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Overview, with an example

Consider a discrete random system with
some numerical property X whose average-
case behavior E(X) we want to deter-
mine.

One way to estimate E(X) is to gener-
ate N independent samples of the ran-
dom variable X and take the average
(X1 + . . . + XN )/N . This estimate is
typically within O(1/

√
N) of E(X).

The theme of this talk is that you can
sometimes get even better estimates by
using (x1+. . .+xN )/N where x1, . . . , xN
are properly chosen deterministic sam-
ples.
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Key idea: Replace randomness by a low-
discrepancy property.

Recall that the archetype for discrete
randomness is an “unpredictable” fair
coin.

The archetype for discrete quasirandom-
ness is the deterministic sequence H, T,
H, T, H, T, . . . (or, equally good, T, H,
T, H, T, H, . . . ).

(This is no longer unpredictable, but it’s
still “fair”!)

After N tosses of a “quasirandom coin”,
the number of heads is N/2 + O(1);
i.e., the empirical estimate of the bias
is 1/2 + O(1/N).
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Quasirandom walk on finite graphs

Consider a strongly connected finite di-
rected graph in which each vertex has
outdegree 2. A bug moving through the
directed graph chooses which way to go
at each vertex by using a quasirandom
coin sitting at that vertex.

For some fixed vertex v, let sN be the
number of times the bug visits vertex v
during the first N steps of its quasiran-
dom walk.

Fact: |sN − Np| = O(1), where p is
the steady-state probability associated
with v under random walk. That is,
|sN/N − p| = O(1/N).

Note that O(1/N) is the best one could
hope for.
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Quasirandom approaches tend to give
estimates with error deterministically bounded
by C/N or C(log N)/N , where the straight-
forward random approach gives estimates
bounded in expectation by C/

√
N .

(Sometimes this is rigorously known; some-
times this is only conjectural but is strik-
ingly well-supported by data.)
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More generally, the simplest kind of quasir-
andom variable with m different equally
probable values is a sequence that ro-
tates through the m allowed values in
some fixed order:

1, 2, 3, . . . ,m− 1, m,
1, 2, 3, . . . ,m− 1, m,
1, 2, 3, . . . ,m− 1, m,
. . .

We call this a rotor.

If these m values are the m arcs ema-
nating from v, we call this quasirandom
variable a rotor-router, and we pic-
ture it as an arrow that points at the
neighbors of v in some fixed cyclic or-
der.
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For reasons that will become clearer dur-
ing tomorrow’s talk, we advance the ro-
tor at a vertex before we move the bug.

Thus, the rotor at an unoccupied site
that has been visited before always points
in the direction in which the bug left the
vertex on its most recent visit.

Fact: Quasirandom walk on any strongly
connected finite directed graph gives dis-
crepancy

|sN −Np| = O(1)

where sN is the number of times the
bug visits vertex v during the first N
steps of its quasirandom walk, and p is
the steady-state probability associated
with v under random walk.
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A quasirandom walk in an infi-
nite graph

Start by considering a random walk.

States: −1, 0; 1, 2, 3, ...

Transitions: 1 step to the right or 2 to
the left (equally likely)

Start bug at 1

Absorb bug at −1 and 0

If we put a bug at 1, what’s the prob-
ability that it wanders off to the right
without ever getting absorbed?

Zero.

If we put a bug at 1, what’s the proba-
bility that it gets absorbed at −1?

Approximately .618034.
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Let SN be the number of successes after
N trials.

Then SN/N goes to 1/φ where φ =
(1 +

√
5)/2.

We expect |SN − N/φ| to be on the
order of

√
N for large N .
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Now switch to quasirandom walk, where
all but finitely many rotors originally
point to the right.

We add a bug at 1. It can be shown
that the bug will be absorbed at either
−1 or 0 after a finite number of steps.

We can continue to add more bugs, each
of which will get absorbed at −1 or 0.

Let xN be 1 if the Nth bug gets ab-
sorbed at −1, and 0 otherwise.

Let sN = x1 + . . . + xN be number of
successes (bugs absorbed at −1) after
N trials.

Fact: |sN − N/φ| < 1/φ (which im-
plies sN/N = 1/φ + O(1/N)).
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Proof idea: The states of the rotors en-
code a number between 0 and 1 in base
r = −φ, using the digits

0 (Outward arrow)
and

1 (Inward arrow).

An Inward arrow at position i has value
1/ri.

The bug itself is the digit 1/r; its value
when at position i is 1/ri+1.

The value of the rotors plus the value
of the bug is invariant under the oper-
ation of updating the rotor and sliding
the bug.
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Further properties:

1. When there is no bug in the system,
the value of the system lies between
−1 and 1/φ.

2. When a bug is added at 1 and wan-
ders before exiting at 0, the overall
change in the value of the system is
+1/φ2 + 1/φ = +1.

3. When a bug is added at 1 and wan-
ders before exiting at −1, the overall
change in the value of the system is
+1/φ2 − 1 = −1/φ.
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So the value of the system always in-
creases by 1 mod φ, and this nearly al-
ways uniquely specifies its new value,
since the value of the system stays in
[−1, 1/φ], an interval of length φ.

The boundedness of the discrepancy

|sN −N/φ|
follows immediately from the fact that
the value of the system always stays in
a bounded interval.
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Recall that sN = x1 + . . . + xN , where
xk is 1 if the kth bug ends up at −1
and is 0 if the kth bug ends up at 0.
The xk’s are quasirandomized versions
of independent trials Xk.

Estimating E(X) using x1, x2, . . . in-
stead of X1, X2, . . . corresponds to the
(classical) quasirandom method of com-
puting the integral of f on I , where I is
the interval [−1, 1/φ], f : I → R is the
indicator function of [0, 1/φ], and the
sample points t1, t2, . . . satisfy tN ≡
N (mod φ).

Specifically, xN equals f (tN ).
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A quasirandom walk in two di-
mensions
If a bug does random walk in Z2 start-
ing from (0,0), the chance that it will
arrive at (1,1) before it ever returns to
(0,0) is p = π/8.

If we do N trials, the number of suc-
cesses divided by the number of trials
should be close to π/8, with an error
on the order of 1/

√
N .

Equivalently, the number of successes
minus π/8 times the number of trials
(the discrepancy) should be on the or-
der of

√
N if we do independent random

trials.
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With rotor-routers, the discrepancy seems
to be bounded.

The discrepancy sN − pN stays in the
interval [−.22, +3.39] for all N between
1 and 10,000.

This is much smaller than the discrep-
ancy one would see for true random walk,
which would be on the order of 50.

The interval [−.22, +3.39] seems even
more surprisingly narrow when one con-
siders that for N between 1 and 5, the
discrepancy sN − pN ranges between 0
and 2.963495. So the discrepancy inter-
val doesn’t grow much during the bug’s
next 9,995 visits to (0,0).

No proof of boundedness of sN − pN is
known.
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The Cooper-Spencer theorem

Put some bugs at even sites in Zd (i.e.,
sites for which the sum of the coordi-
nates is even), where the sites are equipped
with rotors. Let each bug do one step of
rotor-router walk (this is well-defined).
Do this a total of T times.

Cooper and Spencer show that the dif-
ference between (1) the number of bugs
at a site after T rounds of rotor-router
walk, and (2) the expected number of
bugs at a site after T rounds of ran-
dom walk, is bounded by a constant C
that doesn’t depend on T , or on what
the original distribution of bugs was,
or which way the rotors were originally
pointing. All it depends on is d, the
dimension of the lattice.
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See “Simulating a random walk with
constant error”, by Joshua Cooper and
Joel Spencer:

arXiv:math.CO/0402323.

Cooper and Spencer also showed that in
Zd, the error over the hypercube [1, L]d

is O(Ld−1 ln L).

In particular, in Z1 the error over an
interval of length L is O(ln L).
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So far, we’ve seen examples where quasir-
andomness gives sharp estimates for ran-
dom walk: steady-state distribution, ab-
sorption probability, and distribution af-
ter T steps.

The same is true for expected time until
absorption.

But now let’s change gears and think
about random aggregation instead of ran-
dom walk.
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Quasirandom aggregation in one
dimension
Internal Diffusion-Limited Aggregation
(IDLA): To add a new bug to the (ini-
tially empty) blob, put the bug at the
origin and let it do random walk until
it hits an unoccupied site. Adjoin this
site to the blob. Repeat.
Modify the rule so that when a bug finds
a vacancy at location x < 0, both sites
x and x− 1 get adjoined to the blob.
Say the blob at time t is [−x(t), y(t)].
True randomness: x/y →

√
2.

Quasirandomness with rotors:
Theorem (Levine): |xn−yn

√
2| is bounded.
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Quasirandom aggregation in two
dimensions
Theorem (Bramson, Griffeath, and Lawler):
The N -bug IDLA blob in two dimen-
sions is round to within radial fluctua-
tion that are O(N1/3).

Theorem (Blachère): Can replace O(N1/3)
by O(ln N).
Rotor version: After a million bugs have
been added to the system, the inradius
is 563.5 and the outradius is 565.1: they
differ by 1.6 (about three tenths of one
percent).
Difference between inradius and cir-
cumradius seems to be bounded.
No proof that ratio between inradius
and circumradius is bounded.
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Related work

• Derandomization of Monte Carlo in-
tegration via quasirandomness (1960s?)

• Arthur Engel’s “probabilistic abacus”
(1975, 1976)

• Sandpiles and avalanches (Bak, Tang,
and Wiesenfeld, 1988; Dhar, 1990)

• Chip-firing (Anderson, Lovász, Shor,
Spencer, Tardos, and Winograd, 1989)

• Eulerian walkers (Priezzhev, Dhar,
Dhar, and Krishnamurthy, 1996)

• Balancers and balancing circuits (Ra-
bani, Sinclair, and Wanka, 1998)
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Problems

Theory lags behind observation (some-
times quasirandomness appears to be
extremely good but we can’t prove it
yet)

“Quasirandomization” is not a clearly
defined procedure

Current methods apply only to first-order
estimates (e.g., mean, not variance)
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Fancier forms of quasirandomness than
+1,−1, +1,−1, . . .?:

Does there exist an infinite sequence (ak)∞k=1
of +1’s and −1’s such that the partial
sums

N∑
k=1

ak

are bounded and such that for every
positive integer r, the partial sums

N∑
k=1

akak+r

are all bounded? (The bound may de-
pend on r, but not on N .)
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Does there exist an infinite sequence (ak)∞k=1
of +1’s and −1’s such that the partial
sums

N∑
k=1

ak

are bounded and such that for every
complex number z with |z| = 1 (or
maybe just every root of unity), the par-
tial sums

N∑
k=1

akz
k

are all bounded? (The bound may de-
pend on z, but not on N .)
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Quasirandomness with different orders
of discrepancy:

Instead of rotors (whose discrepancy is
O(1)), we could use deterministic se-
quences whose discrepancy is O(Nα) or
o(Nα) for some particular α between 0
and 1.

(α = 1/2 is a natural choice, if one is
hoping to find some still-unknown kind
of quasirandom bit string that will sat-
isfy the central limit theorem.)

For each such notion of discrepancy, there
are theorems that say that if you use
low-discrepancy quasirandomness at a
local level, the macroscopic effects that
are produced by the model will agree (to
within low discrepancy) with the average-
case behavior for true randomness.
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Summary

Computer random-number generators are
non-random anyway!

Why settle for one-size-fits-all pseudo-
randomness, if you can have the per-
fect kind of quasirandomness for your
model?

When available, quasirandom methods
typically:

• are fast;

• give small errors;

• give deterministic bounds on errors;
and

• can be proved to have those three
properties.
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For more information:

Email: propp@math.wisc.edu

Video etc.: http://murl.microsoft.com/
LectureDetails.asp?1050

Applets: http://www.math.wisc.edu/
∼propp/rotor-router-1.0/

Probability seminar: 9/22 and 9/29,
334 Evans, 3:10 – 4:00 pm

Michael Kleber’s upcoming article in the
Winter 2005 issue of The Mathematical
Intelligencer
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