
Quasirandom Walk with
Rotor-Routers

James Propp (U. Wisconsin)

September 22, 2004

(based on an article in progress with
Ander Holroyd;

with thanks also to Hal Canary,
Matt Cook, Dan Hoey, Michael Kleber,
Yuval Peres, Oded Schramm, and
Peter Winkler)

1

For most of this talk, I will be using
the sharpest definition of quasirandom,
namely, discrepancy = O(1).

That is: a sequence x1, x2, . . . taking
its values in some set A will be called
quasirandom if for each element a ∈ A
there is a probability pa ∈ [0, 1] such
that the discrepancy

|#{1 ≤ k ≤ N : xk = a} − paN |
is bounded (independently of N).

In particular, every periodic sequence is
quasirandom in this sense.

(So are Sturmian sequences and the like,
but I’ll focus on periodic sequences.)

2

An a : b rotor has as its internal state
a number between 1 and a + b inclusive
and as its output either 1 or 2.

Let x be the previous state of the rotor.
The current output o and new state x′

are determined as follows:

If x > b,
x′ = x− b and o = 1;

otherwise,
x′ = x + a and o = 2.

The output sequence is quasirandom with
p1 = a/(a + b), p2 = b/(a + b).

Example: a = 1, b = 2.

States: 1,2,3,1,2,3,..

Outputs: 2 2 1 2 2 1 ...

3

A recurrent quasirandom walk

After I gave an earlier version of my
talk, I asked David Griffeath for a good
example to try my methods on. He
replied:

For a simple but somewhat subtle

positive recurrent chain with

computable equilibrium, how

about the birth-death process on

{0,1,2,...} with reflection at 0

and probabilities (n+4)/(2n+4)

and n/(2n+4) of jumps to the left

and right, respectively, from any

state other than 0 ?’

The steady-state probability of 0 is ex-
actly 3/8.

4

Quasirandomize: route the bugs using
rotors (one per vertex) instead of ran-
dom choices.

Start the chain from 0.

Let sN be the number of times state 0
has been visited by time N .

It does not appear that |sN − 3N/8|
is bounded. But it does appear that
|sN − 3N/8| is O(N .4).

Moreover, .4 seems to be the exact right
exponent.

5

Evidence: Let

p+
N = max{sM/M : N/2 ≤ M ≤ N}

and

p−N = min{sM/M : N/2 ≤ M ≤ N}.
Here are the values of

log(p+
N − .375)/ log(N)

with N = 10, 100, 1000, . . . , 109:

-0.7433880751

-0.7651331620

-0.6967433616

-0.6579282788

-0.6439365375

-0.6335571521

-0.6252501014

-0.6198259145

-0.6136531941

6

And here are the values of

log(p−N − .375)/ log(N)

with N = 10, 100, 1000, . . . , 109:

-0.5351127052

-0.6170428439

-0.5850101801

-0.5900288146

-0.5910136907

-0.5896003336

-0.5926773786

-0.5930909369

-0.5997711121

(What we would get from true random
walk?)

7

A 1-dimensional walk involving
pi

Here’s a 2-stage random walk on {1, 3, 5, ...}
for which the stationary probability mea-
sure at k is (1/k2)/(π2/8).

At the first time-step, re-randomize the
sets {1, 3}, {5, 7}, {9, 11}, ..., using ro-
tors of appropriate bias (32 : 12, 72 : 52,
112 : 92, ...)

At the next time-step, re-randomize the
sets {3, 5}, {7, 9}, {11, 13}, ..., again
using rotors of appropriate bias.

Etc. (alternating).

8

Let’s relabel the sites as 0,1,2,3,4,...; the
stationary measure of state i is then
proportional to 1/(2i + 1)2. In par-
ticular, the stationary measure at 0 is
p = 8/π2.

At odd time-steps, we re-randomize {0, 1},
{2, 3}, {4, 5}, ...; at even time-steps, we
re-randomize {1, 2}, {3, 4}, {5, 6},

If time and position are congruent mod
2, we consider replacing k by k−1 using
one set of rotors; otherwise we consider
replacing k by k + 1, using another set
of rotors.

This time, sN−Np seems to be O(Nc).
where c lies between .634 and .647.

What is c?

9

A transient quasirandom walk

Start by considering a transient random
walk.

States: 0; 1, 2, 3, ...

Transitions: 1 step to the right or 1 step
to the left (the former is twice as likely)

Start bug at 1

If we put a bug at 1, what’s the proba-
bility that it eventually hits 0?

1/2.

10

Quasirandom version: Each site (other
than 0) has one of three colors (green,
yellow, red).

If a bug is at a green vertex, the vertex
becomes yellow and the bug moves one
step to the right.

If a bug is at a yellow vertex, the vertex
becomes red and the bug moves one step
to the right.

If a bug is at a red vertex, the vertex
becomes green and the bug moves one
step to the left.

We start a bug at site 1 and see where
it goes.

11

Either the bug reaches vertex 0 after a
finite number of steps or the bug vis-
its each vertex at most finitely many
times. In the latter case, the state of
the system “at time infinity” can be de-
fined “by continuity”, by saying that
the state of each rotor is the state that
it had the last time a bug left it. Then
the process can start again with a fresh
bug at vertex 1.

Let sN be the number of successes after
N trials (where a bug “succeeds” if it
eventually reaches 0).

Then |sN −N/2| is O(1).

12

Proof idea (words adapted from Win-
kler’s write-up of the Holroyd-Propp proof):
The states of the rotors encode a num-
ber between 0 and 1 in base 2, using the
digits

0 (green light),
1
2 (yellow light),

and
1 (red light).

The value of vertex i is 2−i times the
digit associated with the color of that
vertex.

The bug itself has value 2−i when at
position i.

The value of the rotors plus the value
of the bug is invariant under updating-
the-rotor-and-sliding-the-bug.

13

When the bug moves to the right from
point i, the digit upon which it sat goes
up in value by 1

2; therefore, the value of

the rotors increases by (1
2)

i+1, but the
bug’s own value diminishes by the same
amount.

If the bug moves to the left from i it
gains in value by (1

2)
i, but the value of

the rotors decreases by a whole digit in
the ith place to compensate.

The exception is when the bug falls off
to the left, in which case both the value
of the rotors and the value of the bug
drop by 1

2, for a loss of 1 overall.

When the next bug is added, the total
value of the system goes up by 1

2.

14

To put it another way, the value of the
rotors goes up by 1

2 if a bug is introduced
and disappears to the right; and drops
by 1

2 if a bug is introduced and falls off
to the left.

Of course, the total value of the rotors
must always lie in the unit interval. If
its initial value lies strictly between 0
and 1

2, the bugs must alternate right,

left, right, left; if between 1
2 and 1, the

alternation will be left, right, left, right.

In fact, the state of the system itself al-
ternates: adding three bugs to the sys-
tem leaves the rotors in the same state
as adding one bug.

15

Let’s look at this proof again from a
more sophisticated perspective.

For each vertex i, let pi be the proba-
bility that a bug that does random walk
starting from i will eventually hit 0.

It can be shown that pi = (1/2)i.

Consistency check:

pi = (1/3)pi−1 + (2/3)pi+1.

In fact, the only solutions to this rela-
tion are of the form A(1/2)i + B. And
once we know that p0 = 1 and pi → 0
as i → ∞, we can deduce that A = 1
and B = 0.

16

The key properties of our scheme for as-
signing values to rotors and to the bug
are:

(1) when the bug is at i, its value is pi;
and

(2) when the rotor at i switches from
pointing towards j to pointing to-
wards k, the value of the rotor in-
creases by pi−pk, to compensate for
the change in the value of the bug.

Consistency check: As the rotor makes
one complete revolution, the sum of these
changes should be zero.

17

Think of these changes as being arranged
in a circle.

Note that (1) and (2) don’t determine
the values of rotors; only the difference
between the values of two different rotor-
directions at a vertex.

If we’re unwise in the way we assign
values to the rotors, the values of the
rotors won’t be summable. But that’s
not what really matters, because what’s
“physically meaningful” are the differ-
ences between the values of the system.
E.g., the difference between the value of
the system at the start and the value of
the system after some bugs have been
added and removed (maybe removed at
infinity).

18

For each vertex i there is a range of val-
ues taken on by the rotor. The width
of this range is well-defined. If the sum
over i of these widths is finite, then ev-
erything works fine. (This is sufficient;
is it necessary?)

The range of values taken on by the ro-
tor at i is the maximum of Σ (pi− pk),
as k ranges over some arc of the circle.

E.g., in our example, at location i, the
three numbers in the circle are

pi − pi+1 = (1/2)i+1,
pi − pi+1 = (1/2)i+1, and
pi − pi−1 = −(1/2)i,

So this range is (1/2)i.

The range of values for the system as a
whole is Σi (1/2)i = 1, a finite number.

19

General construction

Given: Markov chain with discrete state
space (i.e., random walk on a graph)
with transition probabilities qi,j.

Fix source x and targets y 6= z. (x
is a genuine vertex; y and z can be at
infinity.) Assume that with probability
1, random walk from x “hits” either y
or z.

For each vertex v, let pv be the prob-
ability that random walk started at v
hits y before it hits z.

Thus, px is what we want to compute
(or estimate); py = 1, pz = 0.

p is a harmonic function: for all v
other than y and z,

pv = Σv→w qv,wpw.

20

Assume that there are finitely many arcs
from each vertex and that all transition
probabilities are rational.

Then one can create a rotor-router mech-
anism where bugs get added at x and
removed at y and z.

Let sN be the number of bugs among
the first N inserted at x that get re-
moved at y.

Theorem (Holroyd and Propp): If

Σv→w |pv − pw|
is finite (where the sum is over all di-
rected edges), the discrepancy

|sN −Npx|
is O(1), i.e., bounded.

21

Hitting-time

Theorem (Holroyd and Propp): Sup-
pose the Markov chain has finite state-
space. Suppose there is a target y which
a bug started at x almost surely hits
(under random walk). Let tN be the
total time taken for N bugs, added one
at a time at x, to get to y, under rotor-
router walk. Then the discrepancy

|tN −NEx(time to hit y)|
is bounded.

22

Proof idea: For simplicity, take x 6= y.
For each vertex v, let hv be the expected
time it takes for random walk started at
v to hit y. Then, hy = 0, and for all v
other than y,

hv = 1 + Σv→w qv,whw.

One can use this to devise a rotor-value
argument.

What if the state space is infinite? Then
we know of cases where boundedness
fails, but we suspect that (at least under
reasonable hypotheses) the discrepancy
is O(log N).

23

Schramm’s theorem

Theorem (Schramm): Assume the same
hypotheses as in the first Holroyd-Propp
theorem, but instead of assuming

Σv→w |pv − pw|,
merely assume that the walk is recur-
rent. Then sN/N → px; i.e., the dis-
crepancy |sN −Npx| is o(N).

This applies to the two-dimensional quasi-
random walk I showed you yesterday
(the one that computes π/8).

Before I show you the proof of Schramm’s
result, I’ll need to digress and talk about
chip-firing.

24

Chip-firing, aka sandpile avalanches

In a chip-configuration, each vertex of
a directed graph has some number of
“chips” (a non-negative integer).

If the number of chips at v is less than
the outdegree of v, we say the configu-
ration is stable at v; otherwise, we say
that it is unstable at v.

If a chip-configuration is unstable at v,
we may “fire” v by sending 1 chip along
each of the directed edges emanating
from v.

As long as a chip-configuration is unsta-
ble somewhere, we can fire it.

There may also be “sinks” that absorb
chips but cannot fire.

25

The strong convergence property

The choices you make (choosing which
vertex to fire next) don’t matter. That
is:

EITHER, no matter what you do, you
cannot make the configuration stable,

OR, no matter what you do, the con-
figuration will reach a stable state, and
this stable state is independent of the
choices you made along the way.

26

The same is true for rotor-router walk
when multiple identical bugs are allowed
on the graph. If we want each bug to
have a chance to wander until it hits
some target (possibly at infinity), we
can advance one bug at a time, ignoring
all the other bugs while we do so. The
resulting configuration of bugs-and-rotors
does not depend on the order in which
we advance the bugs.

Important caveat: It is vital that the
bugs are indistinguishable and that we
allow each bug to advance until it hits
one of the targets. E.g., the strong con-
vergence property does NOT apply in
Cooper and Spencer’s work, because there
each bug advances some fixed number of
steps.

27

Application of strong convergence: To
find out what the π/8-machine will look
like after a million trials without run-
ning a million trials in succession, put a
million bugs at (0,0) at the start. Let
each of them move one step. Repeat
(absorbing bugs at (0,0) and (1,1) when
needed).

When there are four or more bugs at a
site, and we send out four bugs in suc-
cession, there is no net effect on the ro-
tor. So we can think of this as a chip-
firing operation. If there are n = 4k+r
bugs at the site (with 0 ≤ r ≤ 3), rout-
ing them all to neighboring vertices can
be thought of as k chip-firing operations
(which don’t affect the rotor) followed
by r rotor-router operations.

28

Proof of Schramm’s theorem

(adapted from Schramm’s email):

Consider a recurrent directed graph G
(Markov chain) with a starting node s
and terminal nodes t1, ..., tk. Suppose
that you want to estimate the various
exit probabilities up to an error of ε.
Let n be sufficiently large so that the
probability for the random walk to ter-
minate after n steps is at least 1− ε/2.
Let m be the product of all numbers j
that are out-degrees of vertices in G at
distance at most n from s.

29

Consider dropping mn particles at s,
and letting them go. Whenever a parti-
cle already made n steps (without ter-
minating) we freeze it. The other par-
ticles keep going. If we do the analogue
of the sandpile avalanche process, then
at each stage the number of non-frozen
particles at a vertex is divisible by the
out-degree of that vertex, and so is split
equally among the out-edges. Thus, at
the end, the number of particles at node
t1 is precisely mn times the probability
that a single particle gets to node t1 in
n or less steps. We have no control over
where the remaining frozen particles go
when we unfreeze them, but that’s at
most ε/2 times mn.

30

Now, if M is a number of the form kmn+
i, where i < mn and k is large, then the
kmn particles will behave well, and the
i remaining particles can be treated as
the frozen particles in the previous ar-
gument. So, as long as k > 2/ε, we gain
an additional error in the probability of
ε/2, which is fine.

31

Eulerian walkers model

This is the physicists’ name for rotor-
router walk with random settings of the
rotors.

Empirical data (see cond-mat/9611019)
suggest that EWM is like ordinary ran-
dom walk in 3 dimensions, and possibly
higher dimensions as well, but not in 2
dimensions.

In particular, in two dimensions, the
distance of the walker from the origin at
time T seems to grow like T 1/3 rather
than T 1/2 (although, in contrast, the
time it takes for a walker to escape from
a square region of side L is claimed to
grow like L2).

Is this true?

32

Whirling tours

From “On Playing Golf With Two Balls”
by Dumitriu, Tetali, and Winkler:

“Let T be any tree, possibly with loops.
Fix a target vertex t, and let v be any
other vertex. Order the edges (includ-
ing loops) incident to each u 6= t arbi-
trarily subject to the edge on the path
from u to t being last. Now walk from v
by choosing each exiting edge in round-
robin fashion, in accordance with the
edge-order at the current vertex, until t
is reached.”

33

“For example, if the edges incident to
some degree-3 vertex u are ordered e1, e2, e3,
then the first time u is reached it is ex-
ited via e1, the second time by e2, the
fourth time by e1 again, etc. We call
such a walk a ‘whirling tour’; an exam-
ple is provided in Figure 3.

Theorem: In any finite tree (possibly
with some loops) the length of any whirling
tour from v to t is exactly the expected
hitting time from v to t.”

Interestingly, this shows that on trees,
hitting times are always integers.

34

Using fewer rotors

Consider random walk on Z2 where the
two equally likely successors of (i, j) are
(i ± 1, j) if i + j is even and (i, j ± 1)
if i + j is odd.

I’m certain we can quasirandomize this
walk using rotors ri,j (one rotor for each
vertex).

Can we quasirandomize using rotors ri
and r′j (i.e., a 1-dimensional family of
rotors shared by all the sites in the same
row, and a 1-dimensional family of ro-
tors shared by all the sites in the same
column)?

(Possibly the right thing to do is use
rotors ri−j and r′i+j instead.)

35

Beyond rotors

What’s beyond rotors if you want some-
thing that’s more like simple random
walk?

One candidate is the Ehrenfeucht-Mycielski
sequence 0, 1, 0, 0, 1, 1, 0, 1,

To find the next term of the sequence,
find the longest suffix s of the current
sequence that has occurred earlier. The
next term is whichever bit (0,1) did not
occur following the most recent previous
occurrence of s.

This sequence is highly patterned, but
it passes many tests for randomness.

Do 0 and 1 each occur with density 1/2?

36

