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1 Definition of the (1,4) Sequence

We let s; = y and s; = x and define

n— 1
Sp = Snoat ] for n odd (1)
Sn—2
4
1
ST for n even (2)
Sp—2

If we let x = y = 1, and call this sequence s, (1, 1), the first few terms are:
1,1,2,17,9, 386, 43,8857, 206, 203321, 987, 4667522, 4729, . ..

Editing out the 1’s and splitting this sequence into two, we get sequences:

an = 2,9,43,206,987,4729 (3)
by 17,386, 8857, 203321, 4667522 (4)

Furthermore, we can run this sequence backwards and continue the sequence:

...,386,9,17,2,1,1,2,3,41, 14,937, 67, 21506, 321, 493697, 1538, 11333521, 7369 . . .

whose negative terms split into sequences

cn = 2,41,937,21506, 493697, 11333521 (5)
d, = 3,14,67,321,1538,7369 (6)

It turns out that this sequence {s,(1,1)} ( {sn(x,y)} ) has a combinatorial
interpretation as the number (weighted number) of perfect matchings in a se-
quence of graphs. Those graphs are given in the next two pages for several
values. Notice that there are four flavors of graphs, one for each of the above
four sequences (i.e. for an, by, ¢,, and d,,). Notationally speaking, I will let G,
be the graph associated to s,.
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Notice that graph associated to a,41 can be inductively built from the graph for
an by adding two squares, one octagon, and one arc. The same is true for the
sequence of d,’s. In fact, if one assumes that the graphs associated with d,, are
“negative” then one can construct a; from d; by “adding” two squares and an
octagon. The negative square and octagon cancels with the positive square and
octagon, leaving only a square for the graph of a;. Comparing graphs with equal
numbers of octagons, there is a nice reciprocity between so, 43 and s_g,41.

Similarly, b,4+1 and ¢,4+1 are constructed from b, and ¢, (resp.) by adding a
complex of an octagon, two squares and an arc on both sides. Therefore there
is also a reciprocity between sg,49 and s_g,4+9. Hence the reciprocity extends
to one between s,,12 and s_,, 1o for all integers m.

Remark 1 These graphs can be inductively built and satisfy a nice reciprocity,
two properties reminiscent of the fibonacci numbers and its associated graphs.
Additionally, the sequence of every-other fibonacci number is given by the recur-
rence fnfn_2 = f2_; + 1 for all n. Perhaps any sequence of the form

ai +_1
In = In=1T 2 for noodd
gn—2
_ 9271"‘1 f
= =——— for n even
9n—2

has a combinatorial interpretation as a sequence of graphs that can be built
inductively and satisfy a nice reciprocity.

Remark 2 I also note that the cluster algebra associated with the (1,4) sequence
can be associated to a Kac-Moody Algebra (Infinite Dimensional Lie Algebra) of
affine type. The nice symmetry and periodicity of this sequence of graphs might
be due to the fact that the associated Kac-Moody Algebra is affine (as opposed
to hyperbolic or indefinite type).

Remark 3 To see some other examples of “affine” cluster algebras, look at
sequences built by the recurrence gngn—rk—1 = 919k + 1 as explored in my article
about spines (found on the REACH website). These have rank k + 1 and can
also be built inductively from buliding blocks. They seem to correspond to the

Kac Moody affine algebras of type Al(l).

3 Weighted Version of these Graphs

One can also give these graphs weights and then s, (z,y) gives rise to a sequence
of Laurent polynomials which again have a combinatorial interpretation related



to these graphs. Recall that a Laurent polynomial is a rational function with a
single monomial as the denominator. Given a Laurent polynomial

Pn x?

Sn (xa y) = 1.o<<:tysyq)

and the graph G,,, P,(z,y) is the weighted number of perfect matchings in G,
and the graph G,, consists of oct octagons, sq squares and additional arcs. To
construct these weighted graphs, we take the graphs G,, and assign weights such
that each of the squares have one edge of weight x and three edges of weight
1 while the octagons have weights alternating between y and 1. Also the extra
arcs will be given weights of x.

As an example, consider the following close-up of the graph associated to sig.

The graph associated to sig.

The vertical and horizontal edges colored in green are given weight x, the diag-
onal edges marked in red are given weight y, and the arcs are given weight x.
All other edges are given weight 1.

4 Proofs

For n # 1 or 2, s, = Pn/ﬂc“tysq. The base cases asserting that P_q, Py, Ps,
and P count the number of weighted matchings in graphs G_1, Gy, Gz and G4,
respectively, can be checked by inspection. Thus the proof that P, counts the
number in G, for all n will be proven by verifying the two recurrences. First
we will prove

Py, + 2?3yt = Py Py, (7)

We will create two new graphs, first we will take G2, 1 and reflect it horizon-
tally and call this new graph Fb,_1. If n is odd, we also reflect it vertically.
Second, we will transform Ga,41 by reflecting it vertically if n is even, and then
rotating an outside square for any n. We will call this new graph Ha, ;1. These



reflections and transformations will not change the number (or weighted num-
ber) of matchings. Thus Py, will equal the weighted number of matchings in
the graph Fb5,_1 or for that matter Hay,_1.

The graph Go, can be decomposed
Goy, =I5, 1 U Hyp 11 Umaddle arc

where Fy,_1 and Ha, 1 are joined together on an overlapping edge. See picture
below for example with G1g.

A matching of Fy,,_; and a matching of Hs,, 11 will meet at the edge of incidence
in one of the following four ways:

N
-

In the first three cases we can bijectively associate a matching of Fa,,—1 U Hopy1
to a matching of G5, by removing an edge of weight one on the overlap. In



the last case, all the edges have nontrivial weight and cannot all appear in a
matching of G5, and thus we have a problem. Furthermore, we have neglected
matchings of G, that utilize the middle arc.

More formally, we have a bijection between {matchings of (G, — middle arc) }
and the set {matchings of F5,_1 U Ha,11} — {pairs with nontrivial incidence}.
Thus proving Py, + 22" 3y4"=4 = Py, 1 P, 1 reduces to proving the following

claim.

Lemma 1 The weighted number of matchings in Go, which uses middle arc is

2?73y An=4 Jess than the number of matchings in Fa,—1 U Ha,y1 which have

nontrivial incidence.

Proof. (forn >1) .
Let Ps,—1 = the weighted number of matchings in Gs,_1, which is graph
Gon_1 — outside square.

s (O r

Gg ]

Then by analyzing (see next page) what other edges nontrivial incidence (or use
of the middle arc) forces, we arrive at the expressions

(2(x + 1) Pan—s + 29" Poy_5)y* Pan—1 (8)
z(z + 1)y4P2n_3P2n_1 + x2y8P22n_3 (9)
for the weighted numbers of matchings of Ga,,—1 U Ga,+1 with nontrivial inci-

dence (and the weighted number of matchings of Ga, using the middle arc),
respectively.
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So after the bijections in the first three cases of incidence, it suffices to prove
that (8) = (9) + 22" 3y*"~1. Rearrangeing this equality, we reduce this to
proving



.’E(.’E + 1)y4(P2n—3152n—1 — Pgn_lpgn_g) = (ZL' + 1)3:2”741/4”74 (10)
1‘2y8(P22n_3 _ P2n—1P2n—5) — 1_2n—4y4n—4 (11)

and after dividing to normalize, the equations become

Pay—3Psy—1 — Poy1 Papyg = 2 Py =8 (12)
P,y — Py 1Py = 2® Oytn—12 (13)

We prove equation (13) by making superimposed graphs involving Py,_1 and
Py, _5 and comparing it to superimposed graphs of ]522n_3. Analogous to the
analysis that allowed us to reduce from recurrence (7) to Lemma 1 by forming
incidences and a bijection in the three of the case and reduce our counting to
the case of nontrivial incidence or use of the middle arcs.

GOl



(15)

GO QL
DOPOTC

After accounting for the forced edges, we find the following two expressions:

ﬁ)22n_51'(13 + 1)y4 + pgn_gpgn_7$y4 (14)
Poy 7 Pop_sa(z 4 1)y* + P2, xy™. (15)

So ]522n_3 — Py 1Py s = x2y4(]522n_5 — Py, _3Py,_7) and so after a simple
check of the base case we get equation (13) by induction.

Since we can combine Ps,_5 and Ps,_1 (as well as Py,_1 and ]52”_3) into a
superimposed graph, again just like earlier, we can form a bijection between
these two superimposed graphs in the case of three of the incidences and reduce
it to the case of nontrivial incidence.
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(16)

(17)

[l

In the case of nontrivial incidence, after highlighting the edges that are forced,
the weights of the two superpositions are

11



(x(x + l)Pgn_5 —|— x2y4p2n—7)y4[32n—3 (16)
@(x + 1)y* Pon—sPan—3 + 2°y* Py, _; (17)

These equations are just (8) and (9) with (n — 1) plugged in place of n, so by

induction, their difference is 22" ~%y*"~# as required. This proves equation (12).

Since the proof of equations (12) and (13) was sufficient, thus recurrence (7) is
proved for n > 1. O

By a little tweaking, analogous analysis proves Lemma 1, hence recurrence (7)
for the case n < 1. We define é_2n+1 to be the same as é2n+3 by reciprocity.
(i.e. G_2n+1 is graph G_9,-1 U inside square.) Notice the similarity in
definition. We will find for n < 1, the following two expressions in place of
(8) and (9) for the weighted number of matchings of G_5,_1 U G_2,41 with
nontrivial incidence (G_s, using the middle arc) :

:cy4]5_2n+1(P_2n+3 + -Tp—Qn—o—S) (18)
xy4P—2n+3(P—2n+1 + Z'P_2n+3)- (19)

These also reduce to expressions like (12) and (13), with —2n + k replacing
2n — k, hence the recurrence is true for all n # 1.

5 Second Recurrence
Now we prove the recurrence
Py i 8y8n 12 = Py oDy (20)
We first mention two key observations.
Lemma 2 Py, 3Py, 41 = P}, | + 22" 5y =8yt + (z +1)2).

To prove this quadratic (bilinear) recurrence, we superimpose Ga,_3 centered
on top of Ga,41 and compare it to a decomposition involving two copies of
Gop—1 off-set to the left and right.

Lemma 3 Py, = (v* + (2 + 1)%) Py 1 — 2%9y* Payy_3.

This proof is a simple inclusion-exclusion argument relying on the fact that
Gon4s is inductively built from Ga,41 by adding an octagon, an arc, and two
squares.

Using the first recurrence (7), we can rewrite the right-hand side of (20) as

12



(Pan—1Pop—g — 2" Py " 8)(Pyyy 1 Popyy — 22" 3yt %) (21)

which reduces to

P22n71(P2n+1P2n—3) _ P2n—lx2n_5y4n_8(P2n+1 + m2y4P2n—3) + l‘4n_8y8n_12. (22)

Using Lemma 2 and Lemma 3, this equation simplifes to Py, | + 24788712,
Thus the recurrence (20) is proved. O

Like before, we can extend this result to case n < 1 and thus recurrence (20) is
proved for all n £ 1. With the defining recurrences verified, it follows from the
base cases that s, = P, /x°*y*? where P, is the weighted number of matchings
in graph G,,.

Remark 4 Since the numerator is the weighted number of matchings, s, is a
positive Laurent polynomial for all n.

13



