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Three realms, six phenomena

Realms:

combinatorial,

piecewise linear = PL = cpl = tropical, and

birational = geometric.
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Three realms, six phenomena

Phenomena:

periodicity, orbit-equivalence, cyclic sieving;

invariance, homomesy, reciprocity.

Background:

X , a set;

T : X → X , an invertible transformation; and

F : X → R, a statistic.
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Phenomena for (X ,T )

Periodicity: For all x ∈ X , T nx = x (with n� |X |).

Orbit-equivalence: For all k ≥ 0,

#{x : T kx = x} = #{x ′ : (T ′)kx ′ = x ′}

(proof-strategy: find an equivariant bijection, i.e., a bijection
φ : X → X ′ with φ ◦ T = T ′ ◦ φ).

Cyclic sieving: For all k ≥ 0,

#{x : T kx = x} = |p(ζk)|

where T is of period n, ζ is a primitive nth root of 1, and p(·) is
some polynomial.
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Phenomena for (X ,T ,F )

Invariance: For all x , F (Tx) = F (x).

Homomesy: There exists c such that for every orbit O in X , the
average of F (x) for x in O equals c .

Reciprocity: For all x , F (x) = −G (T kx) for some special
combinations of F , G , and k (implies that F + G is “0-mesic”)

(Side note: reciprocity gets its name from its manifestations in the
birational realm, where it takes the form F (x) = 1/G (T kx).)
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An example (?) of homomesy

Conjecture 5.8 from the problems list:

X = the set of noncrossing partitions of {1, 2, . . . , n};

T = a product of “toggles”;

F = the number of blocks.

To fit this neatly into Striker’s generalized toggle framework,
replace each noncrossing partition π by the set of pairs (i , j) such
that i , j are in the same block B of π, i < j , and there is no
intermediate element k in B with i < k < j .

Note that the set S of such pairs uniquely determines π. Call these
pairs “arcs”. The splitting/merging operation is tantamount to
removing/adding an arc.
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Conjecture 5.8 as an example of generalized toggling

X = the set of all subsets S of

{(1, 2), (1, 3), . . . , (1, n), (2, 3), . . . , (n − 1, n)}

that correspond to noncrossing partitions π of {1, 2, . . . , n};

T = the composition of the toggles in the order τ1,2, τ2,3, . . . ,
τn−1,n, τ1,3, τ2,4, . . . , τ1,n (applying τ1,2 first and τ1,n last).

F = the number of blocks of π
= n minus the number of arcs in S .

Note that

τi ,j(S) =

{
S ′ := S 4 {(i , j)} if S ′ ∈ X ,
S otherwise.
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Sage takes the case

With 24 lines of my code about noncrossing partitions,
sitting on top of 60 lines of code written by Jessica,
sitting on top of thousands of lines of code written by hundreds of
people (some of them in this room),
I was able to get quick answers (the most time-consuming part was
debugging my code).

E.g., for n = 7 (with |X | = 429), the statistic F takes the average
(7 + 1)/2 = 4 on each of the sixteen orbits.

The homomesy conjecture has been verified up to n = 8.
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REU-problem-generating engine #1

Iterate products of bijections.

Example:
For P a finite poset, let
J(P) = the set of order ideals (down-sets) of P,
F (P) = the set of filter (up-sets) of P.
A(P) = the set of antichains of P, and

Cameron-Fon-Der-Flaass operation:

J(P)→ F (P)→ A(P)→ J(P)

Brouwer-Schrijver operation:

A(P)→ J(P)→ F (P)→ A(P)
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REU-problem-generating engine #2

Compose involutions.

Example:

Rowmotion: Toggle from top to bottom

Promotion: Toggle from left to right

Locomotion: Toggle in a crazy order
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REU-problem-generating engine #3

Combine non-homomesies to obtain homomesies.

Example:

X = the set of k-element subsets of {1, . . . , n}

T = the function that adds 1 (mod n) to each element of S

F1(S) = min(S)

F2(S) = max(S)

F1 and F2 aren’t homomesic, but F1 + F2 is!
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Feature spaces and their homomesic subspaces

Any linear combination of homomesies is a homomesy.

Paradigm: Given

X a set,

T : X → X an invertible transformation, and

V a vector space of functions F : X → R (a “feature space”),

find the subspace of V consisting of the functions F ∈ V that are
homomesic under T .
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What you see depends on what you look at

The Cameron-Fon-der-Flaass transformation on order ideals and
the Brouwer-Schrijver transformation on antichains have the same
orbit structure, but very different homomesy stories.
Let P = [a]x [b], so that each transformation has period a + b.
For any subset S ⊆ P, let

1x(S) =

{
1 if x ∈ S ,
0 otherwise.

If F : J(P)→ R is the sum of 1x for all x in some file/column of
P, F is homomesic under Cameron-Fon-der-Flaass.
If F : A(P)→ R is the sum of 1x for all x in some fiber of
P = [a]× [b], F is homomesic under Brouwer-Schrijver.
(Each has other homomesies too; see Propp-Roby and
Einstein-Propp for details.)
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What’s special about [a]× [b]?

P = [a]× [b] is worth studying because (as we’ll see) it exists in all
three realms.

The most natural directions for generalizing are to minuscule
posets and root posets.

[a]× [b]× [c] is more challenging, but worth trying as well.

The example of a product of two chains has some conceptual
centrality, because it has strong links to Schützenberger promotion
of SSYT’s, which we’ll discuss after a necessary detour.
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Stanley’s P-partitions

For P a finite poset, a P-partition is a weakly order-reversing map
f from P to the nonnegative integers.

A framed P-partition with ceiling n is a weakly order-reversing map
f from P to {0, 1, . . . , n}.

E.g., the indicator function of an order ideal in P is a framed
P-partition with ceiling 1.
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Toggling P-partitions

Given a P-partition f , and given x ∈ P, define τx f = f ′ as follows:
for all y ∈ P, let

f ′(y) =

{
f (y) if y 6= x ,
a + b − f (x) if y = x

where
a = max{f (y) : y > x},

b = min{f (y) : y < x}.
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An example

Example with f (x) = 5, a = 2, b = 6, f ′(x) = 3:

1 2 1 2
� � � �

5 → 3
� � � �

6 7 6 7
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A technicality

We need to make sure that all entries stay in [0, n].

It’s convenient to do this by adjoining to the poset new elements 1̂
and 0̂ at the top and bottom respectively, and to require f (1̂) = 0
and f (0̂) = n.

We never toggle f at 0̂ or 1̂.
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Toggling order ideals is a special case

When n = 1, toggling framed P-partitions is just Striker-Williams
toggling.

E.g.:

0 0 0 0
� � � �

0 → 1
� � � �

1 1 1 1

Here a = 0, b = 1, and f ′(x) = 0 + 1− f (x).
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Other things to do to framed P-partitions

Let FPP(P, n) be the set of framed P-partitions with ceiling n.

The toggling operation τx : FPP(P, n)→ FPP(P, n) is an
involution.

Define rowmotion on framed P-partitions by toggling from top to
bottom; define promotion on framed P-partitions by toggling from
left to right.

Note that Striker-Williams promotion is just the case n = 1.
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Upshot

Let SSYT(A,B,N) be the set of semistandard Young tableaux
with A rows, B columns, and all entries between 1 and N.

There’s an equivariant bijection from SSYT(A,B,N) under
Schützenberger promotion to FPP(P, n) under framed P-partition
promotion, with P = [A]x [N − A] and n = B.

(The bijection is not an “algorithm”: no tricky iterative processes
are required!

Two steps: Convert a SSYT to a Gelfand-Tsetlin triangle and then
extract appropriate entries to form the framed P-partition.

See http://jamespropp.org/gtt-promotion.txt for details.)
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An infinite toggle group

Let PP(P) be the disjoint union of FPP(P, n) with n ≥ 0.

We can define τx on PP(P) in the obvious way, so that each τx
acts as a permutation on FPP(P, n) for each n.

Define the P-partition toggle group as the group generated by the
maps τx .

Claim: This group is infinite, even for P = [2]x [2]!

In particular, Einstein showed that a particular simple element of
the toggle group (“locomotion”: the four primitive toggles
composed in a particular sequence) is of infinite order.

Even though the action of Einstein’s element is of finite order on
each individual FPP(P, n), the lcm of these orders is infinite.
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Cutting P-partitions down to size

To get a handle on what’s going on, it’s useful to scale down
FPP(P, n) by n, so that we’re looking at order-reversing maps
from P to {0, 1n ,

2
n , . . . ,

n
n = 1}.

In fact, it’s useful to relax the rationality constraint, so that we’re
looking at order-reversing maps from P to [0, 1].

In fact, it’s useful to turn things upside down, so that we’re
looking at order-preserving maps from P to [0, 1]: that is, we’re
looking at points in Stanley’s O(P), the order polytope of P.
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Fiber-flipping

Fiber-flipping: Given a dissection of a polytope into parallel
line-segments, map each line segment to itself so as to exchange
the endpoints.

Toggling a framed P-partition is equivalent to applying a
fiber-flipping map to the order polytope.

(In fact, there’s a way to extend the fiber-flipping map from O(P)
to itself to a map from all of R|P| to itself, so that most of the nice
things that happen inside O(P), like periodicity and homomesy,
happen outside too, but that’s part of the story I won’t have time
to go into.)
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Things to do to the order polytope

Fiber-flipping is a (continuous) piecewise linear map from the
polytope to itself. We call it PL-toggling.

PL-toggling is an involution on O(P).

The restriction of PL-toggling to the vertices of O(P) corresponds
to combinatorial toggling (the vertices, viewed as functions from P
to [0, 1], are the indicator functions of the complements in P of
the order ideals).

PL-rowmotion, PL-promotion, and PL-gyration are defined in
obvious ways.
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What if you do them over and over?

When you iterate such maps, the maximal domains of linearity
(pieces? grains? granules? slivers?) typically get smaller.

When the map is of finite order, this process is self-limiting and
ultimately reverses itself.

When the map is of infinite order, what happens is much more
mysterious.

Not all the pieces/grains/granules/slivers shrink!
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It’s complicated

Non-trivial fact: When the map is of infinite order, there must be
at least one infinite orbit. However, the points of infinite order
need not be dense in the polytope. There can be subpolytopes
that come back to themselves via the identity map in n steps, for
certain values of n.

We don’t know whether these subpolytopes jointly have full
measure.

Define the spectrum of the map as the set of n such that the
points whose orbit has size n is of positive measure.

Example: Let P be the tetrahedral poset associated with ASMs of
order 4.

Under the action of PL-gyration, the spectrum apparently begins
{8, 24, ...}.

This is probably related to resonance (whatever that is!).
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Examples of resonance

Back to the combinatorial realm:

(Rectangular tableaux, promotion) → (Multisets, rotation):
resonant frequency is the ceiling

(ASMs, gyration) → (Link patterns, rotation):
resonant frequency is 2n

(ASMs, superpromotion) → ?
resonant frequency is 3n − 2

(Order ideals in [a]× [b]× [c], rowmotion) → ?
resonant frequency is a + b + c − 1

But in some ways, the concept of a single resonant frequency isn’t
rich enough to capture the phenomena we’re starting to see.
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Resonance for tableaux
The 2772 SSYT’s with shape 3,1,1 and entries between 1 and 9
belong to 56 orbits of size 9, 14 orbits of size 18, 56 orbits of size
27, and 14 orbits of size 36.

Compare:

The 4752 SSYT’s with shape 3,1,1 and entries between 1 and 10
belong to 72 orbits of size 10, 25 orbits of size 20, 84 orbits of size
30, and 25 orbits of size 40, and (oops!) 1 orbit of size 4 and 1
orbit of size 8.

Note the oddball orbits of size 4 and 8.

Why do we call 10 (and maybe 20, 30, and 40 as well) resonances,
but not 4?

One principled ground for discounting the 4 is looking at
asymptotics, as the ceiling approaches infinity.

This brings us back into the world of PL maps.
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Our first example, revisited

Recall the case n = 7 of Conjecture 5.8, in which there were
sixteen orbits; those orbit sizes are

133, 109, 39, 39, 31, 15, 13, 11, 9, 9, 6, 3, 3, 3, 3, and 3.

Note the oddball orbit of size 6.

So one might say that our “fundamental period” here is 1, and
that “odd subharmonics” are favored and “even subharmonics” are
suppressed — but only mostly!

It’s not clear how to phrase a conjecture about what might happen
for larger n, but something is going on.

30 / 31



Even infiniter toggle groups

When P isn’t too small, the usual toggle group, a subgroup of
Sym(J(P)) that one might call the “permutation toggle group”, is
a proper subgroup of the (infinite) P-partition toggle group.

This is a subgroup of the piecewise linear toggle group (one
might also call it the “real toggle group”) acting on O(P).

This is a quotient group of the birational toggle group (which
Tom will discuss momentarily).

This is a quotient of the free toggle group on generators τx
(x ∈ P) of order 2 that commute when the two associated
elements of P are not adjacent in the Hasse diagram and satisfy no
relations otherwise.

Which of these inclusions/quotients are strict?
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