Piecewise-linear and birational toggling

David Einstein and James Propp UMass Lowell

July 2, 2014

Special thanks to Tom Roby for help with preparing this talk.

Slides at http://jamespropp.org/fpsac14.pdf

Main concepts

- homomesy
- toggling
- rowmotion
- promotion
- reciprocity

All of these concepts apply to dynamical systems in three realms:

- the combinatorial realm
- ▶ the continuous piecewise-linear (cpl) realm
- the birational realm

Recent example: Armstrong-Stump-Thomas

Theorem (conjectured by Panyushev): Let W be a finite Weyl group of rank r and **Pan** the Panyushev complement on antichains in the root poset $\Phi^+(W)$. Then for any orbit \mathcal{O} of **Pan** we have

$$\frac{1}{|\mathcal{O}|} \sum_{A \in \mathcal{O}} |A| = r/2.$$

DREW ARMSTRONG, CHRISTIAN STUMP, AND HUGH THOMAS

FIGURE 1. An orbit of the Panyushev complement

See http://arxiv.org/pdf/1101.1277.pdf.

More recent example: Bloom-Pechenik-Saracino

Theorem (conjectured by Propp): Let SSYT(m, n, k) be the set of semistandard Young tableaux t of shape $m \times n$ with entries bounded by k.

Let a, b be boxes in the $m \times n$ diagram related by 180° rotation. For $t \in \mathrm{SSYT}(m, n, k)$, let F(t) be the sum of the entries of t in boxes a and b.

Then F(t) has the same average in each promotion-orbit in SSYT(m, n, k).

J. Striker, N. Williams / European Journal of Combinatorics 33 (2012) 1919–1942

See http://arxiv.org/abs/1308.0546.

Homomesy

Given

- ▶ a set X,
- ▶ an operation $T: X \rightarrow X$ with $T^n = id$, and
- ightharpoonup a function F from X to a field $\mathbb K$ of characteristic 0,

we say that F is *homomesic* under the action of T, or that the triple (X, T, F) exhibits *homomesy*, if for all $x \in X$ the average

$$\frac{1}{n}\sum_{k=0}^{n-1}F(T^k(x))$$

equals some c independent of x.

Examples abound: partitions, tableaux, colorings of graphs, independent sets in graphs, ASMs (abelian sandpiles models), ASMs (alternating sign matrices), ...

Homomesy and invariance

Given a vector space V of functions from X to \mathbb{K} , let V_h be the linear subspace of homomesic functions and V_i be the linear subspace of invariant functions (functions $F: X \to \mathbb{K}$ with F(Tx) = F(x) for all $x \in X$).

Easy fact: $V_h \cap V_i$ is the subspace of constant functions.

Equivalently, if we define V_h^0 as the subspace of "0-mesic" functions (functions $F: X \to \mathbb{K}$ with $F(x) + F(Tx) + \cdots + F(T^{n-1}x) = 0$ for all $x \in X$), then $V_h^0 \cap V_i = \{0\}$.

In some cases we have $V=V_h^0\oplus V_i$ (e.g. see section 2.4 and 2.5 of the July 1, 2014 version of http://arxiv.org/abs/1310.5201), but even when this doesn't happen, we typically find (for "naturally occuring" X, T, V) that dim V_h is surprisingly large.

Order ideals

Let P be a poset.

Let X be the set of order-reversing maps f from P to $\{0,1\}$ (naturally identified with the set J(P) of order ideals I of P).

Let V be the vector space of functions expressible as linear combinations of the indicator functions 1_x ($x \in P$), where

$$1_x(I) = \begin{cases} 1 & \text{if } x \in I, \\ 0 & \text{if } x \notin I, \end{cases}$$

i.e., the set of maps F of the form $F(f) = \sum_{x \in P} a_x f(x)$ for fixed coefficients $a_x \in \mathbb{K}$.

E.g., with $a_x = 1$ for all x, we get the cardinality function $F(I) = \sum_{x \in P} f(x) = |I|$.

Toggling

Given an order ideal $I \in J(P)$ and an $x \in P$, define

$$\tau_{x}(I) = \begin{cases} I \triangle \{x\} & \text{if } I \triangle \{x\} \in J(P), \\ I & \text{otherwise,} \end{cases}$$

where \triangle denotes the symmetric difference.

Following Striker and Williams (http://arxiv.org/abs/1108.1172) we call τ_x "toggling at x".

 τ_{\times} is an involution on J(P).

 τ_x and τ_y commute unless x > y (x covers y) or x < y (x is covered by y).

Rowmotion

Hereafter we focus on $P = [a] \times [b]$ (extensions to other posets are in progress).

When a = b = 2, we label the 4 elements of the poset as N, S, E, and W in the Hasse diagram in the obvious way.

Following Striker and Williams: define $\mathbf{Row}(I)$ to be the result of successively toggling at all the elements of P from top to bottom; this is well-defined because of the commutativity property.

An example of rowmotion in $[2] \times [2]$

So

Periodicity

Theorem (Fon-der-Flaass 1993): **Row** on $P = [a] \times [b]$ is of order a + b.

$[2] \times [2]$: periodicity for rowmotion

We have an orbit of size 4 and an orbit of size 2. Both orbits have size dividing a + b = 2 + 2 = 4.

Homomesy for cardinality

Theorem (Propp and Roby): F(I) = |I| is homomesic under rowmotion with average c = ab/2 in each orbit.

That is, for any orbit \mathcal{O} of **Row** we have

$$\frac{1}{|\mathcal{O}|} \sum_{I \in \mathcal{O}} |I| = ab/2.$$

$[2] \times [2]$: homomesy for cardinality under rowmotion

$$(0+1+3+4)/4 = (2)(2)/2 = (2+2)/2$$

Determining V_h (the subspace of homomesies)

Propp and Roby found other homomesies for rowmotion.

Einstein showed that Propp and Roby's list is complete; that is, he determined V_h .

Side note: Rowmotion can also be defined for antichains as in the Armstrong-Stump-Thomas paper (in this context it is called the Panyushev complement); we get a different V (that is, the bijection between order ideals and antichains does not give a linear map between $V^{\rm order\ ideals}$ and $V^{\rm antichains}$), and V_h is quite different in the two cases.

From J(P) to the order polytope of P

J(P) is naturally identified with the set of order-reversing maps from P to $\{0,1\}$.

We could just as well define toggling for the set of order-preserving maps from P to $\{0,1\}$ (just exchange the roles of 0 and $\overline{1}$).

There is a natural way to lift toggling from the set of order-preserving maps from P to $\{0,1\}$ to the set of order-preserving maps from P to [0,1].

The set of such maps $f: P \to \mathbb{R}$, viewed as a subset of $\mathbb{R}^{|P|}$, is Stanley's order polytope $\mathcal{O}(P)$, whose vertices correspond to the order ideals of P.

The order polytope

Let \hat{P} denote the augmented poset obtained from P by adjoining $\hat{0}$ and $\hat{1}$ satisfying $\hat{0} < x < \hat{1}$ for all $x \in P$.

 $\mathcal{O}(P) \subset \mathbb{R}^{|P|}$ is the set of vectors associated with functions $\hat{f}: \hat{P} \to \mathbb{R}$ that satisfy $\hat{f}(\hat{0}) = 0$ and $\hat{f}(\hat{1}) = 1$ and are order-preserving $(x \le y \text{ in } P \text{ implies } \hat{f}(x) \le \hat{f}(y) \text{ in } \mathbb{R})$.

E.g., for $P = [2] \times [2]$:

Toggling in the order polytope

For each $x \in P$, define $\tau_x : \mathcal{O}(P) \to \mathcal{O}(P)$ sending f (an order-preserving function from P to [0,1]) to the unique f' satisfying

$$\hat{f}'(y) = \begin{cases} \hat{f}(y) & \text{if } y \neq x, \\ \min_{z > x} \hat{f}(z) + \max_{w < x} \hat{f}(w) - \hat{f}(x) & \text{if } y = x, \end{cases}$$

The involution τ_{x} is a cpl (continuous piecewise linear) map.

This definition is implicit in work of Kirillov and Berenstein; see also Pak (and probably others as well).

Example of toggling at a vertex

$$\min_{z > x} \hat{f}(z) + \max_{w \le x} \hat{f}(w) = .7 + .2 = .9$$

$$\hat{f}(x) + \hat{f}'(x) = .4 + .5 = .9$$

Rowmotion in the order polytope

Define rowmotion on $\mathcal{O}(P)$ ("cpl rowmotion") in analogy with rowmotion on J(P) ("combinatorial rowmotion") as the result of performing cpl toggling at the vertices of P from top to bottom.

Combinatorial rowmtion is cpl rowmotion restricted to the vertices of $\mathcal{O}(P)$.

An example of cpl rowmotion

Promotion (an aside)

One can define an operation on $\mathcal{O}([a] \times [b])$ by toggling from left to right in the Hasse diagram instead of top to bottom.

We call this "cpl promotion", and denote it by **Pro**, since it is the cpl version of Striker and Williams' promotion operation.

It deserves this name: it can be shown that Schützenberger promotion on the set of semistandard Young tableaux of rectangular shape with A rows and B columns having entries between 1 and n is naturally equivariant with the action of \mathbf{Pro} on the lattice points in the polytope obtained by dilating the order polytope of $[A] \times [n-A]$ by a factor of B.

Rowmotion and promotion on $\mathcal{O}(P)$ have the same orbit structure and homomesies, so henceforth we just discuss rowmotion.

Periodicity and homomesy for cpl rowmotion

Einstein-Propp: cpl rowmotion is of order a + b.

Periodicity in the cpl setting doesn't follow from periodicity in the combinatorial setting.

Question: Is there a self-contained proof of periodicity for cpl rowmotion?

We have also classified the homomesies of cpl rowmotion, and they are the same as the homomesies for combinatorial rowmotion; e.g., the function that maps f to $\sum_{x \in [a] \times [b]} f(x)$ is homomesic.

Detropicalizing toggling

The way we prove periodicity for cpl rowmotion (and with it our homomesy results) is by deriving it from a result in the birational setting.

Recall: A birational map from \mathbb{C}^n to itself is a rational map $f:\mathbb{C}^n\to\mathbb{C}^n$ for which there exists a rational map $g:\mathbb{C}^n\to\mathbb{C}^n$ such that $f\circ g$ and $g\circ f$ are the identity map (off of a proper subvariety).

To lift toggling to the birational setting, we replace +, -, max, and min by \times , \div , +, and \parallel , where the "parallel sum" $x \parallel y$ is defined as xy/(x+y) = 1/(1/x+1/y).

Let \sum^+ denote the ordinary sum and $\sum^\|$ denote the parallel sum.

Toggling in the birational realm

Look at maps $f:P\to\mathbb{C}$ and the associated maps $\hat{f}:\hat{P}\to\mathbb{C}$ that send both $\hat{0}$ and $\hat{1}$ to 1 (this condition on \hat{f} can be relaxed but it complicates things).

Ignoring the subvariety on which things blow up:

For each $x \in P$, define $\tau_x(f) = f'$ where

$$f'(y) = \begin{cases} f(y) & \text{if } y \neq x, \\ (\sum_{z > x}^{\parallel} f(z))(\sum_{w < x}^{+} f(w))/f(x) & \text{if } y = x. \end{cases}$$

Rowmotion in the birational realm

Define birational rowmotion as doing birational toggling from top to bottom.

Periodicity Theorem (Grinberg-Roby): Birational rowmotion on $[a] \times [b]$ is of order a + b.

The homomesies for cpl rowmotion lift to homomesies for birational rowmotion: e.g., the function that maps f to $\sum_{x \in [a] \times [b]} \log |f(x)|$ is homomesic.

The three realms

The birational realm \downarrow The cpl realm \downarrow The combinatorial realm

Reciprocity

The Periodicity Theorem can be derived from:

Reciprocity Lemma (conjectured independently by Propp and Roby; proved by Grinberg-Roby): For x = (i, j) in $[a] \times [b]$, we have

$$g(y)=1/f(x),$$

where y=(a+1-i,b+1-j) (the element related to x by 180° rotation) and $g=\mathbf{Row}^{a+b+1-i-j}f$ (here \mathbf{Row} denotes birational rowmotion).

In quest of a simpler proof

Question: Is there a self-contained combinatorial proof of the combinatorial version of birational reciprocity?

Combinatorial reciprocity: $x \in I$ if and only if $y \notin J$, where x, y are as above and $J = \mathbf{Row}^{a+b+1-i-j}(I)$ (here \mathbf{Row} denotes combinatorial rowmotion).

Such an argument might "lift" to the birational realm, yielding a simpler proof of the reciprocity theorem, from which everything else follows.

Note added after the talk: Hugh Thomas found such proof. Now we need to figure out how to "birationalize" it.

Example of combinatorial reciprocity

Example of combinatorial reciprocity

Example of combinatorial reciprocity

Example of combinatorial reciprocity

Example of combinatorial reciprocity

A question I hear a lot

A question I hear a lot

Question: "Does all this homomesy stuff have anything to do with cyclic sieving?"

A question I hear a lot

Question: "Does all this homomesy stuff have anything to do with cyclic sieving?"

Answer: "Not very much, except that they often occur together."

Roby's grad student Mike Joseph is studying a family of combinatorial dynamical systems (X_n, T_n) $(n \ge 1)$ where the orbit sizes have LCM much larger than $|X_n|$. E.g., for n=12, we have $|X_n|=377$ but the LCM of the orbit sizes of T_n is over 3 million!

All the same, we've found that the examples that manifest the CSP tend to be fertile sources of homomesies.

Question: "How can I find out more?"

Question: "How can I find out more?"

See posters of Darij Grinberg and Tom Roby, and Nathan Williams.

Question: "How can I find out more?"

See posters of Darij Grinberg and Tom Roby, and Nathan Williams.

See slides for one-hour talks by myself (http://jamespropp.org/uw14a.pdf) and Roby (http://www.math.uconn.edu/ \sim troby/homomesy2013UMN.pdf).

Question: "How can I find out more?"

See posters of Darij Grinberg and Tom Roby, and Nathan Williams.

See slides for one-hour talks by myself (http://jamespropp.org/uw14a.pdf) and Roby (http://www.math.uconn.edu/ \sim troby/homomesy2013UMN.pdf).

Read the extended abstract for this talk, also available at http://arxiv.org/abs/1404.3455.

Question: "How can I find out more?"

See posters of Darij Grinberg and Tom Roby, and Nathan Williams.

See slides for one-hour talks by myself (http://jamespropp.org/uw14a.pdf) and Roby (http://www.math.uconn.edu/~troby/homomesy2013UMN.pdf).

Read the extended abstract for this talk, also available at http://arxiv.org/abs/1404.3455.

Hassle/encourage me and Roby to finish Propp-Roby (http://arxiv.org/abs/1310.5201), and Einstein and me to finish Einstein-Propp (http://arxiv.org/abs/1310.5294).

Question: "How can I find out more?"

See posters of Darij Grinberg and Tom Roby, and Nathan Williams.

See slides for one-hour talks by myself (http://jamespropp.org/uw14a.pdf) and Roby (http://www.math.uconn.edu/ \sim troby/homomesy2013UMN.pdf).

Read the extended abstract for this talk, also available at http://arxiv.org/abs/1404.3455.

Hassle/encourage me and Roby to finish Propp-Roby (http://arxiv.org/abs/1310.5201), and Einstein and me to finish Einstein-Propp (http://arxiv.org/abs/1310.5294).

Read Grinberg and Roby's paper (http://arxiv.org/abs/1402.6178).

Question: "How can I find out more?"

See posters of Darij Grinberg and Tom Roby, and Nathan Williams.

See slides for one-hour talks by myself (http://jamespropp.org/uw14a.pdf) and Roby (http://www.math.uconn.edu/~troby/homomesy2013UMN.pdf).

Read the extended abstract for this talk, also available at http://arxiv.org/abs/1404.3455.

Hassle/encourage me and Roby to finish Propp-Roby (http://arxiv.org/abs/1310.5201), and Einstein and me to finish Einstein-Propp (http://arxiv.org/abs/1310.5294).

Read Grinberg and Roby's paper (http://arxiv.org/abs/1402.6178).

Attend the AIM meeting on dynamical algebraic combinatorics (http://aimath.org/workshops/upcoming/dynalgcomb/) in 2015.

Question: "How can I find out more?"

See posters of Darij Grinberg and Tom Roby, and Nathan Williams.

See slides for one-hour talks by myself (http://jamespropp.org/uw14a.pdf) and Roby (http://www.math.uconn.edu/~troby/homomesy2013UMN.pdf).

Read the extended abstract for this talk, also available at http://arxiv.org/abs/1404.3455.

Hassle/encourage me and Roby to finish Propp-Roby (http://arxiv.org/abs/1310.5201), and Einstein and me to finish Einstein-Propp (http://arxiv.org/abs/1310.5294).

Read Grinberg and Roby's paper (http://arxiv.org/abs/1402.6178).

Attend the AIM meeting on dynamical algebraic combinatorics (http://aimath.org/workshops/upcoming/dynalgcomb/) in 2015.

Slides at http://jamespropp.org/fpsac14.pdf

