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Main concepts

I homomesy

I toggling

I rowmotion

I promotion

I reciprocity

All of these concepts apply to dynamical systems in three realms:

I the combinatorial realm

I the continuous piecewise-linear (cpl) realm

I the birational realm



Recent example: Armstrong-Stump-Thomas

Theorem (conjectured by Panyushev): Let W be a finite Weyl
group of rank r and Pan the Panyushev complement on antichains
in the root poset Φ+(W ). Then for any orbit O of Pan we have

1

|O|
∑
A∈O
|A| = r/2.

See http://arxiv.org/pdf/1101.1277.pdf.

http://arxiv.org/pdf/1101.1277.pdf


More recent example: Bloom-Pechenik-Saracino

Theorem (conjectured by Propp): Let SSYT(m, n, k) be the set of
semistandard Young tableaux t of shape m × n with entries
bounded by k.
Let a, b be boxes in the m × n diagram related by 180◦ rotation.
For t ∈ SSYT(m, n, k), let F (t) be the sum of the entries of t in
boxes a and b.
Then F (t) has the same average in each promotion-orbit in
SSYT(m, n, k).

See http://arxiv.org/abs/1308.0546.

http://arxiv.org/abs/1308.0546


Homomesy

Given

I a set X ,

I an operation T : X → X with T n = id , and

I a function F from X to a field K of characteristic 0,

we say that F is homomesic under the action of T , or that the
triple (X ,T ,F ) exhibits homomesy, if for all x ∈ X the average

1

n

n−1∑
k=0

F (T k(x))

equals some c independent of x .

Examples abound: partitions, tableaux, colorings of graphs,
independent sets in graphs, ASMs (abelian sandpiles models),
ASMs (alternating sign matrices), ...



Homomesy and invariance

Given a vector space V of functions from X to K,
let Vh be the linear subspace of homomesic functions
and Vi be the linear subspace of invariant functions
(functions F : X → K with F (Tx) = F (x) for all x ∈ X ).

Easy fact: Vh ∩ Vi is the subspace of constant functions.

Equivalently, if we define V 0
h as the subspace of “0-mesic”

functions (functions F : X → K with
F (x) + F (Tx) + · · ·+ F (T n−1x) = 0 for all x ∈ X ), then
V 0
h ∩ Vi = {0}.

In some cases we have V = V 0
h ⊕ Vi (e.g. see section 2.4 and 2.5

of the July 1, 2014 version of http://arxiv.org/abs/1310.5201),
but even when this doesn’t happen, we typically find (for
“naturally occuring” X ,T ,V ) that dimVh is surprisingly large.

http://arxiv.org/abs/1310.5201


Order ideals

Let P be a poset.

Let X be the set of order-reversing maps f from P to {0, 1}
(naturally identified with the set J(P) of order ideals I of P).

Let V be the vector space of functions expressible as linear
combinations of the indicator functions 1x (x ∈ P), where

1x(I ) =

{
1 if x ∈ I ,
0 if x 6∈ I ,

i.e., the set of maps F of the form F (f ) =
∑

x∈P ax f (x) for fixed
coefficients ax ∈ K.

E.g., with ax = 1 for all x , we get the cardinality function
F (I ) =

∑
x∈P f (x) = |I |.



Toggling

Given an order ideal I ∈ J(P) and an x ∈ P, define

τx(I ) =

{
I 4 {x} if I 4 {x} ∈ J(P),
I otherwise,

where 4 denotes the symmetric difference.

Following Striker and Williams (http://arxiv.org/abs/1108.1172)
we call τx “toggling at x”.

τx is an involution on J(P).

τx and τy commute unless x m y (x covers y) or x l y (x is
covered by y).

http://arxiv.org/abs/1108.1172


Rowmotion

Hereafter we focus on P = [a]× [b] (extensions to other posets are
in progress).

When a = b = 2, we label the 4 elements of the poset as N, S , E ,
and W in the Hasse diagram in the obvious way.

Following Striker and Williams: define Row(I ) to be the result of
successively toggling at all the elements of P from top to bottom;
this is well-defined because of the commutativity property.



An example of rowmotion in [2]× [2]

→ → → →
τN τW τE τS

So

→Row



Periodicity

Theorem (Fon-der-Flaass 1993): Row on P = [a]× [b] is of order
a + b.



[2]× [2]: periodicity for rowmotion

We have an orbit of size 4 and an orbit of size 2.
Both orbits have size dividing a + b = 2 + 2 = 4.



Homomesy for cardinality

Theorem (Propp and Roby): F (I ) = |I | is homomesic under
rowmotion with average c = ab/2 in each orbit.

That is, for any orbit O of Row we have

1

|O|
∑
I∈O
|I | = ab/2.



[2]× [2]: homomesy for cardinality under rowmotion

0 1 3 4

2 2

(0 + 1 + 3 + 4)/4 = (2)(2)/2 = (2 + 2)/2



Determining Vh (the subspace of homomesies)

Propp and Roby found other homomesies for rowmotion.

Einstein showed that Propp and Roby’s list is complete;
that is, he determined Vh.

Side note: Rowmotion can also be defined for antichains as in the
Armstrong-Stump-Thomas paper (in this context it is called the
Panyushev complement); we get a different V (that is, the
bijection between order ideals and antichains does not give a linear
map between V order ideals and V antichains), and Vh is quite
different in the two cases.



From J(P) to the order polytope of P

J(P) is naturally identified with the set of order-reversing maps
from P to {0, 1}.

We could just as well define toggling for the set of order-preserving
maps from P to {0, 1} (just exchange the roles of 0 and 1).

There is a natural way to lift toggling from the set of
order-preserving maps from P to {0, 1} to the set of
order-preserving maps from P to [0, 1].

The set of such maps f : P → R, viewed as a subset of R|P|, is
Stanley’s order polytope O(P), whose vertices correspond to the
order ideals of P.



The order polytope

Let P̂ denote the augmented poset obtained from P by adjoining 0̂
and 1̂ satisfying 0̂ < x < 1̂ for all x ∈ P.

O(P) ⊂ R|P| is the set of vectors associated with functions
f̂ : P̂ → R that satisfy f̂ (0̂) = 0 and f̂ (1̂) = 1 and are
order-preserving (x ≤ y in P implies f̂ (x) ≤ f̂ (y) in R).

E.g., for P = [2]× [2]:

0

.2

.3 .5

.7

1



Toggling in the order polytope

For each x ∈ P, define τx : O(P)→ O(P) sending f (an
order-preserving function from P to [0, 1]) to the unique f ′

satisfying

f̂ ′(y) =

{
f̂ (y) if y 6= x ,

minzmx f̂ (z) + maxwlx f̂ (w)− f̂ (x) if y = x ,

The involution τx is a cpl (continuous piecewise linear) map.

This definition is implicit in work of Kirillov and Berenstein;
see also Pak (and probably others as well).



Example of toggling at a vertex

w1

x

w2

z1 z2

.1

.4

.2

.7 .8

.1

.5

.2

.7 .8

min
z mx

f̂ (z) + max
wlx

f̂ (w) = .7 + .2 = .9

f̂ (x) + f̂ ′(x) = .4 + .5 = .9



Rowmotion in the order polytope

Define rowmotion on O(P) (“cpl rowmotion”) in analogy with
rowmotion on J(P) (“combinatorial rowmotion”) as the result of
performing cpl toggling at the vertices of P from top to bottom.

Combinatorial rowmtion is cpl rowmotion restricted to the vertices
of O(P).



An example of cpl rowmotion

.8 .6 .6

.4 .3

τN

→ .4 .3

τW

→ .3 .3

.1 .1 .1

.6 .6
τE

→ .3 .4

τS

→ .3 .4

.1 .2



Promotion (an aside)

One can define an operation on O([a]× [b]) by toggling from left
to right in the Hasse diagram instead of top to bottom.

We call this “cpl promotion”, and denote it by Pro, since it is the
cpl version of Striker and Williams’ promotion operation.

It deserves this name: it can be shown that Schützenberger
promotion on the set of semistandard Young tableaux of
rectangular shape with A rows and B columns having entries
between 1 and n is naturally equivariant with the action of Pro on
the lattice points in the polytope obtained by dilating the order
polytope of [A]× [n − A] by a factor of B.

Rowmotion and promotion on O(P) have the same orbit structure
and homomesies, so henceforth we just discuss rowmotion.



Periodicity and homomesy for cpl rowmotion

Einstein-Propp: cpl rowmotion is of order a + b.

Periodicity in the cpl setting doesn’t follow from periodicity in the
combinatorial setting.

Question: Is there a self-contained proof of periodicity for cpl
rowmotion?

We have also classified the homomesies of cpl rowmotion, and they
are the same as the homomesies for combinatorial rowmotion; e.g.,
the function that maps f to

∑
x∈[a]×[b] f (x) is homomesic.



Detropicalizing toggling

The way we prove periodicity for cpl rowmotion (and with it our
homomesy results) is by deriving it from a result in the birational
setting.

Recall: A birational map from Cn to itself is a rational map
f : Cn → Cn for which there exists a rational map g : Cn → Cn

such that f ◦ g and g ◦ f are the identity map (off of a proper
subvariety).

To lift toggling to the birational setting, we replace +, −, max,
and min by ×, ÷, +, and ‖, where the “parallel sum” x ‖ y is
defined as xy/(x + y) = 1/(1/x + 1/y).

Let
∑+ denote the ordinary sum and

∑‖ denote the parallel sum.



Toggling in the birational realm

Look at maps f : P → C and the associated maps f̂ : P̂ → C that
send both 0̂ and 1̂ to 1 (this condition on f̂ can be relaxed but it
complicates things).

Ignoring the subvariety on which things blow up:

For each x ∈ P, define τx(f ) = f ′ where

f ′(y) =

{
f (y) if y 6= x ,

(
∑‖

zmx f (z))(
∑+

wlx f (w))/f (x) if y = x .



Rowmotion in the birational realm

Define birational rowmotion as doing birational toggling from top
to bottom.

Periodicity Theorem (Grinberg-Roby): Birational rowmotion on
[a]× [b] is of order a + b.

The homomesies for cpl rowmotion lift to homomesies for
birational rowmotion: e.g., the function that maps f to∑

x∈[a]×[b] log |f (x)| is homomesic.



The three realms

The birational realm
↓

The cpl realm
↓

The combinatorial realm



Reciprocity

The Periodicity Theorem can be derived from:

Reciprocity Lemma (conjectured independently by Propp and
Roby; proved by Grinberg-Roby): For x = (i , j) in [a]× [b],
we have

g(y) = 1/f (x),

where y = (a + 1− i , b + 1− j) (the element related to x by 180◦

rotation) and g = Rowa+b+1−i−j f (here Row denotes birational
rowmotion).



Reciprocity in [2]× [2]
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In quest of a simpler proof

Question: Is there a self-contained combinatorial proof of the
combinatorial version of birational reciprocity?

Combinatorial reciprocity: x ∈ I if and only if y 6∈ J, where x , y are
as above and J = Rowa+b+1−i−j(I ) (here Row denotes
combinatorial rowmotion).

Such an argument might “lift” to the birational realm, yielding a
simpler proof of the reciprocity theorem, from which everything
else follows.

Note added after the talk: Hugh Thomas found such proof.
Now we need to figure out how to “birationalize” it.



Example of combinatorial reciprocity
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Example of combinatorial reciprocity



A question I hear a lot

Question: “Does all this homomesy stuff have anything to do with
cyclic sieving?”

Answer: “Not very much, except that they often occur together.”

Roby’s grad student Mike Joseph is studying a family of
combinatorial dynamical systems (Xn,Tn) (n ≥ 1) where the orbit
sizes have LCM much larger than |Xn|. E.g., for n = 12, we have
|Xn| = 377 but the LCM of the orbit sizes of Tn is over 3 million!

All the same, we’ve found that the examples that manifest the
CSP tend to be fertile sources of homomesies.
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A question I like to hear

Question: “How can I find out more?”

See posters of Darij Grinberg and Tom Roby, and Nathan Williams.

See slides for one-hour talks by myself
(http://jamespropp.org/uw14a.pdf) and Roby
(http://www.math.uconn.edu/∼troby/homomesy2013UMN.pdf).

Read the extended abstract for this talk, also available at
http://arxiv.org/abs/1404.3455.

Hassle/encourage me and Roby to finish Propp-Roby
(http://arxiv.org/abs/1310.5201), and Einstein and me to finish
Einstein-Propp (http://arxiv.org/abs/1310.5294).

Read Grinberg and Roby’s paper (http://arxiv.org/abs/1402.6178).

Attend the AIM meeting on dynamical algebraic combinatorics
(http://aimath.org/workshops/upcoming/dynalgcomb/) in 2015.

Slides at http://jamespropp.org/fpsac14.pdf

http://jamespropp.org/uw14a.pdf
http://www.math.uconn.edu/~troby/homomesy2013UMN.pdf
http://arxiv.org/abs/1404.3455
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http://arxiv.org/abs/1310.5294
http://arxiv.org/abs/1402.6178
http://aimath.org/workshops/upcoming/dynalgcomb/
http://jamespropp.org/fpsac14.pdf
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http://arxiv.org/abs/1404.3455.

Hassle/encourage me and Roby to finish Propp-Roby
(http://arxiv.org/abs/1310.5201), and Einstein and me to finish
Einstein-Propp (http://arxiv.org/abs/1310.5294).

Read Grinberg and Roby’s paper (http://arxiv.org/abs/1402.6178).

Attend the AIM meeting on dynamical algebraic combinatorics
(http://aimath.org/workshops/upcoming/dynalgcomb/) in 2015.

Slides at http://jamespropp.org/fpsac14.pdf

http://jamespropp.org/uw14a.pdf
http://www.math.uconn.edu/~troby/homomesy2013UMN.pdf
http://arxiv.org/abs/1404.3455
http://arxiv.org/abs/1310.5201
http://arxiv.org/abs/1310.5294
http://arxiv.org/abs/1402.6178
http://aimath.org/workshops/upcoming/dynalgcomb/
http://jamespropp.org/fpsac14.pdf

