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I. Overview

Instead of driving a Markov chain with
a single continuous CUD process on [0,1]
(as in work of Owen and Tribble), we
can drive it with many discrete low-discrepancy
processes (typically, many copies of the
sequence

0, 1, 0, 1, ...

or similar periodic sequences with very
low period).
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For some Markov chains this method of
“rotor-router simulation” gives us a way
to reduce the error of MC simulation,
e.g.:

1. Holroyd and Propp have shown that
for estimating escape probabilities for
two-dimensional random walk, the use
of rotors reduces error from O(1/

√
N)

to O((log N )/N ), where N is the num-
ber of runs (for sequential simulation)
or the number of particles (for parallel
simulation).
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For some Markov chains this method of
“rotor-router simulation” gives us a way
to reduce the error of MC simulation,
e.g.:

2. Cooper and Spencer have shown that
for estimating occupation probabilities
for random walk in a d-dimensional lat-
tice (associated with discretized heat-
flow), the use of rotors reduces error
from O(1/

√
N) to O(1/N ).
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For some Markov chains this method of
“rotor-router simulation” gives us a way
to reduce the error of MC simulation,
e.g.:

3. Levine and Peres have shown that for
estimating the typical shape formed by
N steps of Internal Diffusion-Limited
Aggregation (IDLA), the use of rotors
leads to low error. (For MCMC, the er-

ror is known to be O(N1/3) and thought
to be O(log N ); for rotors, Levine and
Peres prove the error is O(log N ) and
simulation suggests that the error is much
smaller than that.)
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Although the rotor-router approach seems
superficially different from existing ap-
proaches to quasi Monte Carlo, there
are connections:

1. Some low-discrepancy sequences in
[0, 1] can be derived from rotor-router
walk on infinite (directed) trees, e.g.,
the van der Corput sequence.
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Although the rotor-router approach seems
superficially different from existing ap-
proaches to quasi Monte Carlo, there
are connections:

2. Many rotor-router algorithms are covertly
calculating integrals on probability spaces.
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Although the rotor-router approach seems
superficially different from existing ap-
proaches to quasi Monte Carlo, there
are connections:

3. Combinatorial analogues of the Koksma-
Hlawka inequality play a role in proofs
of the results.
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II. Rotor-routers

This quasirandomization scheme works
best on a small state space, or on a big
state space where one has a good idea
about how to group together different
decisions.
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Simplest case:

MCMC: When there is a 2-way choice,
choose randomly.

RR: When there is a 2-way choice, choose
whichever option you didn’t choose the
last time.
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More generally:

MCMC: When there is an m-way choice,
choose randomly.

RR: When there is an m-way choice,
choose whichever option you chose least

recently . That is, cycle among the m
options.

(It’s easy to generalize RR to the case
of m unequally likely options.)
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Typically, the m choices correspond to
the m possible transitions from a given
state x in a Markov chain to successor
states y1, . . . , ym with p(x, yi) = 1/m
for 1 ≤ i ≤ m.

We keep track of past choices by an m-
state rotor associated with the state x.

Rotor-router rule: To move a par-
ticle currently in state x, increment the
rotor at x by 1 mod m and move the
particle to the ith neighbor of x, where
i is the new value of the rotor.

(It’s easy to extend this to the case in
which m = mx varies from one state x
to another.)

12



Fundamental theorem of finite

almost-but-not-quite Markov chains

(applies to rotor-routers and many other
schemes, some random and some deter-
ministic):

Let p(x, y) be the irreducible and aperi-
odic transition kernel for a Markov chain
with finite state-space S and stationary
measure π(·) on S.

Suppose x1, x2, . . . is an infinite se-
quence in S such that for all x, y in S,
x is followed by y with asymptotic fre-
quency p(x, y).

Then for all x in S, x occurs in x1, x2, . . .
with asymptotic frequency π(x).

(Note that randomness, correlations, etc.
play no role.)
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Quantitative versions exist too: if the
convergence to p(x, y) in the hypoth-
esis of the theorem occurs with errors
O(1/N c), then so does the convergence
to π(x) in the conclusion of the theo-
rem.

O(1/N1/2) is the case of MCMC.

O(1/N ) is the case of RR.

Versions of this theorem exist for infinite-
state Markov chains as well.

Whether such theorems are useful de-
pends on the specific details of the Markov
chain.
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III. Derandomization of 2D ran-

dom walk

Simple random walk on Z2: For any
two vertices v, w ∈ Z2, the transition
probability p(v, w) (the probability that
a particle at v moves to w at the next
time step) is 1

4 if w is one of the four
nearest neighbors of v and 0 otherwise.

This random walk is recurrent : With
probability 1, each vertex in Z2 gets vis-
ited infinitely often.
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Fact: If a particle starts at (0, 0) and
does random walk in Z2 until it either
hits (1, 1) or returns to (0, 0), the proba-
bility that it hits (1, 1) before returning
to (0, 0) (“escape”) is exactly π/8.

Hence, if we modify the walk so that
whenever the particle arrives at (1, 1) it
gets shunted immediately to (0, 0), then
the number of escapes divided by the
number of trials (call this denominator
N ) converges to π/8 with probability 1,
with error falling like 1/

√
N .
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Equivalently, the number of escapes mi-
nus π/8 times the number of trials (write
this “global” discrepancy as DN ) will
be on the order of ±

√
N if we do N

independent random trials.

For N = 104, under random simulation,
we expect |DN | ≈ 50.
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Under quasirandom simulation with rotor-
routers, DN is provably O(log N ) (rather
than O(

√
N)).

See demo at

jamespropp.org/rotor-router/

(set Graph/Mode to 2-D Walk).

In 10,000 trials, |DN | < 0.5 for 5, 070
of the trials. That is, more than half
the time, the number of escapes during
the first N trials is equal to the integer
closest to p = π/8 times the number of
trials.

We have |DN | < 2.05 for all N ≤ 104.

Is |DN | bounded? Unknown.
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III. Quasirandom diffusion

It can be shown that rotor-router walk
is parallelizable.

Put some particles in Zd, where the sites
are equipped with rotors. (For techni-
cal reasons, the particles must all start
out on the same index-2 sublattice.)

Let the particles do rotor-router walk in
parallel for N steps.

19



Cooper and Spencer show that the dif-
ference between (1) the number of par-
ticles at a site after N steps of rotor-
router walk, and (2) the expected num-
ber of particles at a site after N steps
of random walk, is bounded by a con-
stant C that doesn’t depend on N , or
on what the original distribution of par-
ticles was, or which way the rotors were
originally pointing. All it depends on is
d, the dimension of the lattice.

See “Simulating a random walk with
constant error”, by Joshua Cooper and
Joel Spencer (arXiv:math.CO/0402323)
as well as more recent articles by Ben-
jamin Doerr and others.
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V. Quasirandom aggregation

Why Charlie Geyer is right: in all the
models considered so far, the Markov
chains are “small”, and it’s unlikely that
the “Fundamental theorem of finite almost-
but-not-quite Markov chains” is useful
for large Markov chains in general.

But...

Can we use rotors to get speed-up of
MCMC using RR in some “big” Markov
chains, where we cannot expect to visit
more than an exponentially tiny frac-
tion of the state space?

Here’s an example of that.
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Internal Diffusion-Limited Aggregation
(IDLA): To add a new site to the (ini-
tially empty) blob, put the bug at the
origin and let it do random walk until
it hits an unoccupied site. Adjoin this
site to the blob. Repeat.

The states here are the possible blobs.

After N steps, one needs ≥ c
√

N states
(with c > 1) to get a set with proba-
bility ≥ 1/2. So no simulation, random
or deterministic, can visit more than a
tiny fraction of the state-space.

Theorem (Lawler, 1995): The N -bug
IDLA blob in Z2 is a disk of area N , to
within radial fluctuation that are o(N1/3).

It appears empirically that the radial
fluctuations are actually O(ln N ).
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IDLA can be derandomized using rotor-
routers in a fairly obvious way: send the
bugs ejected from each site North, East,
South, West, North, East, South, West,
etc.

See demo at

jamespropp.org/rotor-router/

(set Graph/Mode to 2-D Aggregation).

Theorem (Levine and Peres): The N -
bug rotor-router IDLA blob in Zd is a
ball of volume N to within radial fluc-
tuation that are O(log N ).
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It appears that the radial fluctuations
for derandomized IDLA are even smaller
than for true IDLA.

E.g., after a million bugs have been added
to the system, the inradius is 563.5 and
the outradius is 565.1: these figures dif-
fer by 1.6 (about three tenths of one per-
cent).

There may be an absolute bound on the
difference between the inner and outer
radius of the IDLA blob, valid for every
N .
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VI. Picking Van der Corput’s se-

quence off a tree

Consider a (directed) binary tree in which
each node has an outgoing edge marked
0 and an outgoing edge marked 1.

Put a 2-way rotor at each node, so that
the first particle to visit node x goes in
the 0 direction, the second goes in the
1 direction, and so on, in alternation.

The first particle follows the path 0000...

The second particle follows the path 1000...

The third particle follows the path 0100...

The fourth particle follows the path 11000...

Etc.
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Represent the path b1b2b3 . . . by the bi-
nary number

. b1 b2 b3 . . .

i.e., 1
2b1 + 1

4b2 + 1
8b3 + . . . .

Then the paths followed by the succes-
sive particles are

0, 1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8, . . .

(the van der Corput sequence).
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VII. Covert integration

Consider asymmetric random walk on
Z where with probability 1/2 one jumps
1 to the right and with probability 1/2
one jumps 2 to the left.

Put targets at 0 and 1. With proba-
bility 1, the particle gets absorbed at
either 0 or 1.

The probability that the particle gets

absorbed at 0 is 1/φ with φ = 1+
√

5
2 .

This lends itself to rotor-routing with
2-way rotors. See demo at

jamespropp.org/rotor-router/

(set Graph/Mode to 1-D Walk).
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With rotor-router simulation, the em-
pirical frequency of absorption at 0 goes
to 1/φ with error O(1/N ) where N is
the number of trials.

One can show that this is mathemati-
cally equivalent to derandomized Monte
Carlo integration of the indicator func-
tion f : [0, 1] → {0, 1} with f (x) = 1
for x ≤ 1/φ and f (x) = 0 otherwise,
where the sample points in [0, 1] are the
multiples of φ modulo 1.

In this equivalence, settings of the ro-
tors correspond to numbers x in [0, 1],
f (x) corresponds to 1 or 0 according to
whether the particle gets absorbed at 0
or not, and x + φ (mod 1) corresponds
to the new setting of the rotors after the
particle has taken its walk.
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VIII. A combinatorial Koksma-

Hlawka inequality

A harmonic function on a Markov chain
is a function h(·) on the state space such
that for all states x,

∑
y h(y)p(x, y) =

h(x).

Example: Let v, w be fixed states in a
recurrent Markov chain, and let h(x)
be the probability that a particle that
starts at x will reach v before w. This
function is harmonic at all x except v
and w.

Many examples of rotor-routing simu-
lation can be construed as problems of
computing the value of some harmonic
function on the Markov chain.
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Theorem (Holroyd-Propp): If one uses
N steps of rotor-routing to estimate the
value of a harmonic function h(·) at a
particular state s, the error is bounded
by 1/N times

∑
|h(x) − h(y)|

where the sum is taken over all x, y with
p(x, y) > 0.

30



IX. Wrap-up

For most of the settings where rotor-
routers work better than MCMC, there
other well-known approaches (e.g., the
method of relaxation) that work better
than both.

So: To what sort of applications (if any)
are rotors best suited?

E.g., could they be applied to solutions
of large linear systems in the regime where
the stochastic approach (the “particle
method”) is competitive?

For more information, see

jamespropp.org/quasirandom.html
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