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The integration-by-parts formula

∫

f ′(x)g(x) dx = f(x)g(x) −

∫

f(x)g′(x) dx

carries with it an implicit quantification over functions f, g to which the
formula applies. So, what conditions must f and g satisfy in order for us to
be able to apply the formula?

A natural guess — which some teachers might even offer to a student
who raised the question — would be that this formula applies whenever f
and g are differentiable. Clearly this condition is necessary, since otherwise
the integrands f ′(x)g(x) and f(x)g′(x) are not defined. But is this condition
sufficient? We will show that it is not. That is, we will give an example
of two differentiable functions f, g on [0, 1] for which the definite integrals
∫

1

0
f ′(x)g(x) dx and

∫

1

0
f(x)g′(x) dx do not exist (the former is −∞ and

the latter is +∞); it follows that the functions f ′(x)g(x) and f(x)g′(x) do
not have antiderivatives on the interval [0, 1], so that the indefinite integrals
∫

f ′(x)g(x) dx and
∫

f(x)g′(x) dx do not exist.
A cautious teacher might instead reply that the theorem holds whenever

f and g are differentiable and f ′g and fg′ are integrable. While this version
of the theorem is true, it cannot be applied in cases where one does not know
ahead of time that the integral one is trying to compute actually exists.
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One wants an integration-by-parts theorem that includes the integrability of
f ′(x)g(x) as part of its conclusion, not as part of its hypothesis.

Before we give our counterexample to the naive interpretation of the inte-
gration by parts formula, we point out that the formula holds if either f ′ or
g′ is continuous. For instance, if f ′ is continuous, then (since g is continuous)
the product f ′g is continuous; but then the function f ′g must have an an-
tiderivative h, and consequently the function fg′ must have an antiderivative
too, namely fg − h. So any counterexample to the naive interpretation of
integration by parts must feature differentiable functions f, g whose deriva-
tives are not continuous, such as the famous function x2 sin 1/x (extended to
a function on all of R by continuity) and its relatives. Moreover, it will not
do to let f and g be the same function of this sort, since the function ff ′

always has an antiderivative, namely 1

2
f 2.

Our counterexample is the pair of functions

f(x) =







x2 sin
(

1

x4

)

, x 6= 0

0, x = 0

and

g(x) =







x2 cos
(

1

x4

)

, x 6= 0

0, x = 0

on the interval [0, 1]. Both functions are continuous on [0, 1] and differentiable
on [0, 1]. Indeed, if we consider f and g as defined above to be defined on all
of R, both functions are differentiable everywhere; for, away from 0 we can
use the chain rule, while at 0 we have |(f(h) − f(0))/(h − 0)| = |f(h)/h| ≤
|h2/h| = |h| so that f ′(0) = limh→0(f(h) − f(0))/(h − 0) = 0, and likewise
g′(0) = 0. Obviously, the integral

1
∫

0

[f(x)g(x)]′dx

exists. However, we will show that both integrals

1
∫

0

f ′(x)g(x)dx and

1
∫

0

f(x)g′(x)dx
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are divergent. It suffices to show that the first integral is divergent. For
x 6= 0,

f ′(x) = 2x sin

(

1

x4

)

− 4x2 cos

(

1

x4

)

1

x5
.

The first term in this representation of f ′(x) is continuous, and g(x) is con-
tinuous, so their product is continuous and therefore integrable. So, we focus
on the second term times g(x), namely

−4

1
∫

0

x2 cos

(

1

x4

)

1

x5
g(x)dx = −4

1
∫

0

x4 cos2

(

1

x4

)

1

x5
dx

=

1
∫

0

x4 cos2

(

1

x4

)

d

(

1

x4

)

.

After the substitution

u =
1

x4

the integral turns into

−

∞
∫

1

1

u
cos2(u)du

(with the minus sign coming from the interchange of upper and lower limits
of integration). To show that this integral diverges, let k be a positive integer.
Then for every u in the interval [2πk − π

4
, 2πk] we have

cos2(u) ≥
1

2
and

1

u
≥

1

(2πk)
.

Therefore,

∞
∫

1

1

u
cos2(u)du ≥

∞
∑

k=1

2πk
∫

2πk−
π

4

1

u
cos2(u)du ≥

∞
∑

k=1

1

(2πk)

1

2

π

4
=

1

16

∞
∑

k=1

1

k
= ∞

This completes the proof.
Our analysis shows that the (improper) definite integrals

∫

1

0
f ′(x)g(x) dx

and
∫

1

0
f(x)g′(x) dx do not exist. This in turns shows that the functions
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f ′(x)g(x) and f(x)g′(x) do not have antiderivatives on [0, 1]. For, if these
functions had antiderivatives, the fundamental theorem of calculus would
yield finite values for the definite integrals.

We have shown that the functions f ′g and fg′ are not integrable over
[0, 1]. It is worth noting that |f ′| and |g′| are not integrable over [0, 1] either,
as can be shown by a similar method. On the other hand, the function
f ′ is integrable over [0, 1] in the sense that the improper Riemann integral
∫

1

0
f ′(x)dx exists: for all ǫ > 0 the Fundamental Theorem of calculus implies

∫

1

ǫ
f ′(x) dx = f(1)− f(ǫ), which converges to f(1)− f(0) as ǫ → 0, implying

that
∫

1

0
f ′(x) dx exists and equals f(1)− f(0). Likewise g′ is integrable over

[0, 1].
The following three pictures (created with the help of Mathematica) il-

lustrate what is going on: they depict the (truncated) graphs of f , f ′, and
−f ′g (we show −f ′g rather than f ′g so that the function will be non-negative
rather than non-positive). The continuous function f is integrable, and the
discontinuous function f ′ is integrable because its oscillations balance out,
but the non-negative function −f ′g is non-integrable.
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Some might be inclined to say that our example is actually a vindication
of an extended integration by parts theorem that asserts, as important spe-
cial cases, that if

∫

b

a
f ′(x)g(x) is ∞ then

∫

b

a
f(x)g′(x) is −∞ and vice versa

(and likewise with the signs reversed), and that if either of these integrals
“diverges by oscillation” (as in the case for the functions f, g on [−1, 1] given
by x2 sin(1/x4), x2 cos(1/x4) on [0, 1] and −x2 sin(1/x4), −x2 cos(1/x4) on
[−1, 0], respectively) then so does the other. However, to the extent that one
might be inclined to treat the integration by parts formula as implicitly as-
serting that the integrals are well-defined, our example provides a corrective.

Is this corrective needed? We have not found any calculus texts that
present a mistaken statement of the integration by parts theorem, but we
have found some widely-used web sites that do so (e.g.: “Let u and v be
differentiable functions, then

∫

uv′dx = uv −
∫

u′vdx”). More common are
books and web-sites that present the integration by parts formula and give
examples without specifying the conditions under which the formula applies.
A provocative treatment of other pedagogical aspects of the integration by
parts theorem is [2].

For a more advanced course (an honors calculus class or an introduc-
tory real analysis class), the example can be used to motivate the notion of
bounded variation, since the lack of bounded variation of the derivatives of
the functions near the origin is the source of the problem. We also mention
that, in lieu of adopting the hypothesis that f and g are continuously dif-
ferentiable, one might require that f be Riemann-Stieltjes integrable with
respect to dg. Then it can be shown that the integration by parts formula
(where the integrals now are Riemann-Stieltjes integrals) is valid, and it is
part of the conclusion that g will be Riemann-Stieltjes integrable with respect
to df (see [1]).
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Finally, we mention that if the functions f ′ and g′ are assumed to be in-
tegrable in the sense that

∫

1

0
f ′(x) dx and

∫

1

0
g′(x) dx exist as strict Riemann

integrals (and not just as improper Riemann integrals), then the conclusion
of the integration by parts theorem applies. Indeed, we only need to know
that at least one of f ′ and g′ is Riemann integrable. For, Lebesgue’s Theorem
states that a (measurable) function is Riemann integrable if and only if it
is bounded and its set of discontinuity has Lebesgue measure zero. If g is
continuous and f ′ is Riemann integrable (i.e. it is bounded and its set of dis-
continuity has Lebesgue measure zero), then so is f ′g, and the integration by
parts theorem applies. Hence it is an essential feature of our counterexample
that the functions f ′ nor g′ are not just discontinuous but also non-integrable
in the Riemann sense.

This work was stimulated by conversations with the honors freshman
calculus class at UMass Lowell, and also benefited from conversations with
Lee Jones of UMass Lowell (who found a different counterexample), Zbigniew
Nitecki of Tufts University, and two anonymous referees of an earlier version
of this article.
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