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Abstract: This document is built around a list of problems in enumeration
of matchings. It is an updated version of the article “Enumeration of Match-
ings: Problems and Progress” [Pr3] that I wrote between 1996 and 1999; the
current version of the article brings us up to the end of 2014. I begin with
a capsule history of the topic of enumeration of matchings. The thirty-two
original problems, with commentary, comprise the bulk of the article. I give
an account of the progress that has been made on these problems as of this
writing, and include pointers to both the printed and on-line literature. For a
survey of techniques useful in approaching problems concerning enumeration
of matchings, see the survey article [Pr5].

1 Introduction

How many perfect matchings does a given graph G have? That is, in how
many ways can one choose a subset of the edges of G so that each vertex of G
belongs to one and only one chosen edge? (See Figure 1(a) for an example of
a perfect matching of a graph.) For general graphs G, it is computationally
hard to compute the answer [Va], and even when we have the answer, it is
not so clear that we are any the wiser for knowing this number. However,
for many infinite families of special graphs the number of perfect matchings
is given by a simple formula, and such a formula, subsuming infinitely many
individual cases, is more compelling than mere numbers. Over the past three
decades a great many families of this kind have been discovered, and while
there is no single unified result that encompasses all of them, many of these
families resemble one another, both in terms of the form of the results and
in terms of the methods that have been successful in proving them.

The deeper significance of these formulas is not clear. Some of them
are related to results in representation theory or the theory of symmetric
functions, but others seem to be self-contained combinatorial puzzles. Much
of the motivation for this branch of research lies in the fact that we are still
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Figure 1: The Aztec diamond of order 4.

unable to predict ahead of time which enumerative problems lead to beautiful
formulas and which do not; each new positive result seems like an undeserved
windfall.

Hereafter, I will use the term “matching” to signify “perfect matching”.
(See the book by Lovász and Plummer [Lo] for general background on the
theory of matchings.)

As far as I have been able to determine, problems involving enumeration
of matchings were first examined by chemists and physicists in the 1930s, for
two different (and unrelated) purposes: the study of aromatic hydrocarbons
and the attempt to create a theory of the liquid state.

Shortly after the advent of quantum chemistry, chemists turned their
attentions to molecules like benzene composed of carbon rings with attached
hydrogen atoms. For these researchers, matchings of a graph (with all vertices
having degree 2 or 3) corresponded to “Kekulé structures”, i.e., ways of
assigning single and double bonds in the associated hydrocarbon (with carbon
atoms at the vertices and tacit hydrogen atoms attached to carbon atoms
with fewer than three neighboring carbon atoms). See, for example, the
paper of Gordon and Davison [Go], whose use of non-intersecting lattice paths
anticipates the work of Gessel and Viennot [Ge] three decades later, and more
recent articles (e.g., [Sa1], [Jo2]) by Horst Sachs and various collaborators.
There are strong connections between combinatorics and chemistry for such
molecules; for instance, those edges which are present in comparatively few
of the matchings of a graph turn out to correspond to the bonds that are
least stable, and the more matchings a polyhex graph possesses the more
stable is the corresponding benzenoid molecule. Since hexagonal rings are so
predominant in the structure of hydrocarbons, chemists gave most of their
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attention to counting matchings of subgraphs of the infinite honeycomb grid.
At approximately the same time, scientists were trying to understand the

behavior of liquids. As an extension of a more basic model for liquids con-
taining only molecules of one type, Fowler and Rushbrooke [Fo] devised a
lattice-based model for liquids containing two types of molecules, one large
and one small. In the case where the large molecule was roughly twice the
size of the small molecule, it made sense to model the small molecules as
occupying sites of a three-dimensional grid and the large molecules as occu-
pying pairs of adjacent sites. In modern parlance, this is a monomer-dimer
model. In later years, the two-dimensional version of the model was found
to have applicability to the study of molecules adsorbed on films; if the ad-
sorption sites are assumed to form a lattice, and an adsorbed molecule is
assumed to occupy two such sites, then one can imagine fictitious molecules
that occupy all the unoccupied sites (one each).

Major progress was made in 1961, when Temperley and Fisher [Te1]) and,
independently, Kasteleyn [Ka2] found ways to count pure dimer configura-
tions on subgraphs of the infinite square grid (with no monomers present).
Although the physical significance of this special case was (and remains)
unclear, this result, along with Onsager’s earlier exact solution of the two-
dimensional Ising model [On], paved the way for other advances such as Lieb’s
exact solution of the six-vertex model [Li], culminating in a new field at the
intersection of statistical mechanics and mathematics: exactly solved statis-
tical mechanics models in two-dimensional lattices. (Intriguingly, virtually
none of the three- and higher-dimensional analogues of these models have
succumbed to researchers’ efforts at obtaining exact solutions.) For back-
ground on lattice models in statistical mechanics, see Baxter’s book [Ba].

An infinite two-dimensional grid has many finite subgraphs; in choosing
which ones to study, physicists interested in adsorption were guided by the
idea that the shape of boundary should be chosen so as to minimize the effect
of the boundary — that is, to maximize the number of configurations, at least
in the asymptotic sense. For example, Kasteleyn, in his study of the dimer
model on the square grid, counted the matchings of them-by-n rectangle (see
the double-product formula at the beginning of section 5) and of the m-by-n
rectangular torus, and showed that the two numbers grow at the same rate
as m,n go to infinity, namely Cmn for a known constant C. (Analytically, C
is eG/π, where G is Catalan’s constant 1− 1

9
+ 1

25
− 1

49
+ 1

81
−· · ·; numerically,

C is approximately 1.34.)
Kasteleyn wrote in 1961: “The effect of boundary conditions is, however,

3



(a) (b)

Figure 2: Honeycomb graphs and plane partitions.

not entirely trivial and will be discussed in more detail in a subsequent paper”
[Ka2]. (For a rigorous mathematical treatment of boundary conditions, see
[Co4].) Kasteleyn never wrote such a followup paper, but other physicists did
give some attention to the issue of boundary shape, most notably Grensing,
Carlsen and Zapp [Gr] in 1980. Grensing et al. considered a one-parameter
family of graphs of the kind shown in Figure 1(a), and they asserted that
every graph in this family has 2N/4 matchings, where N is the number of
vertices. They did not give a proof, nor did they indicate whether they had
one. The result was rediscovered in the late 1980s by Elkies, Kuperberg,
Larsen, and Propp [El], who gave four proofs of the formula. This article led
to a great deal of work among enumerative combinatorialists, who refer to
graphs like the one shown in Figure 1 as “Aztec diamond graphs”, or some-
times just Aztec diamonds for short. (It should be noted that the authors
of [El] used the term “Aztec diamond” to denote regions like the one shown
in Figure 1(b). The two sorts of Aztec diamonds are dual to one another;
matchings of Aztec diamond graphs correspond to domino tilings of Aztec
diamond regions.)

At about the same time, it became clear that there had been earlier
work within the combinatorial community that was pertinent to the study
of matchings, though its relevance had not hitherto been recognized. For
instance, Mills, Robbins and Rumsey [Mi], in their work on alternating sign
matrices, had counted pairs of “compatible” ASMs of consecutive size; these
can be put into one-to-one correspondence with matchings of an associated
Aztec diamond graph (see [El] for details).

Looking into earlier mathematical literature, one can even see intimations
of enumerative matching theory in the work of MacMahon [Ma], who nearly
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a century ago found a formula for the number of plane partitions whose solid
Young diagram fits inside an a-by-b-by-c box, as will be discussed in Sec-
tion 2. (For background on plane partitions, see [An1] and [St1].) Such a
Young diagram is nothing more than an assemblage of cubes, and it has long
been known in the extra-mathematical world that such assemblages, viewed
from a distant point, looks like tilings (consider Islamic art, for instance).
Thus it was natural for mathematicians to interpret MacMahon’s theorem
on plane partitions as a result about tilings of a hexagon by rhombuses. This
insight may have occurred to a number of people independently; the earliest
chain of oral communication that I have followed leads back to David Klarner
(who did not publish his observation but relayed it to Richard Stanley in the
1970s), and the earliest published statement I have found is in the article
[Da]. In any case, each of the Young diagrams enumerated by MacMahon
corresponds to a tiling of a hexagon by rhombuses, where the hexagon is
semiregular (its opposite sides are parallel and of equal length, with all inter-
nal angles equal to 120 degrees) and has sides-lengths a, b, c, a, b, c, and where
the rhombuses have all side-lengths equal to 1. These tilings in turn corre-
spond to matchings of the “honeycomb” graph that is dual to the dissection
of the hexagon into unit equilateral triangles; see Figure 2, which shows a
matching of the honeycomb graph and the associated tiling of a hexagon.
Kuperberg [Ku1] may have been the first to notice the connection between
plane partitions and the dimer model, although, interestingly, some chemists
had independently come up with these honeycomb graphs in their study of
benzenoid hydrocarbons (see [Cy]).

Similarly, variants of MacMahon’s problem in which the plane partition is
subjected to various symmetry constraints (considered by Macdonald, Stan-
ley, and others; see [St3] and [St4]) correspond to the problem of enumer-
ating matchings possessing corresponding kinds of symmetry. Greg Kuper-
berg used this correspondence in solving one of Stanley’s open problems (see
[Ku1]), and this created further interest in matchings among combinatorial-
ists.

One of Kuperberg’s chief tools was an old result of Kasteleyn, which
showed that for any planar graph G, the number of matchings of G is equal
to the Pfaffian of a certain 0,1-matrix associated with G. One special case of
this result, enunciated by Percus [Pe], can be used when G is bipartite; in this
case, one can use a determinant instead of a Pfaffian. Percus’ determinant is a
modified version of the bipartite adjacency matrix of the graph, in which rows
correspond to “white” vertices and columns correspond to “black” vertices
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(under a coloring scheme whereby white vertices have only black neighbors
and vice versa); the i, jth entry is ±1 if the ith white vertex and jth black
vertex are adjacent, and 0 otherwise. For more details on how the signs of
the entries are chosen, see [Ka3] or [Pe].

Percus’ theorem, incorporated into computer software, makes it easy to
count the matchings of many planar graphs and look for patterns in the
numbers that arise. Two such programs are vaxmaple (written by Greg Ku-
perberg, David Wilson and myself) and vaxmacs (written by David Wilson).
Most of the patterns described below were discovered with help from this
software, available from http : //jamespropp.org/∼propp/software.html.
Both programs treat subgraphs of the infinite square grid; this might seem
restrictive, but it turns out that counting the matchings of an arbitrary bipar-
tite planar graph can be fit into this framework, with a bit of tweaking. The
mathematically interesting part of each program is the routine for choosing
the signs of the non-zero entries. There are many choices that would work,
but Wilson’s sign-rule is far and away the simplest: If an edge is horizontal,
we give it weight +1, and if an edge is vertical, joining a vertex in one row
to a vertex in the row below it, we give the edge weight (−1)k, where k is
the number of vertices in the upper row to the left of the vertical edge.

The main difference between vaxmaple and vaxmacs is that the former
creates Maple code which, if sent to Maple, results in Maple printing
out the number of matchings of the graph; vaxmacs, on the other hand, is a
customized Emacs environment that fully integrates text-editing operations
(used for defining the graph one wishes to study) with the mathematical oper-
ations of interest. Both programs represent bipartite planar graphs in “VAX-
format”, whereby V’s, A’s, X’s, and other letters denote vertices. (Examples
of VAX-format can be found throughout sections 2 and 3; a detailed expla-
nation can be found in http://jamespropp.org/∼propp/vaxmaple.doc.

In the 1990s and afterward, the study of matchings of non-bipartite graphs
was expedited by the programs graph and planemaple (created by Matt
Blum and Ben Wieland, respectively). These programs make it easy to
define a planar graph by pointing and clicking, after which one can count its
matchings using an efficient implementation of Kasteleyn’s Pfaffian method.
This makes it easy to try out new ideas and look for patterns, outside of the
better-explored bipartite case.

Interested readers with access to the World Wide Web can obtain copies of
all of these programs via http://jamespropp.org/∼propp/software.html.

Most of the formulas that have been discovered express the number of

6



matchings of a graph as a product of many comparatively small factors.
Even before one has conjectured (let alone proved) such a formula, one can
frequently infer its existence from the fact that the number of matchings has
only small prime factors. Numbers that are large compared to their largest
prime factor are sometimes called “smooth” or “round”; the latter term will
be used here. The definition of roundness is not precise, since it is not
intended for use as a technical term. Its vagueness is intended to capture the
uncertainties and the suspense of formula-hunting, and the debatable issue
of whether the occurrence of a single larger-than-expected prime factor rules
out the existence of a product formula. (For an example of a number whose
roundness lies in this gray area, see the table of numbers given in problem
8.) It is amusing to note that one can have rigorous proofs of roundness that
do not yield explicit product formulas; see [Ku2], section VII A for some
examples.

A great source of the appeal of research on enumeration of matchings is
the ease with which undergraduate research assistants can participate in the
hunt for formulas and proofs; many members of the M.I.T. Tilings Research
Group (composed mostly of undergraduates like Blum and Wieland) played a
role in the developments that led to the writing of this article. Enumeration
of matchings has turned out to be a rich avenue of combinatorial inquiry,
and many more beautiful patterns undoubtedly await discovery.

2 Lozenges

We begin with problems related to lozenge tilings of hexagons. A lozenge is
a rhombus of side-length 1 whose internal angles measure 60 and 120 degrees;
all the hexagons we will consider will tacitly have integer side-lengths and
internal angles of 120 degrees. Every such hexagon H can be dissected into
unit equilateral triangles in a unique way, and one can use this dissection to
define a graph G whose vertices correspond to the triangles and whose edges
correspond to triangles that share an edge; this is the “finite honeycomb
graph” dual to the dissection. It is easy to see that the tilings of H by
lozenges are in one-to-one correspondence with the matchings of G.

The a, b, c semiregular hexagon is the hexagon whose side lengths are
a, b, c, a, b, c respectively. Lozenge tilings of this region are in correspondence
with plane partitions with at most a rows, at most b columns, and no part
exceeding c. We may represent such hexagons by means of diagrams like
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AVAVAVAVA

AVAVAVAVAVA

AVAVAVAVAVAVA

AVAVAVAVAVAVAVA

VAVAVAVAVAVAVAV

VAVAVAVAVAVAV

VAVAVAVAVAV

VAVAVAVAV

where A’s and V’s represent upward-pointing and downward-pointing trian-
gles, respectively.

MacMahon [Ma] showed that the number of such plane partitions is

a−1
∏

i=0

b−1
∏

j=0

c−1
∏

k=0

i+ j + k + 2

i+ j + k + 1
.

(This form of MacMahon’s formula is due to Macdonald; for a short, self-
contained proof see section 2 of [Co5].)

Problem 1: Show that in the 2n − 1, 2n, 2n − 1 semiregular hexagon,
the central location (consisting of the two innermost triangles) is covered by
a lozenge in exactly one-third of the tilings.

(Equivalently: Show that if one chooses a random matching of the dual
graph, the probability that the central edge is contained in the matching is
exactly 1

3
.)

Progress: Two independent (and very different) solutions of this prob-
lem have been found; one by Mihai Ciucu and Christian Krattenthaler and
the other by Harald Helfgott and Ira Gessel. Ciucu and Krattenthaler [Ci6]
compute more generally the number of rhombus tilings of a hexagon with
sides a, a, b, a, a, b that contain the central unit rhombus, where a and b must
have opposite parity (the special case a = 2n− 1, b = 2n solves Problem 1);
The same generalization was obtained (in a different but equivalent form) by
Helfgott and Gessel, using a completely different method [He2]. One might
still try to look for a proof whose simplicity is comparable to that of the
answer “one-third”. Also relevant are [Fu1], [Ci5], and [Fi2].

The hexagon of side-lengths n, n+ 1, n, n+ 1, n, n+ 1 cannot be tiled by
lozenges at all, for in the dissection into unit triangles, the number of upward-
pointing triangles differs from the number of downward-pointing triangles.
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However, if one removes the central triangle, one gets a region that can be
tiled, and the sort of numbers one gets for small values of n are striking.
Here they are, in factored form:

(2)

3

(2) (3)

5 3

(2) (3) (5)

5 7

(2) (5)

2 7 5

(2) (5) (7)

8 3 11

(2) (3) (5) (7)

13 9 11

(2) (3) (7) (11)

13 18 5 7

(2) (3) (7) (11)

8 18 13 5

(2) (3) (11) (13)

2 9 19 11

(2) (3) (11) (13)

10 3 19 17

(2) (3) (11) (13) (17)
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16 13 23 7

(2) (11) (13) (17)

These are similar to the numbers one gets from counting lozenge tilings of an
n, n, n, n, n, n hexagon, in that the largest prime factor seems to be bounded
by a linear function of n.

Problem 2: Enumerate the lozenge tilings of the region obtained from
the n, n+ 1, n, n+ 1, n, n+ 1 hexagon by removing the central triangle.

Progress: Mihai Ciucu has solved the more general problem of counting
the rhombus tilings of an (a, b+ 1, b, a+ 1, b, b+ 1)-hexagon with the central
triangle removed [Ci2]. Ira Gessel and Harald Helfgott have proved this result
independently using Hankel determinants [He2]. Soichi Okada and Christian
Krattenthaler have solved the even more general problem of counting the
rhombus tilings of an (a, b + 1, c, a + 1, b, c + 1)-hexagon with the central
triangle removed [Ok1]. See also [Ci4], [Ci6], and [Ci7].

One can also take a 2n, 2n+3, 2n, 2n+3, 2n, 2n+3 hexagon and make it
lozenge-tileable by removing a triangle from the middle of each of its three
long sides, as shown:

AVAVAVAVAVAVAVAVA

AVAVAVAVAVAVAVAVAVA

AVAVAVAVAVAVAVAVAVAVA

AVAVAVAVAVAVAVAVAVAVAVA

AVAVAVAVAVAVAVAVAVAVAVAVA

VAVAVAVAVAVAVAVAVAVAVAVAV

AVAVAVAVAVAVAVAVAVAVAVAVAVAVA

AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA

AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA

AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA

AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA

VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV

VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV

VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV

VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV

VAVAVAVAVAVAVAVAVAVAVAVAVAVAV

VAVAVAVAVAVAVAVAVAVAVAVAVAV
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VAVAVAVAVAVAVAVAVAVAVAVAV

VAVAVAVAVAV VAVAVAVAVAV

Here one obtains an equally tantalizing sequence of factorizations:

1

7 2

(2) (7)

2 4 4 2

(2) (7) (11) (13)

10 3 8 2 4 2

(2) (3) (5) (13) (17) (19)

2 2 2 3 4 4 8 4

(2) (5) (7) (11) (13) (17) (19) (23)

Problem 3: Enumerate the lozenge tilings of the region obtained from
the 2n, 2n+3, 2n, 2n+3, 2n, 2n+3 hexagon by removing a triangle from the
middle of each of its long sides.

Progress: Theresia Eisenkölbl solved this problem. What she does in
fact is to compute the number of all rhombus tilings of a hexagon with sides
a, b+ 3, c, a+ 3, b, c+ 3 where an arbitrary triangle is removed from each of
the “long” sides of the hexagon (not necessarily the triangle in the middle).
For the proof of her formula [Ei1] she uses non-intersecting lattice paths,
determinants, and the Desnanot-Jacobi determinant formula (see [Tu]).

I should mention here that Christian Krattenthaler has written a Mathe-
matica program called RATE that expedites the process of guessing such pat-
terns; see http : //radon.mat.univie.ac.at/People/kratt/rate/rate.html.
Also, Martin Rubey has developed a much more powerful guessing program
http://axiom-wiki.newsynthesis.org/GuessingFormulasForSequences

programmed in Axiom.
Let us now return to ordinary a, b, c semiregular hexagons. When a =

b = c (= n, say), there are not two but six central triangles. There are two
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geometrically distinct ways in which we can choose to remove an upward-
pointing triangle and downward-pointing triangle from these six, according
to whether the triangles are opposite or adjacent:

AVAVAVA AVAVAVA

AVAVAVAVA AVAVAVAVA

AVAVA AVAVA AVAV VAVAVA

VAVAV VAVAV VAVA AVAVAV

VAVAVAVAV VAVAVAVAV

VAVAVAV VAVAVAV

Such regions may be called “holey hexagons” of two different kinds. Matt
Blum tabulated the number of lozenge tilings of these regions, for small values
of n. In the first (“opposite”) case, the number of tilings of the holey hexagon
is a nice round number (its greatest prime factor appears to be bounded by
a linear function of the size of the region). In the second (“adjacent”) case,
the number of tilings is not round. Note, however, that in the second case,
the number of tilings of the holey hexagon divided by the number of tilings
of the unaltered hexagon (given to us by MacMahon’s formula) is equal
to the probability that a random lozenge tiling of the hexagon contains a
lozenge that covers these two triangles; this probability tends to 1

3
for large

n (cf. [Co5]). Following this clue, we examine the difference between the
aforementioned probability (with its messy, un-round numerator) and the
number 1

3
. The result is a fraction in which the numerator is now a nice

round number. So, in both cases, we have reason to think that there is an
exact product formula.

Problem 4: Determine the number of lozenge tilings of a regular hexagon
from which two of its innermost unit triangles (one upward-pointing and one
downward-pointing) have been removed.

Progress: Theresia Eisenkölbl solved the first case of Problem 4 and
Markus Fulmek and Christian Krattenthaler solved the second case. Eisenkölbl
[Ei2] solves a generalization of the problem by applying Mihai Ciucu’s match-
ings factorization theorem, non-intersecting lattice paths, and a nontrivial
determinant evaluation. Fulmek and Krattenthaler [Fu2] compute the num-
ber of rhombus tilings of a hexagon with sides a, b, a, a, b, a (with a and b
having the same parity) that contain the rhombus that touches the center of
the hexagon and lies symmetric with respect to the symmetry axis that runs
parallel to the sides of length b. For the proof of their formula they compute
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Hankel determinants featuring Bernoulli numbers, which they do by using
facts about continued fractions, orthogonal polynomials, and, in particular,
continuous Hahn polynomials. The special case a = b solves the second part
of Problem 4.

I mentioned earlier that Kasteleyn’s method, as interpreted by Percus,
allows one to write the number of matchings of a bipartite planar graph as
the determinant of a signed version of the bipartite adjacency matrix. In
the case of lozenge tilings of hexagons and the associated matchings, it turns
out that there is no need to modify signs of entries; the ordinary bipartite
adjacency matrix will do. Greg Kuperberg has noticed (see [Ku2]) that
when row-reduction and column-reduction are systematically applied to the
Kasteleyn-Percus matrix of an a, b, c semiregular hexagon, one can obtain the
b-by-b Carlitz matrix (see [Ca]) whose i, jth entry is

(

a+c
a+i−j

)

. (This matrix

can also be recognized as the Gessel-Viennot matrix [Ge] that arises from
interpreting each tiling as a family of non-intersecting lattice paths. Horst
Sachs and his colleagues came up with these matrices independently [Sa1]
[Al].) Such reductions do not affect the determinant, so we have a pleasing
way of understanding the relationship between the Kasteleyn-Percus matrix
method and the Gessel-Viennot lattice-path method. In fact, such reductions
do not affect the cokernel of the matrix (an abelian group whose order is
the determinant). On the other hand, the cokernel of the Kasteleyn-Percus
matrix for the a, b, c hexagon is clearly invariant under permuting a, b, and
c. This gives rise to three different Carlitz matrices that non-trivially have
the same cokernel. E.g., if c = 1, then one gets an a-by-a matrix and a b-by-b
matrix that both have the same cokernel, whose structure can be determined
“by inspection” if one notices that the third Carlitz matrix of the trio is just
a 1-by-1 matrix whose sole entry is (plus or minus) a binomial coefficient. In
this special case, the cokernel is just a cyclic group.

Greg Kuperberg poses the challenge:
Problem 5: Determine the cokernel of the Carlitz matrix, or equivalently

of the Kasteleyn-Percus matrix of the a, b, c hexagon, and if possible find a
way to interpret the cokernel in terms of the tilings.

This combines Questions 1 and 2 of Kuperberg’s article [Ku2]. As Ku-
perberg points out in that article, in the case a = b = c = 2, one gets the
non-cyclic group Z/2Z × Z/10Z as the cokernel. For more background on
this problem, see Kuperberg’s subsequent article [Ku3].

Progress: Although I am not aware of any progress on this problem per
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se, it is worth noting that work of Andrei Okounkov has lent new, geometrical
meaning to the Kasteleyn cokernel; see [Ok2].

As was remarked above, one nice thing about the Kasteleyn-Percus matri-
ces of honeycomb graphs is that it is not necessary to make any of the entries
negative. In general, however, there is no canonical way of defining K, in the
sense that there may be many ways of modifying the signs of certain entries
of the bipartite adjacency matrix of a graph so that all non-zero contribu-
tions to the determinant have the same sign. Thus, one should not expect the
eigenvalues of K to possess combinatorial significance. However, the spec-
trum of K times its adjoint K∗ is independent of which Kasteleyn-Percus
matrix K one chooses (as was independently shown by David Wilson and
Horst Sachs). Thus, digressing somewhat from the topic of lozenge tilings,
we find it natural to ask:

Problem 6: What is the significance of the spectrum of KK∗, where K
is any Kasteleyn-Percus matrix associated with a bipartite planar graph?

Progress: For Nicolau Saldanha’s interpretation of the spectrum of
KK∗, see [Sa3]. Horst Sachs says (personal communication) that KK∗ may
have some significance in the chemistry of polycyclic hydrocarbons (so-called
benzenoids) and related compounds as a useful approximate measure of the
“degree of aromaticity”.

Returning now to lozenge tilings, or equivalently, matchings of finite sub-
graphs of the infinite honeycomb, consider the hexagon graph with a = b =
c = 2:

___

___/ \___

/ \___/ \

\___/ \___/

/ \___/ \

\___/ \___/

\___/

This is the graph whose 20 matchings correspond to the 20 tilings of the
regular hexagon of side 2 by rhombuses of side 1. If we just look at the
probability of each individual horizontal edge belonging to a matching chosen
uniformly at random (“edge-probabilities”), we get
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.7

.3 .3

.3

.4 .4

.3

.3 .3

.7

Now let us look at this table of numbers as if it described a distribution
of mass. If we assign the three columns x-coordinates −1 through 1, we
find that the weighted sum of the squares of the x-coordinates is equal to
(.3 + .4 + .3)(−1)2 + (.7 + .3 + .7 + .3)(0)2 + (.3 + .4 + .3)(1)2 = 2. If we
assign the seven rows y-coordinates −3 through 3, we find that the weighted
sum of the squares of the y-coordinates is equal to (.7)(−3)2 + (.6)(−2)2 +
(.3)(−1)2+(.8)(0)2+(.3)(1)2+(.6)(2)2+(.7)(3)2 = 20. You can do a similar
(but even easier) calculation yourself for the case a = b = c = 1, to see
that the “moments of inertia” of the horizontal edge-probabilities around
the vertical and horizontal axes are 0 and 1, respectively. Using vaxmaple to
study the case a = b = c = n for larger values of n, I find that the moment
of inertia about the vertical axis goes like

0, 2, 12, 40, 100, . . .

and the moment of inertia about the horizontal axis goes like

1, 20, 93, 296, 725, . . . .

It is easy to show that the former moments of inertia are given in general
by the polynomial (n4 − n2)/6 (in fact, the number of vertical lozenges that
have any particular y-coordinate does not depend on the tiling chosen). The
latter moments of inertia are subtler; they are not given by a polynomial of
degree 4, though it is noteworthy that the nth term is an integer divisible by
n, at least for the first few values of n.

Problem 7: Find the “moments of inertia” for the mass on edges arising
from edge-probabilities for random matchings of the a, b, c honeycomb graph.

Progress: Ilse Fischer solved problem 7 [Fi1]. In her article she shows
that the moment of inertia about the horizontal axis goes like 1, 18, 93, . . .
and not like 1, 20, 93, . . . as claimed above.
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3 Dominoes

Now let us turn from lozenge-tiling problems to domino-tiling problems. A
domino is a 1-by-2 or 2-by-1 rectangle. Although lozenge tilings (in the guise
of constrained plane partitions) were studied first, it was really the study of
domino tilings in Aztec diamonds that gave current work on enumeration of
matchings its current impetus. Here is the Aztec diamond of order 5:

XX

XXXX

XXXXXX

XXXXXXXX

XXXXXXXXXX

XXXXXXXXXX

XXXXXXXX

XXXXXX

XXXX

XX

(An X represents a 1-by-1 square.) A tiling of such a region by dominos is
equivalent to a matching of a certain (dual) subgraph of the infinite square
grid. This grid is bipartite, and it is convenient to color its vertices alternately
black and white; equivalently, it is convenient to color the 1-by-1 squares
alternately black and white, so that every domino contains one 1-by-1 square
of each color. Elkies, Kuperberg, Larsen, and Propp showed [El] that the
number of domino tilings of such a region is 2n(n+1)/2 (where 2n is the number
of rows), and Gessel, Ionescu, and Propp [Co2] later proved an exact formula
(originally conjectured by Jockusch) for the number of tilings of regions like

XX

XXXX

XXXXXX

XXXXXXXX

XXXX XXXXX

XXXX XXXXX

XXXXXXXX

XXXXXX

XXXX

XX
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in which two innermost squares of opposite color have been removed. (For
some values of n, the number of tilings is exactly 1

4
times 2n(n+1)/2; in the

other cases, there is an exact product formula for the difference between the
number of tilings and (1

4
)2n(n+1)/2. It is this latter fact that motivated the

idea of trying something similar in the case of lozenge tilings, as described
in the paragraph preceding the statement of Problem 4.)

Now suppose one removes two squares from the middle of an Aztec dia-
mond of order n in the following way:

XX

XXXX

XXXXXX

XXXX XXX

XXXXXXXXXX

XXXX XXXXX

XXXXXXXX

XXXXXX

XXXX

XX

(The two squares removed are a knight’s-move apart, and subject to that
constraint, they are as close to being in the middle as they can be. Up to
symmetries of the square, there is only one way of doing this.) The numbers
of tilings one gets are as follows (for n = 2 through 10):

(2)

3

(2)

5

(2) (5)

9 2

(2) (3)

17

(2) (3)
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22 2

(2) (3)

24 2

(2) (3) (73)

31 2 2

(2) (3) (5) (11)

47 2

(2) (3) (5)

Note that only the presence of the large prime factor 73 makes one doubt that
there is a general product formula; the other prime factors are reassuringly
small.

Problem 8: Count the domino tilings of an Aztec diamond from which
two close-to-central squares, related by a knight’s move, have been deleted.

Progress: Harald Helfgott has solved this problem; it follows from the
main result in [He1]. The formula is somewhat complicated, as the prime
factor 73 might have led us to expect. (One of the factors in Helfgott’s
product formula is a single-indexed sum; 73 arises as 128− 60 + 5.)

One can also look at “Aztec rectangles” from which squares have been
removed so as to restore the balance between black and white squares (a
necessary condition for tileability). For instance, one can remove the central
square from an a-by-b Aztec rectangle in which a and b differ by 1, with the
larger of a, b odd:

XX

XXXX

XXXXXX

XXXXXXXX

XXXX XXXX

XXXXXXXX

XXXXXX

XXXX

XX
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Problem 9: Find a formula for the number of domino tilings of a 2n-
by-(2n+ 1) Aztec rectangle with its central square removed.

Progress: This had already been solved when I posed the problem; it is
a special case of Theorem 4.1 in [Ci1].

What about (2n − 1)-by-2n rectangles? For these regions, removing the
central square does not make the region tileable. However, if one removes
any one of the four squares adjacent to the middle square, one obtains a
region that is tileable, and moreover, for this region the number of tilings
appears to be a nice round number.

Problem 10: Find a formula for the number of domino tilings of a
(2n − 1)-by-2n Aztec rectangle with a square adjoining the central square
removed.

Progress: This problem was solved independently three times: by Har-
ald Helfgott and Ira Gessel [He2], by Christian Krattenthaler [Kr], and by
Eric Kuo (private communication). Gessel and Helfgott solve a more general
problem than Problem 10. Krattenthaler’s paper gives several results con-
cerning the enumeration of matchings of Aztec rectangles where (a suitable
number of) collinear vertices are removed, of which Problem 10 is just a spe-
cial case. There is some overlap between the results of Helfgott and Gessel
and the results of Krattenthaler.

At this point, some readers may be wondering why m-by-n rectangles
have not played a bigger part in the story. Indeed, one of the surprising facts
of life in the study of enumeration of matchings is that Aztec diamonds and
their kin have been much more fertile ground for exact combinatorics than
the seemingly more natural rectangles. There are, however, a few cases I
know of in which something rather nice turns up. One is the problem of Ira
Gessel that appears as Problem 20 in this document. Another is the work
done by Jockusch [Jo1] and, later, Ciucu [Ci1] on why the number of domino
tilings of the square is always either a perfect square or twice a perfect square.
In the spirit of the work of Jockusch and Ciucu, I offer here a problem based
on Lior Pachter’s observation [Pa2] that the region
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XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXX XXXXXXX

XXXXXX XXXXXXXX

XXXXX XXXXXXXXX

XXXX XXXXXXXXXX

XXX XXXXXXXXXXX

XX XXXXXXXXXXXX

X XXXXXXXXXXXXX

XXXXXXXXXXXXXX

(8 dominos removed from a 16-by-16 square) has exactly one tiling. What if
we make the intrusion half as long, as in the following picture?

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXX XXXXXXXXXXX

XX XXXXXXXXXXXX

X XXXXXXXXXXXXX

XXXXXXXXXXXXXX

That is, we take a 2n-by-2n square (with n even) and remove n/2 dominos
from it, in a partial zig-zag pattern that starts from the corner. Here are the
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numbers we get, in factored form, for n = 2, 4, 6, 8, 10:

2

(2) (3)

2 6 2

(2) (3) (13)

3 2 4 2 2

(2) (3) (5) (7) (3187)

4 2 2

(2) (11771899) (27487)

5 2

(2) (2534588575976069659)

The factors are ugly, but the exponents are nice: we get 2n/2 times an odd
square.

Perhaps this is a special case of a two-parameter fact that says that you
can take an intrusion of length m in a 2n-by-2n square and the number of
tilings of the resulting region will always be a square or twice a square.

Problem 11: What is going on with “intruded Aztec diamonds”? In
particular, why is the number of tilings so square-ish?

It should also be noted that the square root of the odd parts of these
numbers (3, 33 · 13, etc.) alternate between 1 and 3 mod 4. Perhaps these
quantities are continuous functions of n in the 2-adic sense, as is the case for
intact 2n-by-2n squares (see [Co1]); however, the presence of such large fac-
tors means that no simple product formula is available, and that the analysis
will require new techniques.

Progress: The original discussion surrounding Problem 11 did not make
it sufficiently clear that the assertion about exponents (specifically, that the
exponent of 2 is exactly n/2) is empirical, not proved. Nicolau Saldanha and
Carlos Tomei made some progress toward proving the claim about exponents,
but it remains conjectural.

Let us now return to the Kasteleyn-Percus matrices that were discussed
earlier. Work of Rick Kenyon and David Wilson (see, for instance, [Ke])
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has shown that the inverses of these matrices are loaded with combinatorial
information, so it would be nice to get our hands on them. Unfortunately,
there are many non-zero entries in the inverse-matrices. (Recall that the
Kasteleyn-Percus matrices themselves, being nothing more than adjacency
matrices in which some of the 1’s have been strategically replaced by −1’s,
are sparse; their inverses, however, tend to have most if not all of their entries
non-zero.) Nonetheless, some exploratory “numerology” leaves room for hope
that this is do-able.

Consider the Kasteleyn-Percus matrix Kn for the Aztec diamond of order
n, in which every other vertical domino has its sign reversed (that is, the
corresponding 1’s in the bipartite adjacency matrix are replaced by −1’s).

Problem 12: Show that the sum of the entries of the matrix inverse of
Kn is 1

2
(n− 1)(n+ 3)− 2n−1 + 2.

(This formula works for n = 1 through n = 8.)
Progress: Harald Helfgott has solved a similar problem using the main

result of [He1], and it is likely that the result asserted in Problem 12 can
be proved similarly. (A slight technical hurdle arises from the fact that
[He1] uses a different sign-convention for the Kasteleyn-Percus matrix, which
results in different signs, and a different sum, for the inverse matrix; however,
Helfgott’s methods are quite general, so there is no conceptual obstacle to
applying them to Problem 12.)

I should mention that my original reason for examining the sum of the
entries of the inverse Kasteleyn-Percus matrix was to see whether there might
be formulas governing the individual entries themselves. Helfgott’s work
provides such formulas.

I should also mention in this connection that Greg Kuperberg and Douglas
Zare have some high-tech ruminations on the inverses of Kasteleyn-Percus
matrices, and there is a chance that representation-theory methods will give
a different way of proving the result.

Now we turn to a class of regions I call “pillows”. Here is a “0 mod 4”
pillow of “order 5”:

22



XXXX

XXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXX

XXXX

And here is a “2 mod 4” pillow of “order 7”:

XX

XXXXXX

XXXXXXXXXX

XXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXX

XXXXXXXXXX

XXXXXX

XX

It turns out (empirically) that the number of tilings of the 0-mod-4 pillow of
order n is a perfect square times the coefficient of xn in the Taylor expansion
of (5+3x+x2−x3)/(1−2x−2x2−2x3+x4). This fact came to light in several
steps. First it was noticed that the number of tilings has a comparatively
small square-free part. Then it was noticed that in the derived sequence
of square-free parts, many terms were roughly three times the preceding
term. Then it was noticed that, by multiplying each square-free part by a
judiciously-chosen square factor, one could obtain a sequence in which each
term was roughly three times the preceding term. Finally it was noticed
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that this approximately geometric sequence satisfied a fourth-order linear
recurrence relation.

Similarly, it appears that the number of tilings of the 2-mod-4 pillow of
order n is a perfect square times the coefficient of xn in the Taylor expansion
of (5+6x+3x2−2x3)/(1−2x−2x2−2x3+x4). (If you are wondering about
“odd pillows”, I should mention that there is a nice formula for the number
of tilings, but this is not an interesting result, because an odd pillow splits
up into many small non-communicating sub-regions such that a tiling of the
whole region corresponds to a choice of tiling on each of the sub-regions.)

Problem 13: Find a general formula for the number of domino tilings
of even pillows.

Progress: Chris Hanusa gave potentially useful determinant formulas for
counting tilings of pillows 1) and used it to confirm and extend my conjecture
(see section 6.2 of [Ha1]). He also proved that the number of tilings can
be written as a sum of two perfect squares 2). Adam Kalman did some
suggestive work on a natural q-analogue of the problem and came up with
some conjectures [Ka1].

Jockusch looked at the Aztec diamond of order n with a 2-by-2 hole in
the center, for small values of n; he came up with a conjecture for the number
of domino tilings, subsequently proved by Gessel, Ionescu, and Propp [Co2].
One way to generalize this is to make the hole larger, as was suggested by
Douglas Zare and investigated by David Wilson. Here is an abridged and
adapted version of the report David Wilson sent me on October 15, 1996:

Define the Aztec window with outer order y and inner order x to be the
Aztec diamond of order y with an Aztec diamond of order x deleted from its
center. For example, this is the Aztec window with outer order 8 and inner
order 2:
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There are a number of interesting patterns that show up when we count
tilings of Aztec windows. For one thing, if w is a fixed even number, and
y = x+ w, then for any w the number of tilings appears to be a polynomial
in x. (When w is odd, and x is large enough, there are no tilings.) For w = 6,
the polynomial is

8192x8 + 98304x7 + 573440x6 + 2064384x5 + 4988928x4

+8257536x3 + 9175040x2 + 6291456x+ 2097152.

This can be written as

217
(

1

2

(

x+
3

2

)2

+
7

8

)4

or as

217x4 ◦
1

2
x+

7

8
◦ (x+

3

2
)2

where it is understood that these three polynomials get composed.
More generally, all the polynomials in x that arise in this fashion appear

to “factor” in the sense of functional composition. Here are the factored
forms of the polynomials for n = 2, 4, 6, 8, 10:
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23x4 ◦ 1 ◦ (x+ 1
2
)2

28x2 ◦ x+ 1 ◦ (x+ 1)2

217x4 ◦ 1
2
x+ 7

8
◦ (x+ 3

2
)2

228x2 ◦ 1
144

x4 + 7
72
x3 + 41

144
x2 + 11

18
x+ 1 ◦ (x+ 2)2

243x4 ◦ 1
144

x3 + 61
576

x2 + 451
2304

x+ 967
1024

◦ (x+ 5
2
)2

In general the rightmost polynomial is (x+ w/4)2, and the leftmost polyno-
mial is either a perfect square, twice a fourth power, or half a fourth power,
depending on w mod 8. A pattern for the middle polynomial however is
elusive.

Problem 14: Find a general formula for the number of domino tilings
of Aztec windows.

Progress: Constantin Chiscanu found a polynomial bound on the num-
ber of domino tilings of the Aztec window of inner order x and outer order
x + w; for details, see [Ch]. Douglas Zare used the transfer-matrix method
to show that the number of tilings is not just bounded by a polynomial, but
given by a polynomial, for each fixed w; see [Za].

4 Miscellaneous

Now we come to some problems involving tiling that fit neither the domino-
tiling nor the lozenge-tiling framework. Here the more general picture is that
we have some periodic dissection of the plane by polygons, such that an even
number of polygons meet at each vertex, allowing us to color the polygons
alternately black or white. We then make a suitable choice of a finite region
R composed of equal numbers of black and white polygons, and we look at
the number of “diform” tilings of the region, where a diform is the union
of two polygonal cells that share an edge. In the case of domino tilings, the
underlying dissection of the infinite plane is the tiling by squares, 4 around
each vertex; in the case of lozenge tilings, the underlying dissection of the
infinite plane is the tiling by equilateral triangles, 6 around each vertex.

Other sorts of periodic dissections have already played a role in the theory
of enumeration of matchings. For instance, there is a tiling of the plane by
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Figure 3: A fortress of order 5, with 2× 56 diform tilings.

Figure 4: An Aztec dungeon of order 2, with (13)3 diform tilings.

isosceles right triangles associated with a discrete reflection group in the
plane; in this case, the right choice of R (see Figure 3) gives us a region that
can be tiled in 5n

2/4 ways when n is even and in 5(n
2−1)/2 or 2 · 5(n2−1)/2 ways

when n is odd [Ya].
Similarly, in the tiling of the plane by triangles that comes from a 30

degree, 60 degree, 90 degree right triangle by repeatedly reflecting it in its
edges, a certain region called the “Aztec dungeon” (see Figure 4) gives rise to
a tiling problem in which powers of 13 occur as was proved by Mihai Ciucu
[Ci3].

A key feature of these regions R is revealed by looking at the colors of
those polygons in the dissection that share an edge with the border of R.
One sees that the border splits up into four long stretches such that along
each stretch, all the polygons that touch the border have the same color. It
is not clear why regions with this sort of property should be the ones that
give rise to the nicest enumerations, but this appears to happen in practice.

One case that has not yet been settled is the case that arises from a
rather symmetric dissection of the plane into equilateral triangles, squares,
and regular hexagons, with 4 polygons meeting at each vertex and with no
two squares sharing an edge. A typical diform tiling of this region (called a
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Figure 5: Dragon of order 10 (tiled).

“dragon”) is shown in Figure 5. Empirically, one finds that the number of
diform tilings is 2n(n+1).

Problem 15: Prove that the number of diform tilings of the dragon of
order n is 2n(n+1).

Progress: Ben Wieland solved this problem (private communication).
For a published proof, see section 7 of [Ci3].

Incidentally, the tiling shown in Figure 5 was generated using an algorithm
that generates each of the possible diform tilings of the region with equal
probability. It is no fluke that the tiling looks so orderly in the top and
bottom corners of the region; this appears to be typical behavior in situations
of this kind. For details on two exactly solved tiling problems of this sort
(namely, lozenge tilings of hexagons and domino tilings of Aztec diamonds)
see [Co5] and [Co3], respectively.

One way to get a new dissection of the plane from an old one is to refine
it. For instance, starting from the dissection of the plane into squares, one
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Figure 6: Region for Problem 16.

can draw in every kth southwest-to-northeast diagonal. When k is 1, this
is just a distortion of the dissection of the plane into equilateral triangles.
When k is 2, this is a dissection that leads to finite regions for which the
number of diform tilings is a known power of 2 (thanks to a theorem of Chris
Douglas; see [Do]). But what about k = 3 and higher?

For instance, we have the roughly hexagonal region shown in Figure 6;
certain boundary vertices have been marked with a dot so as to bring out
the large-scale 2,3,2,2,3,2 hexagonal structure more clearly. The cells of this
region are triangles and squares. The region has 17920 = 29 · 5 · 7 diform
tilings. More generally, if one takes an a, b, c quasi-hexagon, one finds that
one gets a large power of 2 times a product of powers of odd primes in which
all the primes are fairly small.

Problem 16: Find a formula for the number of diform tilings in the
a, b, c quasi-hexagon in the dissection of the plane that arises from slicing the
dissection into squares along every third upward-sloping diagonal.

I should mention that one reason for my special interest in Problem 16
is that it seems to be a genuine hybrid of domino tilings of Aztec diamonds
and lozenge tilings of hexagons.

Progress: Ben Wieland solved this problem in the case a = b = c
(which, as it turns out, is also the solution to the case a = b < c and the
case a = c < b). In these cases the number of tilings is always a power of
two. The general case does not yield round numbers, so there is no simple
product formula. Tri Lai [La] later found the general solution.

The approach underlying Ben Wieland’s solutions to the last two prob-
lems is a method of subgraph substitution that has already been of great use
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a b

c d

CD

B A

Figure 7: “Urban renewal” substitution.

in enumeration of matchings of graphs. I will not go into great detail here
on this method (the interested reader can examine [Pr1] and [Pr2]), but here
is an overview: One studies graphs with weights assigned to their edges, and
one does weighted enumeration of matchings, where the weight of a matching
is the product of the weights of the constituent edges. One then looks at local
substitutions with a graph that preserve the sum of the weights of the match-
ings, or more generally, multiply the sum of the weights of the matchings by
some predictable factor. Then the problem of weight-enumerating match-
ings of one graph reduces to the problem of weight-enumerating matchings
of another (hopefully simpler) graph. Iterating this procedure, one can often
eventually reduce the graph to something easier to understand.

Problems 15 and 16 are just two instances of a broad class of problems
arising from periodic graphs in the plane. A unified understanding of this
class of problems has begun to emerge, by way of subgraph substitution.
The most important open problem connected with this class of results is the
following:

Problem 17: Characterize those local substitutions that have a pre-
dictable effect on the weighted sum of matchings of a graph.

The most useful local substitution so far has been the one shown in Figure
7 (where unmarked edges have weight 1 and where A,B,C,D are respectively
obtained from a, b, c, d by dividing by ad+bc); if G and G′ respectively denote
the graph before and after the substitution, then one can check that the sum
of the weights of the matchings of G′ equals the sum of the weights of the
matchings of G divided by ad + bc. It is required that the four innermost
vertices have no neighbors other than the four vertices shown; this constraint
is indicated by circling them.

The substitution shown in Figure 8 (a straightforward generalization of a
clever substitution due to Rick Kenyon) has also been of use. Here the new
weights are not entirely determined by the old, but have a single degree of
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Figure 8: Rick Kenyon’s substitution.

freedom; the relevant formulas can be written as

A =
abc+ aeg + cdf

bc+ eg
,

B = b ,

D =
dg

bc+ eg
E ,

F = ef
1

E
, and

G = (bc+ eg)
1

E
,

with E free. As before, the circled vertices may not have any neighbors other
than the ones shown. In this case, the sum of the weights in the before-graph
G is exactly equal to the sum of the weights in the after-graph G′; there is no
need for a correction factor like the 1/(ad+ bc) that arises in urban renewal.

The extremely powerful “wye-delta” substitution of Colbourn, Provan,
and Vertigan [Co6] should also be mentioned.

Progress: Dylan Thurston [Th] showed that urban renewal is ”suffi-
cient”, in the sense that two circular planar graphs with the same boundary
measurement data are related by urban renewals.

Up till now we have been dealing exclusively with bipartite planar graphs.
We now turn to the less well-explored non-bipartite case.

For instance, one can look at the triangle graph of order n, shown in
Figure 9 in the case n = 4. (Here n is the number of vertices in the longest
row.) Let M(n) denote the number of matchings of the triangle graph of
order n. When n is 1 or 2 mod 4, the graph has an odd number of vertices
and M(n) is 0; hence let us only consider the cases in which n is 0 or 3 mod
4. Here are the first few values of M(n), expressed in factored form: 2, 2 · 3,
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Figure 9: The triangle graph.

2 · 2 · 3 · 3 · 61, 2 · 2 · 11 · 29 · 29, 23 · 33 · 52 · 72 · 19 · 461, 23 · 52 · 372 · 41 · 1392,
24 · 73 · 149 · 757 · 33721 · 523657, 24 · 38 · 17 · 372 · 7034592, . . . . It is interesting
that M(n) seems to be divisible by 2⌊(n+1)/4⌋ but no higher power of 2; it is
also interesting that when we divide by this power of 2, in the case where n
is a multiple of 4, the quotient we get, in addition to being odd, is a perfect
square times a small number (3, 11, 41, 17, . . .).

Problem 18: How many matchings does the triangle graph of order n
have?

Progress: For Horst Sachs’ response to this problem (consisting mostly
of numerical data), see [Sa2].

One can also look at graphs that are bipartite but not planar. A natural
example is the n-cube (that is, the n-dimensional cube with 2n vertices). It
has been shown that the number of matchings of the n-cube goes like 1, 2,
9 = 32, 272 = 16 · 17, 589185 = 32 · 5 · 13093, . . ..

Problem 19: Find a formula for the number of matchings of the n-cube.
(This may be intractable; after all, the graph has exponentially many

vertices.)
Progress: László Lovász gave a simple proof of my (oral) conjecture

that the number of matchings of the n-cube has the same parity as n itself.
Consider the orbit of a particular matching of the n-cube under the group
generated by the n standard reflections of the n-cube. If all the edges are
parallel (which can happen in exactly n ways), the orbit has size 1; otherwise
the size of the orbit is of the form 2k (with k ≥ 1) — an even number. The
claim follows, and similar albeit more complex reasoning should allow one to
compute the enumerating sequence modulo any power of 2. Meanwhile, L.H.
Clark, J.C. George, and T.D. Porter have shown [Cl] that if one lets f(n)
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denote the number of 1-factors in the n-cube, then

f(n)2
1−n ∼ n/e

as n → ∞. It was subsequently pointed out by Bruce Sagan that the main
result in [Cl] is a special case of the theorem that appears at the top of page
312 in [Lo].

Next let us turn to a problem involving domino tilings of rectangles,
submitted by Ira Gessel (what follows are his words):

We consider dimer coverings of an m× n rectangle, with m and n even.
We assign a vertical domino from row i to row i + 1 the weight

√
yi and

a horizontal domino from column j to column j + 1 the weight
√
xj. For

example, the covering

√
y1

√
x2 √

y1

√
x5

√
x7 √

y1
√
y1√

x2
√
x5

√
x7

for m = 2 and n = 10 has weight y21x2x5x7. (The weight will always be a
product of integral powers of the xi and yj.)

Now I’ll define what I call “dimer tableaux.” Take an m/2 by n/2 rect-
angle and split it into two parts by a path from the lower left corner to the
upper right corner. For example (with m = 6 and n = 10)

Then fill in the upper left part with entries from 1, 2, . . . , n − 1 so that for

adjacent entries i j we have i < j − 1 and for adjacent entries i
j we have

i ≤ j+1, and fill in the lower-right partition with entries from 1, 2 . . . ,m− 1

with the reverse inequalities ( i j implies i ≤ j+1 and i
j implies i < j−1).

We weight an i in the upper-left part by xi and a j in the lower-right part
by yj.

Theorem: The sum of the weights of the m× n dimer coverings is equal to
the sum of the weights of the m/2× n/2 dimer tableaux.
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My proof is not very enlightening; it essentially involves showing that
both of these are counted by the same formula.

Problem 20: Is there an “explanation” for this equality? In particular,
is there a reasonable bijective proof? Notes:

(1) The case m = 2 is easy: the 2 × 10 dimer covering above corresponds
to the 1× 5 dimer tableau

x2 x5 x7 y1 y1

(there’s only one possibility!).

(2) If we set xi = yi = 0 when i is even (so that every two-by-two square
of the dimer covering may be chosen independently), then the equality
is equivalent to the identity

∏

i,j

(xi + yj) =
∑

λ

sλ(x)sλ̃′(y),

(cf. Macdonald’s Symmetric Functions and Hall Polynomials , p. 37.)
This identity can be proved by a variant of Schensted’s correspondence,
so a bijective proof of the general equality would be essentially a gen-
eralization of Schensted. Several people have looked at the problem of
a Schensted generalization corresponding to the case in which yi = 0
when i is even.

(3) The analogous results in which m or n is odd are included in the case
in which m and n are both even. For example, if we take m = 4 and
set y3 = 0, then the fourth row of a dimer covering must consist of n/2
horizontal dominoes, which contribute

√
x1x3 · · · xn−1 to the weight, so

we are essentially looking at dimer coverings with three rows.

Progress: A special case of the Robinson-Schensted algorithm given in
[Su1] can be used to get a bijection for a special case of the problem, in which
one sets yi = 0 for all i even, so that we are looking at dimer coverings (or
domino tilings) in which every vertical domino goes from row 2i + 1 to row
2i + 2 for some i. These tilings are not very interesting because they break
up into tilings of 2-by-n rectangles. But even so, the Robinson-Schensted
bijection is nontrivial.
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5 Further problems

Let N(a, b) denote the number of matchings of the a-by-b rectangular grid.
Kasteleyn showed that N(a, b) is equal to the square root of the absolute
value of

a
∏

j=1

b
∏

k=1

(

2 cos
πj

a+ 1
+ 2i cos

πk

b+ 1

)

.

Some number-theoretic properties of N(a, b) follow from this representation
(see, e.g., [Co1]) but lack a combinatorial explanation. The next two prob-
lems describe two such facts.

Problem 21: Give a combinatorial proof of the fact that N(a, b) divides
N(A,B) whenever a+ 1 divides A+ 1 and b+ 1 divides B + 1.

(To see why this fact follows from the double product formula, note that
all the factors that appear in the product for a, b also appear in the product
for A,B.)

Progress: Bruce Sagan has given an answer in the “Fibonacci case”
a = 2. A matching of a 2-by-(kn− 1) grid either splits up as a matching of a
2-by-(n− 1) grid on the left and a 2-by-(kn−n) grid on the right or it splits
up as a matching of a 2-by-(n− 2) grid on the left, a horizontal matching of
a 2-by-2 grid in the middle, and a matching of a 2-by-(kn − n − 1) grid on
the right. Hence

N(2, kn− 1) = N(2, n− 1)N(2, kn− n) +N(2, n− 2)N(2, (k − 1)n− 1).

From this formula one can prove that N(2, n − 1) divides N(2, kn − 1) by
induction on k.

Forest Tong [To] has come up with a far-reaching extension of this divis-
ibility phenomenon for domino tilings of rectangles; he shows that if H is a
compound graph composed of a number of copies of a base graph G, then
the number of matchings of H is divisible by the number of matchings of G.

Volker Strehl has approached the problem in a different way; his ideas
make it seem likely that a better combinatorial understanding of resultants,
in combination with known interpretations of Chebyshev polynomials, would
be helpful in approaching this problem. See section 3.6 of [St5].

Problem 22: Give a combinatorial proof of the fact that N(a, 2a) is
always congruent to 1 mod 4.
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(For an example of the sort of combinatorial methods one can use in such
problems, see [Pa1].)

Progress: Trevor Bass and Bridget Tenner [Te2] have both found solu-
tions to this problem.

Even without Kasteleyn’s formula, it is easy to show (e.g., via the transfer-
matrix method) that for any fixed a, the sequence of numbers N(a, b) (with
b varying) satisfies a linear recurrence relation with constant coefficients. In-
deed, consider all 2a different ways of removing some subset of the a rightmost
vertices in the a-by-b grid; this gives us 2a “mutilated” versions of the graph.
We can set up recurrences that link matchings of mutilated graphs of width
b with matchings of mutilated graphs of width b and b − 1, and standard
algebraic methods allow us to turn this system of joint mutual recurrences
of low degree into a single recurrence of high degree governing the particular
sequence of interest, which enumerates matchings of unmutilated rectangles.
The recurrence obtained in this way is not, however, best possible, as one
can see even in the simple case a = 2.

Problem 23 (Stanley): Prove or disprove that the minimum degree
of a linear recurrence governing the sequence N(a, 1), N(a, 2), N(a, 3), . . . is
2⌊(a+1)/2⌋.

Progress: Remarks on page 87 of [St2] imply that the conjecture is true
when a+ 1 is an odd prime.

The idea of mutilating a graph by removing some vertices along its bound-
ary leads us to the next problem. It has been observed for small values of
n that if one removes equal numbers of black and white vertices from the
boundary of a 2n-by-2n square grid, the number of matchings of the muti-
lated graph is less than the number of matchings of the original graph. In
fact, it appears to be true that one can delete any subset of the vertices of
the square grid and obtain an induced graph with strictly fewer matchings
than the original.

It is worth pointing out that not every graph shares this property with
the square grid. For instance, if G is the Aztec diamond graph of order 5
and G′ is the graph obtained from G by deleting the middle vertices along
the northwest and northeast borders, then G has 32768 matchings while G′

has 59493.
Problem 24: Prove or disprove that every proper subgraph of the 2n-

by-2n grid graph has strictly fewer matchings.
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Figure 10: An hexagonal dungeon.

Progress: A variant of this problem, proposed by Greg Kuperberg, asks
us to prove or disprove that no subgraph of the infinite square grid that has
4n2 vertices can have more matchings than the 2n-by-2n grid graph. As
far as I am aware there has been essentially no progress on either of these
problems.

Next we come to a variant on the Aztec dungeon region shown in Figure
4. Figure 10 shows an “hexagonal dungeon” with sides 2,4,4,2,4,4. Matt
Blum’s investigation of these shapes has led him to discover many patterns;
the most striking of these patterns forms the basis of the next problem.

Problem 25: Show that the hexagonal dungeon with sides a, 2a, b, a, 2a, b
has exactly

132a
2

14⌊a
2/2⌋
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diform tilings, for all b ≥ 2a.
Progress: Mihai Ciucu and Tri Lai solved this problem [Ci8].

Unmatchable bipartite graphs can sometimes give rise to interesting quasi-
matching problems, either by way of KK∗ (see Problem 6) or by systematic
addition of new edges. The former sort of problem simply asks for the de-
terminant of KK∗ (where we may assume that K has more columns than
rows). When the underlying graph has equal numbers of black and white
vertices, this is just the square of the number of matchings, but when K is a
rectangular matrix, KK∗ will in general have a non-zero determinant, even
though the graph has no matchings.

Problem 26: Calculate the determinant ofKK∗ whereK is the Kasteleyn-
Percus matrix of the a, b, c, d, e, f honeycomb graph.

(Note that in this case we can simply takeK to be the bipartite adjacency
matrix of the graph.)

Cases of special interest are a, b + 1, c, a + 1, b, c + 1 and a, b, a, b, a, b
hexagons. These two cases overlap in the one-parameter family of a, a +
1, a, a + 1, a, a + 1 hexagons. For instance, in the case of the 3,4,3,4,3,4
hexagon, det(KK∗) is (2)8(3)3(7)6.

Problem 27: Calculate the determinant ofKK∗ whereK is the Kasteleyn-
Percus matrix of an m-by-n Aztec rectangle, or where K is the Kasteleyn-
Percus matrix of the “fool’s diamond” of order n. (The fool’s diamond of
order 3 is the following graph:

X

XXX

XXXXX

XXX

X

Fool’s diamonds of higher orders are defined in a similar way.)
Progress: In the case of Aztec rectangles, Matt Blum has found general

formulas for det(KK∗) when m is 1, 2, or 3. For fool’s diamonds, we get the
following numbers:

(1)
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(2)

(3) (5)

7

(2) (3)

2 3

(3) (5) (29)

9 2

(2) (3) (5) (7) (13)

3 4 2

(7) (13) (29)

25 2 3

(2) (3) (7) (17)

(One might also look at “fool’s rectangles”.)

Another thing one can do with an unmatchable graph is add extra edges.
Even when this ruins the bipartiteness of the graph, there can still be inter-
esting combinatorics. For instance, consider the 2, 4, 2, 4, 2, 4 hexagon-graph;
it has an even number of vertices, but it has a surplus of white vertices
over black vertices. Let us therefore introduce edges between every white
vertex and the six nearest white vertices. (That is, in each triangle of the
honeycomb, we draw a triangle connecting the three white vertices, as in
Figure 11.) Then the graph has 5187 = (3)(7)(13)(19) matchings.

Problem 28: Count the matchings of the a, b, c, d, e, f hexagon-graph in
which extra edges have been drawn connecting vertices of the majority color.

What works for honeycomb graphs works (or seems to work) for square-
grid graphs as well. If one adds edges joining each vertex of majority color to
the four nearest like-colored vertices in the n by n+2 Aztec rectangle graph
as in Figure 12, one gets a graph for which the number of matchings grows

39



Figure 11: Hexagon with extra edges.

Figure 12: Aztec rectangle with extra edges.
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Figure 13: Holey Aztec rectangle with extra edges.

like (2)2(3), (2)3(3)(7), (2)7(3)(11), (2)17(5)(31), etc. If one does the same
for the holey 2n− 1 by 2n Aztec rectangle from which the central vertex has
been removed, as in Figure 13, one gets the numbers (2)6(7), (2)9(3)2(13)(17),
(2)23(5)3(31), etc.

Problem 29: Count the matchings of the a by b Aztec rectangle (with
a+ b even) in which extra edges have been drawn connecting vertices of the
majority color. Do the same for the 2n− 1 by 2n holey Aztec rectangle.

Other examples of non-bipartite graphs for which the number of match-
ings has only small prime factors arise when one takes the quotient of a
symmetrical bipartite graph modulo a symmetry-group at least one element
of which interchanges the two colors; for some examples of this, see [Ku1].
In general, there seem to be fewer product-formula enumerations of match-
ings for non-bipartite graphs than for bipartite graphs. Nevertheless, even
in cases where no product formula has been found, there can be patterns in
need of explanation.

Consider the one-parameter family of graphs illustrated in Figure 14 for
the case n = 7 (based on the same non-bipartite infinite graph as Figures
12 and 13). Such a graph has an even number of vertices whenever n is
congruent to 0 or 3 modulo 4. Here are the data for the first few cases,
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Figure 14: Isosceles right triangle graph with extra edges.

courtesy of Matt Blum:

n # matchings factorization

3 3 3

4 6 2 * 3

7 1065 3 * 5 * 71

8 6276 2^2 * 3 * 523

11 45949563 3^2 * 11 * 464137

12 807343128 2^3 * 3^2 * 1109 * 10111

15 221797080594801 3^2 * 24644120066089

16 11812299253803024 2^4 * 3 * 246089567787563

19 117066491250943949567763 3 * 89 * 28289

* 15499002371714201

20 19100803250397148607852640 2^5 * 3^2 * 5 * 41 * 367

* 881534305952328473

The following problem describes some of Matt’s conjectures:
Problem 30: Show that for the isosceles right triangle graph with extra

edges, the number of matchings is always a multiple of 3. Furthermore, show
that the exact power of 2 dividing the number of matchings is 2n/4 when n
is 0 modulo 4, and 20(= 1) when n is 3 modulo 4.
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Figure 15: Equilateral triangle graph with extra vertices and edges.

This property of divisibility-by-3 pops up in another problem of a similar
flavor. Consider the graph shown in Figure 15, which is just like the one
shown in Figure 9, except that half of the triangular cells have an extra vertex
in them, connected to the three nearest vertices. (Note also the resemblance
to Figure 11.)

Problem 31: Show that for the equilateral triangle graph with extra
vertices and edges, the number of matchings is always a multiple of 3.

(I refrain from making a conjecture about the exponent of 2, though the
data contain patterns suggestive of a general rule.)

Progress: Doug Lepro found a solution back in the late 90s but never
published it. A similar proof was found more recently by Kyung-Won Hwang,
Stephen Hartke and Naeem Sheikh [Hw].

It may be too soon to try to assemble into one coherent picture all the
diverse phenomena discussed in the preceding 31 problems. But I have no-
ticed a gratuitous symmetry that governs many of the exact formulas, and I
will close by pointing it out. Consider, for example, the MacMahon product

Mn =
n−1
∏

i=0

n−1
∏

j=0

n−1
∏

k=0

i+ j + k + 2

i+ j + k + 1

that counts matchings of the n, n, n semiregular honeycomb graph. We find
that the “second quotient” Mn−1Mn+1/M

2
n is the rational function

27

64

(3n− 2)(3n− 1)2(3n+ 1)2(3n+ 2)

(2n− 1)3(2n+ 1)3

which is an even function of n.
The right hand side in Bo-Yin Yang’s theorem (giving the number of

diabolo tilings of a fortress of order n) has a power of 5 whose exponent is
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n2/4 when n is even and (n2−1)/4 when n is odd; this too is an even function
of n.

Domino tilings of Aztec diamonds are enumerated by the formula 2n(n+1).
Here the symmetry is a bit different: replacing n by −1−n leaves the answer
unaffected.

The right hand side of Mihai Ciucu’s theorem (giving the number of
diform tilings of an Aztec dungeon of order n) has a power of 13 whose
exponent is (n+1)2/3 or n(n+2)/3 (according to whether or not n is 2 mod
3). so that the symmetry corresponds to replacing n by −2− n.

There are other instances of this kind that arise, in which some base
is raised to the power of some quadratic function of n; in each case, the
quadratic function admits a symmetry that preserves the integrality of n
(unlike, say, the quadratic function n(3n + 1)/2, which as a function from
integers to integers does not possess such a symmetry).

Problem 32: For many of our formulas, the “algebraic” (right hand) side
is invariant under substitutions that make the “combinatorial” (left hand)
side meaningless, insofar as one cannot speak of graphs with negative num-
bers of vertices or edges. Might this invariance nonetheless have some deeper
significance?

For more on combinatorial reciprocity as it relates to perfect matchings,
see [Pr4] and [An2].

For a discussion of a different sort of “gratuitous” symmetry related to
tilings, see [Co1].
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