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All these slides are on the web at http : //
jamespropp.org/bugs.pdf so there’s
no need to take notes on anything you
see here (only on the things that I say
that you don’t see!).
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Puzzle #1: Each number between 1
and 5 is equipped with a light, which
can be green or red. A bug is dropped
on 3 and obeys the following rules at
all times: if it sees a green light, it
turns the light red and moves one step
to the right; if it sees a red light, it
turns the light green and moves one
step to the left.

Show that the bug must eventually leave
the system (either by exiting 1 head-
ing to the left, or by exiting 5 heading
to the right), and give a simple rule
for predicting which of the two out-
comes will happen.
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Could the bug stay trapped in 1,2,3,4,5
forever, never escaping to 0 or 6?

If so, there must be some site that the
bug visits infinitely often (3, say).

But then it must visit site 4 infinitely of-
ten (since half of the time when it leaves
3 it goes to 4).

But then it must visit site 5 infinitely of-
ten (since half of the time when it leaves
4 it goes to 5).

But on its first or second visit to site 5,
the bug must go off to the right!

Contradiction!

So the bug must eventually escape.
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But which way will the bug escape?

The trick to figuring this out is to notice
that the the quantity

(number of green lights)

plus

(position of the bug)

is invariant :

If a green light turns red (and the bug
goes right), the number of green lights
goes down by 1, but the position of the
bug goes up by 1.

If a red light turns green (and the bug
goes left), the number of green lights
goes up by 1, but the position of the
bug goes down by 1.

5



In particular, if the bug goes from 3 to
0 (that is, it leaves the system heading
left), then number of green lights must
increase by 3; this can’t happen if the
number of green lights was 3, 4, or 5 to
begin with.

On the other hand, if the bug goes from
3 to 6 (that is, it leaves the system head-
ing right), then number of green lights
must decrease by 3; this can’t happen if
the number of green lights was 0, 1, or
2 to begin with.

So, the bug must exit to the right if the
green lights outnumber the red lights,
and to the left if the red lights outnum-
ber the green lights.
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The order of the lights turns out not
to matter; only how many of each kind
there are.

Note that if you add a second bug to the
system, it will exit the system on the op-
posite side. (If the first bug exited left,
the second will exit right; if the first bug
exited right, the second will exit left.)

If you add a third bug to the system, it
will do the opposite of what the second
bug did, that is, it will do the same as
what the first bug did.

If you add lots of bugs to the system,
one at a time, half of them will exit the
system to the left and half will exit to
the right.
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Puzzle #2: Each positive integer on
the number line is equipped with a
green, yellow or red light. A bug is
dropped on 1 and obeys the follow-
ing rules at all times: if it sees a
green light, it turns the light yellow
and moves one step to the right; if it
sees a yellow light, it turns the light
red and moves one step to the right;
if it sees a red light, it turns the light
green and moves one step to the left.

Eventually the bug will fall off the line
to the left, or run out to infinity on
the right. A second bug is then dropped
on 1, then a third.

Prove that if the second bug falls off
to the left, the third will march off to
infinity on the right.
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Trick: Think of a green light as the digit
0, red as the digit 1, and yellow as the
“digit” 1/2. The configuration of lights
can then be thought of as a number be-
tween 0 and 1 written out in binary,

x = .x1x2x3 . . .

where, numerically,

x = x1 · (1/2)1 + x2 · (1/2)2 + · · · .
This is the “value” of the lights.

Think of the bug itself as having value
(1/2)i when it is in position i.

Then the value of the lights plus the
value of the bug is invariant, that is, it
does not change as the bug moves.
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If you add more bugs, you find that half
of them exit the system to the left and
half of them exit the system to the right.

For more details, see Peter Winkler’s
recent book Mathematical Puzzles: A
Connoissuer’s Collection. (See the Bugs
on a Line problem on page 82, with so-
lution on pages 91–93.)
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Puzzle #3: Each positive integer on
the number line is equipped with a
blue or yellow light. All lights are ini-
tially blue. A bug is dropped on 1 and
obeys the following rules at all times:
if it sees a yellow light, it turns the
light blue and moves one step to the
right; if it sees a blue light, it turns
the light yellow and moves TWO steps
to the left.

Eventually the bug will fall off the line
to the left, landing at either −1 or 0.
A second bug is then dropped on 1,
then a third, and so on. Each suc-
cessive bug that is added falls off the
line to the left, landing at either −1
or 0. (Prove this!)
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Show that the number of bugs that
land at −1, divided by the number
of bugs that land at 0, converges to
Φ = (1+

√
5)/2 = 1.618..., the “golden

ratio”.
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Trick: Once again, you construct an in-
variant; this is not built on base 1 (like
Puzzle #1) or base 2 (like Puzzle #2),
but on “base Φ” (or, alternatively, “base
Fibonacci”).

For more details, see Michael Kleber’s
article “Goldbug Variations” in the Win-
ter 2005 issue of The Mathematical In-
telligencer (available January 2005).
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Q. Why are these puzzles interesting?

A. They illustrate the way in which
quasirandom walk mimics properties
of random walk.

14



The building-blocks for these gadgets
are called rotor-routers.

Machines built out of rotor-routers are
deterministic: their behavior does not
involve any element of chance.

That is: you can predict in advance
what they will do.

Equivalently: if you start two copies
of the system in the same initial state,
they will evolve in exactly the same way.

So these systems are not random.

But what if you randomize them?

E.g., for Puzzle #1, the bug just chooses
randomly at each time-step whether to
go right or left.
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Fact #1: If a bug starting from 3 does
random walk on {1, 2, 3, 4, 5}, where its
chance of jumping one step to the left
and its chance of jumping one step to
the right are both equal to 1/2 (“ran-
dom walk”), then the bug has a 100%
chance of eventually escaping, and its
chance of escaping to the left and its
chance of escaping to the right are both
1/2.
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Fact #2: If a bug starting from 1 does
random walk on {1, 2, 3, . . .}, where its
chance of jumping one step to the left
is 1/3 and its chance of jumping one
step to the right is 2/3 (“biased random
walk”), then the bug has a 50% chance
of eventually escaping to the left and
a 50% chance of wandering off to the
right.
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Fact #3: If a bug starting from 1 does
random walk on {1, 2, 3, . . .}, where its
chance of jumping two steps to the left
and its chance of jumping one step to
the right are both equal to 1/2, then
the bug has a 100% chance of eventu-
ally landing on −1 or 0; the probability
of landing on −1 is 1/Φ and the prob-
ability of landing on 0 is 1/Φ2. (Note:
1/Φ + 1/Φ2 = 1.)
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Q. Why the golden ratio?

Assume that we already know that with
probability 1, the bug eventually lands
on either −1 or 0.

Let p be the probability that the bug
eventually lands on −1, so that 1− p is
the probability that it eventually lands
on 0.

If we start at 1 then with probability
1/2 we go immediately to −1, and with
probability 1/2 we go immediately to 2.
So

p = (1/2)(1) + (1/2)(q),

where q is the probability that the bug
will eventually land on −1 if it starts
from 2.
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We have assumed that we already know
that with probability 1, a bug that starts
at 1 eventually lands to the left of 1.

It follows that a bug that starts at 2 will
eventually land to the left of 2.

Furthermore, when the bug first lands
to the left of 2, with probability p it
lands on 0, and with probability 1 − p
it lands on 1.

So
q = (p)(0) + (1− p)(p).

We now have two equations and two un-
knowns.

Substituting and solving, we get

p + p2 = 1.
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Q. In what way is quasirandomness
better than randomness?

A. The Law of Large Numbers “kicks
in sooner”.

For Fact #1, if we put N bugs through
the random system, the number of bugs
that escape to the left will be about
N/2, with a typical error on the order
of
√
N .

But if we put N bugs through the non-
random system of Puzzle #1, the num-
ber of bugs that escape to the left will
be about N/2, with an error no greater
than 1/2.

Ditto for Fact #2 and Puzzle #2 (re-
placing “no greater than 1/2” by “no
greater than 1”).
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To see how Puzzle #3 goes, use the ap-
plet

http : //www.math.wisc.edu/ ∼ propp

/rotor− router− 1.0/

with the Graph/Mode selector set to “1-
D Walk”.

Set the Graph/Mode selector to “2-D
Walk” to see a quasirandom gadget for
approximating π/8.

Set the Graph/Mode selector to “1-D
Aggregation” to see a quasirandom gad-
get for approximating

√
2.
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Finally, set the Graph/Mode selector to
“2-D Aggregation” to see a quasiran-
dom gadget for growing circular blobs.
See
http : //www.math.wisc.edu/ ∼ propp

/million.gif

Lionel Levine and Yuval Peres proved
in 2005 that these blobs really do be-
come true circles in the limit. But the
internal structures are still completely
mysterious.

(This version of the rotor-router applet
was created by UW undergrads Hal Ca-
nary and Francis Wong.)
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