following picture shows the uniform-weighting estimate of the
density (as a function of R for R between 60 and 70), overlaid with the linear-weighting estimate of the density.

62 64 66 68 70

1.230

1.232

1.234

In this range, the linear-weighting estimate is better by a factor of 200.

32   Slope.cdf



Slide 32 of 47VII. Markov chains and rotor walk

A nice introduction to rotor walk is Michael Kleber’s 2005 Mathematical Intelligencer article “Goldbug Variations”:

http://arxiv.org/pdf/math/0501497v1

A more recent article with a more explicit theory-of-computation flavor is my 2010 Chaos article “Discrete analogue
computing with rotor-routers”:

http://arxiv.org/abs/1007.2389

One motivation for work on rotor-routing is that it’s a general trick for derandomizing the simulation approach for
many probabilistic quantities: escape probability, stationary measure, mean hitting time, etc.

I’ll focus on a single application involving an escape probability associated with a two-dimensional random walk.
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Slide 33 of 47A random walker starts at (0, 0) and repeatedly takes random unit steps chosen uniformly at random from 
{(1, 0), (-1, 0), (0, 1), (0, -1)} (independently of the random choices made before) until the walk either arrives at (1,1)
(“success”) or returns to (0,0) (“failure”).

It can be shown that with probability 1, either success or failure will eventually occur.

It can also be shown (with some real work) that the probability p of success (aka the “escape probability”) is 
Π/8 » .39 .
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Slide 34 of 47If we didn’t know this, how could we estimate p numerically?

The number of successes in n trials will be 

pn ± O( n ).

So the proportion of successes in n trials will be

p ± O(1/ n ).

That is, the “Monte Carlo approach” to determining p
will not be feasible if we want 6 digits of accuracy:

we’d need 1012 trials.
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Slide 35 of 47
We can reduce the discrepancy in the number of successes in the first n trials from O( n ) to O(log n), and correspond-

ingly reduce the error in our estimate of p from O(1/ n ) to O((log n)/n), if instead of doing random walk we do rotor
walk. 

To see how the specific random walk described on the previous page gets turned into a rotor walk, go to

http://www.cs.uml.edu/~jpropp/rotor-router-model/

click on “The Applet”, and set Graph/Mode to “2-D Walk”.  Then hit “Step” or “Stage” repeatedly until you get the
idea.
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Slide 36 of 47We start with a collection of arrows, or rotors, associated with all the sites in Z×Z (except (1,1)); the rotor at site (i, j)
points to one of the four neighbors (i+1, j), (i-1, j), (i, j+1), (i, j-1).
When the walker arrives at a site (i, j) ¹ (1,1), the rotor at that site advances 90 degrees clockwise, and the walker
steps to the neighbor of (i, j) that the rotor currently points to.
When the walker arrives at (1,1), the walker steps immediately to (0,0).

A stage or run is the process whereby the walker, starting from (0,0), either arrives at (1,1) (without returning to (0,0))
or returns to (0,0) (without visiting (1,1)); we call these successful vs. unsuccessful runs.

Theorem (Holroyd and Propp, 2010): The number of successes in the first n runs is pn ± O(log n) (assuming a particu-
lar initial setting of the rotors that keeps the walker from wandering off to infinity).

The motivation behind the present work is the question: Can we do better?  That is, can we make better use of the
rotor walk runs to get a quantity that concentrates more tightly around p?
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Slide 37 of 47Consider the bit-string in which the ith bit is a 1 or a 0 according to whether the ith run of the “Π/8 machine” is a
success or a failure.

This bit-string (the “escape sequence”) is not balanced (that is, it is not the bit-string associated with a digital line), but
it comes close:

for over half the values of n between 1 and 104, the number of 1’s in the first n bits equals the integer closest to (Π/8)n.

Also, the bit-string has some periodicities of the sort that (according to the examples we’ve seen in earlier sections) are
likely to be conducive to making the quadratic average a good bet.
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Slide 38 of 47The easiest periodicity to see in the data is period 8: here are the first 96 bits, arranged in 12 rows of 8:

H* Here are the first 10^4 bits;
double-click at right to view. *L

In[29]:= Table@Table@TenK@@8 i + j + 1DD, 8j, 0, 7<D, 8i, 0, 12<D

Out[29]=

1 0 0 0 0 1 1 0
1 0 0 1 0 1 0 0
1 0 0 0 0 1 1 1
1 0 0 0 0 1 0 0
1 0 1 1 0 1 0 0
1 0 0 0 0 1 0 0
1 0 0 1 0 1 1 0
1 0 0 0 0 1 1 0
1 0 0 1 0 1 0 0
1 0 1 0 0 1 0 1
1 0 0 0 0 1 0 0
1 0 1 0 0 1 0 1
1 0 0 0 0 1 1 0

Question: Four of the eight columns are constant as far as they’ve been computed; why?
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Slide 39 of 47To see the other periodicities, we need to take a Fourier transform of the bit-string.

In[30]:= Plot@Abs@Sum@Exp@I 2 Pi t Hk - 1LD * TenK@@kDD, 8k, 1, 10^4<DD, 8t, 0, .5<D

Out[30]=
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(The plot from .5 to 1.0 is the same, reversed.)
It looks like there’s some suppression of peaks near quarter-integers, and to a lesser extent near 1/8, 3/8, 5/8, 7/8.
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Slide 40 of 47We can zoom out to see the tallest peaks in this spectrum:

In[32]:= e = Abs@Sum@Exp@I 2 Pi t Hk - 1LD * TenK@@kDD, 8k, 1, 10^4<DD;

Plot@e, 8t, 0, .5<, PlotRange ® 880, .5<, 80, 2000<<D
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The tallest peaks are the ones at .1250, .2500, and .3750 (no peak at .5000 though).

Also: If we extract every 8th bit, form a new sequence from them, and take its Fourier transform, we get a spectrum
whose second-highest peak is around .1415 » Π - 3; coincidence?
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Slide 41 of 47Here’s what we get if we use quadratic averages to estimate the escape probability p:

H* Here are the first 10^4 points on the digital-

line given by the bit-string. *L
ListPlot@Exponents, AxesOrigin ® 81, 1.0<D
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It’s unclear whether the error for quadratic averaging is falling off like O(1/n1.5), but it’s looking better than O(1/n).
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Slide 42 of 47The underlying question is:

Question: How well can one see the asymptotic average of a rotor-router escape sequence, given its first n terms?

David Einstein showed that for finite rotor-router machines, quadratic averaging achieves error O(1/n2), and I know of

one example of an infinite (the “goldbug machine”) for which quadratic averaging achieves error O((log n)/n2).
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Slide 43 of 47I have very few ideas about how to prove anything about quadratic averaging for escape sequences for rotor-routing on
general infinite graphs, but here’s another problem I can’t solve whose solution would probably require techniques that
would in turn be useful for rotor-routing escape sequences:

Question: How well can you see the slope of a “composite digital line” y = nint(a¢ nint(a x + b) + b¢)?

Does quadratic averaging let one achieve error O(1/n3�2) when a, b, a¢, b¢ are chosen randomly?

From a pure math perspective, it seems natural to take the closure of the set of digital linear functions under addition
and composition, but I haven’t found any literature on this.
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Slide 44 of 47VIII. Other directions

The quadratic averaging trick works in the continuous domain as well:

In[42]:= Integrate@1 Sin@tD, 8t, 0, T<D � Integrate@1, 8t, 0, T<D

Out[42]=

1 - cosHTL

T

In[43]:= Integrate@t HT - tL Sin@tD, 8t, 0, T<D � Integrate@t HT - tL, 8t, 0, T<D

Out[43]=

6 H-T sinHTL - 2 cosHTL + 2L

T3

Hence, if you average an oscillatory term sin (Ωt + Φ) out to time T in the ordinary way, you get O(1/T), but with

(continuous) quadratic averaging you get O(1/T2).

Here the averaging kernel  is  an integration kernel  rather  than a  summation kernel.   Surely this  is  in  the  Fourier
literature!
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Slide 45 of 47
In this setting, we can see that O(1/T2) is not the end of the line:

In[44]:= Integrate@t^2 HT - tL^2 Sin@tD, 8t, 0, T<D � Integrate@t^2 HT - tL^2, 8t, 0, T<D

Out[44]=

1

T5
30 I2 IT2

- 12M HcosHTL - 1L - 12 T sinHTLM

So with (continuous) quartic averaging you get O(1/T3).
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Slide 46 of 47Indeed, going back to the problem of estimating the mean value of an almost periodic function given its value at

evenly-spaced discrete times, we see that we can also achieve O(1/n3) error in that context: If you multiply

[(1)(n-1)D2z+[(2)(n-2)D2z2+...+[(n-1)(1)D2zn-1

by H1 - zL5, you get a numerator in which coefficients are all O(n2), and when you divide by the normalizing constant

[(1)(n-1)D2+[(2)(n-2)D2+...+[(n-1)(1)D2 which is on the order of n5, you get something that’s O(1/n3).

(Overly vague) Problem: What is the best way to estimate the mean value of an almost periodic function?

Slope.cdf   47



Slide 47 of 47IX. Summary

When a source of data has built-in periodicity, and you want to compute its long-term average from data in a finite tine-
window, you shouldn’t use a simple uniform average, but rather use an average in which values from the middle are
weighted more heavily than samples from the beginning and end.

Also: When you’re doing research in one area and find it  has connections to other areas you aren’t an expert in,
consider making use of the friendly experts who populate MathOverflow!

Slides for this talk are at

http://jamespropp.org/Slope.nb
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