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Completeness

Three common axioms of completeness, and one not-so-common:

I convergence of all Cauchy sequences

I nested interval property

I what people call “Dedekind completeness”

I what people should call “Dedekind completeness”
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What people usually call Dedekind completeness:

Every bounded non-empty set S of real numbers has a least upper
bound.

It’s a good completeness axiom, but it’s not in Dedekind!

Question: Who deserves the credit for this axiom?

3 / 29



What Dedekind did in his 1872 pamphlet “Continuity and irrational
numbers” (section V, subsection IV, in Beman’s translation, taken
from the Dover paperback Essays on the Theory of Numbers):

(a) stated completeness of line (more on this below)

(b) defined Dedekind cuts to build a model of R from Q

(c) derived completeness of R (more on this below)
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(a) “If all points of the straight line fall into two classes such that
every point of the first class lies to the left of every point of the
second class, then there exists one and only one point which
produces this division of all points into two classes, this severing of
the straight line into two portions. ... The assumption of this
property of the line is nothing else than an axiom by which we
attribute to the line its continuity.”

Note that Dedekind used the word continuity (Stetigkeit) where
we nowadays would say completeness.

(b) [Details well-known and hence omitted.]
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(c) “The following theorem is true: If the system R of all real
numbers breaks up into two classes A1, A2 such that every number
α1 of the class A1 is less than every number α2 of the class A2

then there exists one and only one number α by which this
separation is produced.”

(Earlier he explains how, given a number α, one can produce sets
A1,A2 satisfying this condition, and indeed can do so in two ways
for each α, according to whether α belongs to A1 or A2.)

Note that for Dedekind, set means nonempty set.
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I’ll call (c) the cut property of R:

The cut property: If A,B are non-empty subsets of R such that
A ∪ B = R, A ∩ B = ∅, and a < b for all a ∈ A and b ∈ B, then
there exists c in R such that a ≤ c for all a ∈ A and c ≤ b for all
b ∈ B.

More compactly:

Every cut of R is associated with an element of R.
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The cut property is a second-order property, like the least upper
bound property (though the collection of sets we’re quantifying
over is easier to visualize, and in fact turns out to have smaller
cardinality).

Main theme: We could bypass the introduction of Dedekind cuts
and just take the cut property of R as an axiom.
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The cut property implies the least upper bound property, and vice
versa:

⇒: Every non-empty set S that’s bounded above cuts R into two
pieces: the set B of numbers that are upper bounds of S and the
set A of numbers that aren’t. The cut-point c given by the cut
property can be shown to be the least upper bound of S .

⇐: Take c to be the least upper bound of A.
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The cut property is simple and compelling.

It is also satisfyingly symmetrical (unlike the least upper bound
property, whose twin, the greatest lower bound property, is
logically equivalent but semantically different).

Why don’t we call the cut property an axiom of real analysis?
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The cut property is easier for students to grasp than the least
upper bound property.
(It’s easier for students to visualize a cut of R than an arbitrary
non-empty bounded-above subset of R.)

The cut property is teachable Socratically.
(Ask your students to come up with a set ∅ ⊂ B ⊂ R such that
every non-element of B is less than every element of B. Then ask
them to find another such set. And then another. Then challenge
them to find all such sets. When they’ve come up with all the sets
B = [c ,∞) and B = (c,∞) and can’t think of any more, they’ll
be ready to conjecture the cut property on their own.)

Why don’t we teach it?
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“Forgotten”?

The geometrical version was never forgotten by workers in the
foundations of geometry: see e.g. Marvin Jay Greenberg’s “Old
and New Results in the Foundations of Elementary Plane
Euclidean and Non-Euclidean Geometry”, American Mathematical
Monthly 117, Number 3, March 2010, pages 198–219.
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Logicians didn’t forget: Tarski’s continuity axiom (If A,B are
subsets of R such that a < b for all a ∈ A and b ∈ B, then there
exists c ∈ R such that that a ≤ c for all a ∈ A and c ≤ b for all
b ∈ B) is a variant of Dedekind’s (logically equivalent but
semantically stronger since its hypotheses are weaker).
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Historians didn’t forget: see Steven Krantz’s on-line book
www.math.wustl.edu/∼sk/books/newhist.pdf, An Episodic
History of Mathematics, page 353.
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Some analysts remember: Dedekind’s cut property appears as
Theorem 1.32 in Walter Rudin’s Principles of Mathematical
Analysis.

But I’ve found only one intro textbook on real analysis that takes
this property of R as a starting point: Real and Complex Analysis
by C. Apelian and S. Surace.

Why doesn’t everyone base real analysis on the cut property?

I have a couple of ideas about this:
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How ideas are originally labelled and packaged makes a
difference:

Dedekind treated the property as a theorem, so it takes intellectual
effort for readers of Dedekind to recognized it as a good axiom

Dedekind didn’t give the property a name

Dedekind didn’t state the property in a succinct self-contained way
(and it’s somewhat resistant to being stated in such a fashion)
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How ideas lend themselves to use
makes a difference:

There’s nothing that the cut axiom can do that the least upper
bound axiom can’t do better

There isn’t time in the semester to teach a principle you’ll only use
once

17 / 29



From completeness to induction

The usual approach to proving formulas like

n∑
k=1

k2 = n(n + 1)(2n + 1)/6

is via the axiom of induction:

If a proposition is true for 1, and if whenever the proposition is
true for n it’s true for n + 1, then the proposition is true for all
positive integers.
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When we teach our students to prove such formulas in this way,
we’re missing a huge opportunity to convey a perspective that
unifies the discrete and continuous realms.

The first hint of this comes from the observation that the axiom of
induction for N can be derived as a consequence of the
completeness of R by way of

I the ordered field axioms for R, and

I the ordered ring axioms for Z, and

I one extra axiom: the axiom that 1 is the smallest positive
integer.
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This implication may seem less bizarre if one considers some
parallels between various statements equivalent to completeness
and various statements equivalent to induction.

Greatest lower bound property Least element principle

Topological connectedness Graph-theoretic connectedness
of R of Z

Cut axiom for R Cut axiom for Z
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Greatest lower bound property: A non-empty subset of R that’s
bounded below has a greatest lower bound.

Least element principle: A non-empty subset of Z that’s bounded
below has a least element.
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Topological connectedness of R: R cannot be expressed as the
disjoint union of two topologically closed non-empty subsets.

Graph-theoretic connectedness of Z: Z cannot be expressed as the
disjoint union of two graph-theoretically closed non-empty subsets.

(A subset S of the vertex set V of a graph is closed iff there exist
no edge of the graph joining a vertex of S to a vertex of V \ S .)
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Cut axiom for R: If A,B are disjoint non-empty subsets of R with
every element of A less than every element of B, then A has a
greatest element or B has a least element.

(This is equivalent to what I called the cut axiom before, as long
as you’re not an intuitionist.)

Cut axiom for Z: If A,B are disjoint non-empty subsets of Z with
every element of A less than every element of B, then A has a
greatest element and B has a least element.

(Equivalently: ... then there exist a ∈ A, b ∈ B with b = a + 1.)

Question: Can one derive the cut axiom for R from the cut axiom
for Z via non-standard analysis?
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But the best pair (of a completeness principle for R and an
induction principle for N with a strong thematic link between
them) — best conceptually and best pedagogically — is

Continuous no-change- Discrete no-change-
implies-constancy principle implies-constancy principle
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Instead of teaching the axiom of induction, I propose we teach
calculus students the following axiom:

The discrete no-change-implies-constancy principle: If
f : N→ R has the property that f (n + 1)− f (n) = 0 for all n in
N, then f is constant on N.

This is indeed how computers generate proofs of identities
nowadays, thanks to the work of Herb Wilf and Doron Zeilberger.

Their method involves a number of tricks, but the basic trick is: to
prove that a(n) = b(n) for all n ≥ 1, first show that a(n)− b(n) is
constant (by showing that it doesn’t change if you replace n by
n + 1), and then evaluate the constant.

Easy exercise: Apply this to a(n) = 11 + 22 + · · ·+ n2 and
b(n) = n(n + 1)(2n + 1)/6.
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The discrete no-change-implies-constancy principle implies the
axiom of induction, and vice versa.

⇐: [Omitted.]

⇒: Given propositions P(1), P(2), . . . such that P(1) is true and
such that (for all n) P(n) implies P(n + 1), let

f (n) =

{
1 if P(1) through P(n) are true,
0 otherwise.

It is easy to show that f (n) = f (n + 1) for all n, so f is constant.
And since f (1) = 1, that constant is 1, so f (n) = 1 for all n, so
P(n) is true for all n.
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The continuous no-change-implies-constancy principle: If
f : R→ R is differentiable and satisfies f ′(x) = 0 for all x ∈ R,
then f is constant on R.

The continuous no-change-implies-constancy principle implies the
axiom of completeness, and vice versa.

⇐: Completeness implies the Extreme Value Theorem, which
implies the Mean Value Theorem, which implies the continuous
no-change-implies-constancy principle.

⇒: We prove the contrapositive. Suppose completeness were false.
There would exist a cut of R into two non-empty sets A and B,
with every element of A less than every element of B, where A has
no greatest element and B has no least element.
Then the indicator function of A would be a non-constant function
whose derivative is everywhere zero.
So the continuous no-change-implies-constancy principle would be
false.
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Note that I am not suggesting that we should take the continuous
no-change-implies-constancy principle as an axiom.

For one thing, we can’t even state it until we’ve defined the
derivative.

But most calculus texts already mention the principle.

We can emphasize it more.

Then, in the second semester, when we need formulas like∑n
k=1 k2 = n(n + 1)(2n + 1)/6, we can bring in the discrete

no-change-implies-constancy principle, and it’ll make sense because
it’s analogous to something the students have already seen.
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Slides for this talk are at
http://jamespropp.org/hpm10-slides.pdf

An early version of this talk (after I’d reinvented Dedekind’s cut
property but before I learned it was Dedekind’s) is at
http://jamespropp.org/cut.pdf

I’m thinking of writing this up for publication; comments are
welcome!
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