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When, and how, shall we teach our students about the completeness of
the reals?

To some extent, the “how” dictates the “when”, since if our approach to
the completeness property is complicated, we will rightly defer it until stu-
dents have attained an appropriate degree of mathematical maturity. (There
is also a subtle converse force at work: for, if coming to grips with the dif-
ficulties of real analysis serve as a coming-of-age ritual for our students, we
will not want to make things too simple for them; learning how to advance
in the face of difficulties becomes part of the agenda of the introductory real
analysis course.)

The purpose of this note is to point out a simple completeness axiom that
is simple to state, is intuitively convincing to the average first-year college
student, and suffices for the purposes of proving the deeper first-year calculus
facts such as the intermediate value theorem.

The Cut Axiom: If A,B are disjoint non-empty sets whose union is
R, such that a < b for all a ∈ A and b ∈ B (a condition we might write
more compactly as A < B), then there exists a cutpoint c ∈ R such that
a ≤ c ≤ b for all a ∈ A and b ∈ B (a conclusion we can write more compactly
as A ≤ c ≤ B).

These partitions of R are close in spirit to Dedekind cuts, but the sets
partition R, not Q, and we are axiomatizing the reals, not constructing them.

The Cut Axiom is a special case of Dedekind’s least upper bound prop-
erty (see below for more on this), but it is easier to picture a set like A than
a fully general subset of R, and use of the Cut Axiom makes it possible to
defer discussion of least upper bounds, which are hard for undergraduates to
understand on a first encounter. Other completeness axioms for R are the
convergence of bounded monotone sequences and the nested interval prop-
erty, but the former requires notions of sequence convergence that are usually
not introduced until quite late in the year (usually the second semester), and
neither of these axioms is as simple as the Cut Axiom.

One can introduce the Cut Axiom during the first week of the class, prior
to discussing functions and continuity. Indeed, if one wants to elicit class
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participation early in the term with a juicy question (thereby establishing
norms of high student involvement), asking the question “How can you par-
tition the real number line into two sets, one of which is completely to the
left of the other?” is a good way to get the ball rolling. Once the stu-
dents have wrestled with the question for a while, and haven’t found any
such partitions besides those of the form A = (−∞, c], B = (c,∞) and
A = (−∞, c), B = [c,∞), they’re glad to accept the axiom. (If students
suggest taking A = (−∞, .999 . . .] and B = [1,∞], one can defer the issue
of whether .999 . . . = 1 by pointing out that if .999 . . . and 1 are different
numbers, then their average differs from both of them and belongs to neither
A = (−∞, .999 . . .] nor B = [1,∞].)

Speaking of .999 . . .: one of the first things one should use the Cut Axiom
for is to show that the number line can’t accomodate a real number that
is bigger than .9, .99, .999, etc. but less than 1. If x were such a number,
the positive real number 1− x would have to be less than 1
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indeed less than 1/n for every positive integer n. Could such a positive real
number exist?

Archimedean Property: If ε > 0, there exists a positive integer n such
than 1/n < ε.

Proof: Let B consist of all real numbers r for which there exists n with
1/n < r, and A consist of everything else (negative numbers, zero, and posi-
tive numbers that violate the Archimedean property). Let c be the cutpoint
between A and B; since 0 ∈ A, c ≥ 0. If c = 0, we are done. If c > 0, then
c/2 < c < 2c, with c/2 ∈ A and 2c ∈ B. But since 2c ∈ B, there exists n
with 1/n < 2c, implying 1/(4n) < c/2, contradicting c/2 ∈ A.

A simple corollary of the Cut Axiom that is often more directly applicable
in proofs is:

The Cut Property for Intervals: If A,B are disjoint non-empty
sets whose union is a non-empty closed interval I such that A < B, then
there exists a cutpoint c ∈ I such that A ≤ c ≤ B.

Proof: Apply the Cut Axiom to A′ and B′, where A′ consists of A and
everything to the left of I and B′ consists of B and everything to the right
of I.

After continuity has been introduced, one can use the Cut Axiom to prove
the Intermediate Value Theorem. Pedagogically this might be best done by
first proving the IVT in the special case where f is increasing:

Weak Intermediate Value Theorem: If f is increasing and continuous on
[a, b] with f(a) < 0 < f(b), then there exists c in (a, b) with f(c) = 0.
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Lemma: If f is continuous on I = [a, b] and positive at c with a < c < b,
then f is positive on (c− δ, c+ δ) for some δ > 0. (Likewise with “positive”
replaced by “negative”.)

Proof: Taking ε = f(c) > 0 in the definition of continuity, we see that
there exists δ > 0 such that |x − c| < δ implies |f(x) − f(c)| < f(c), which
in turn implies f(x) > 0.

Proof of Weak Intermediate Value Theorem: Let A = {x ∈ I : f(x) < 0}
and B = {x ∈ I : f(x) ≥ 0}, which are easily shown to satisfy the hypotheses
of the Cut Property for Intervals. Therefore there exists c with A ≤ c ≤ B.
If f(c) < 0, then by the Lemma, f is negative on (c − δ, c + δ) for some
small positive δ, contradicting the fact that every element of A is less than
or equal to c. If f(c) > 0, we get a similar contradiction. Hence we must
have f(c) = 0, as claimed.

With this warm-up accomplished, one can proceed to the usual version
of the IVT:

Intermediate Value Theorem: If f is continuous on I = [a, b] with f(a) <
0 < f(b), then there exists c in (a, b) with f(c) = 0.

Proof: Let A = {x ∈ I : f is negative on all of [a, x]} and B = I \ A;
these are non-empty sets satisfying A < B, so the Cut Property for Intervals
implies that there exists c with A ≤ c ≤ B. As in the preceding proof, both
f(c) < 0 and f(c) > 0 lead to a contradiction, so f(c) = 0. (Of course a
proof for students would be more detailed.)

Later in the semester, in the discussion of maxima and minima, one will
want to use the completeness of the reals to show that a continuous function
on [a, b] achieves its supremum and infimum. At this stage one needs to
introduce least upper bounds and greatest lower bounds, and one can show
that the Cut Axiom is equivalent to the Least Upper Bound Property. (To
derive the Least Upper Bound Property from the Cut Axiom, let B be the
set of upper bounds for the set S in question and let A = R \ B. To go
the other direction, simply take S = A.) Once the existence of least upper
bounds and greatest lower bounds has been proved, it is easy to use the Cut
Axiom to show that a function f that is continuous on [a, b] with supremum
M on I = [a, b] achieves the value M somewhere in I: let B be the set of
x ∈ I such that the supremum of f on [a, x] is M and let A be I \B.

Also, after the Least Upper Bound Property has been proved, it’s appro-
priate to show that the least upper bound of the numbers .9, .99, .999, . . . is
the number 1 (further exorcising the ghost of .999 . . . < 1).

Finally, in the second semester, when convergence of sequences is dis-
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cussed, one can use the Least Upper Bound property to show that every
bounded increasing sequence has a limit, in the usual way. (One could derive
the fact about bounded increasing sequences directly from the Cut Axiom
by letting B be the set of upper bounds and A be R \B, but this seems less
natural than using the Least Upper Bound property.) At this point one can
show that the limit of the sequence .9, .99, .999, . . . is 1.

How much of this sort of reasoning a teacher presents is going to depend
on how much the students can handle. A good teacher wants to be honest,
but not in a way that gives honesty a bad name! One approach that will
be appropriate in some cases is to include a statement of the assumptions
that are being made in the course and then to flag certain assertions like the
Intermediate Value Theorem with the announcement “A rigorous proof of
this assertion makes use of the completeness of the reals” (but to include no
proof). A teacher who takes this approach needs to say what is meant by the
completeness of the reals; I propose that the Cut Axiom might be a better
version for this purpose than the Least Upper Bound Property.

On the other hand, for teachers who want to give their students experience
with proving theorems, deriving facts of the calculus from the Cut Axiom is a
good transition from high school math to higher math inasmuch as it retains
at least one cookbook-ish aspect: all these derivations proceed by identifying
suitable sets A and B. This uniformity will be comforting to students who
are approaching serious proof-making for the first time.

One good homework problem for a class with ambitious students is to
ask them to show (with the aid of a hint or two) that the Cut Axiom is
equivalent to the Intermediate Value Theorem. For, suppose there were a
way to cut R into sets A < B such that A has no greatest element and B
has no least element; then the function that is −1 on A and +1 on B would
be a continuous function that changes from negative to positive without ever
taking the value 0.

Some of the students may feel dissatisfied with adopting the Cut Axiom
(or any of the other completeness axioms for R) as an unproved assumption,
feeling that these axioms must be derivable from the algebra they learned
in high school. One way to free the students from this intellectual cul de
sac is to spend a little bit of time reviewing the ordered field axioms for the
reals (probably not using this terminology, though!) and to point out that
Q satisfies the axioms just as much as R does. So any valid proof of the Cut
Axiom for R would become a proof of the Cut Axiom for Q if one replaced
the word “real” by the word “rational” throughout. But the Cut Axiom is
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false for Q (let A be the rationals r with r < 0 or r2 < 2 and B be Q− A).
Hence there can be no way to derive the Cut Axiom for R from the ordered
field axioms.

Other students may come to find the Cut Axiom strange because it
doesn’t accurately model the way one cuts physical objects. When one cuts
a piece of string into two pieces, it makes no sense to ask which of the two
pieces acquires the cutpoint and which one doesn’t! We should remind our
students, and ourselves, that the continuum is a very subtle thing; we have
gotten farther than the Greeks did in fathoming its secrets, but there are
probably important things about it that we still don’t know.

In a historical vein, it should be noted that the Cut Axiom is very similar
to Axiom 3 from Tarski’s axiomatization of the reals [insert reference]: If
A,B are non-empty sets of reals with A < B then there exists at least one c
with A ≤ c ≤ B.

We should also mention that the Cut Axiom is equivalent to the propo-
sition that R is connected. The relation between the completeness of R and
the connectedness of R has been noted before, but I am not aware of any
axiomatic treatments of R other than Tarski’s that bring connectedness to
the fore.
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