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Abstract. In [4], Jockusch, Propp, and Shor proved a theorem descibing

the limiting shape of the boundary between the uniformly tiled corners of a

random tiling of an Aztec diamond and the more unpredictable ’temperate

zone’ in the interior of the region. The so-called arctic circle theorem made

precise a phenomenon observed in random tilings of large Aztec diamonds.

Here we examine a related combinatorial model called groves. Created by

Carrol and Speyer [1] as combinatorial interpretations for Laurent polynomi-

als given by the cube recurrence, groves have observable frozen regions which
we describe precisely here via asymptotic analysis of generating functions bor-

rowed from Pemantle [6].

1. Introduction

Groves came into existence as combinatorial interpretations of rational functions
generated by the cube recurrence:

fi,j,kfi−1,j−1,k−1 = fi−1,j,kfi,j−1,k−1 + fi,j−1,kfi−1,j,k−1 + fi,j,k−1fi−1,j−1,k,

where some initial functions are specified. Typically, fi,j,k := xi,j,k for a certain
choice of (i, j, k) ∈ Z3 called the initial conditions. Fomin and Zelevinsky [3] were
able to show that for arbitrary initial conditions the rational functions generated
by the cube recurrence were in fact Laurent polynomials in the initial conditions.
However, they were unable to prove positivity of all coefficients with their cluster
algebra methods [OR DID THEY PROVE POSITIVITY BUT NOT THAT THE
COEFFICIENTS WERE ALL EQUAL TO ONE?]. The advent of groves by Carrol
and Speyer [1] solved the problem however, by showing that each term of a Laurent
polynomial generated by the cube recurrence encodes a unique grove (depending
on the initial conditions). In this paper we will only examine the family of groves
on standard initial conditions as described below.1

Before getting into the details of groves, let us first describe the motivation for
this paper: random domino tilings of large Aztec diamonds. An Aztec diamond
of order n consists of the union of all unit squares with integer vertices contained
in the region {(x, y) : |x + y| ≤ n + 1. A random domino tiling of a large Aztec
diamond consists of two qualitatively different regions. As seen in Figure1, the
dominos in the corners of the diamond are frozen in a brickwork pattern, whereas
the dominoes in the interior have a more random, temperate behavior. It was
shown in [4], [2], and [5] that asymptotically, the boundary between the frozen and
temperate regions in a random tiling is given by the circle inscribed in the Aztec
diamond. Since everything outside the circle is expected to be frozen, it is referred
to as the arctic circle.

1Herein we will invoke some of the basic properties of groves without proof. For such arguments,
as well as a general treatment of groves and the cube recurrence, the reader is referred to [1].
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Figure 1. A random domino tiling of an Aztec diamond of order 64

In this paper we shall see that groves on standard initial conditions exhibit a
very similar behavior. A grove, however, is not a type of tiling. In fact, as the
name may suggest, a grove is a collection of trees. As we shall view them, groves
are forests on a triangular lattice satisfying certain connectivity conditions on the
boundary. We will show that outside of the circle inscribed in the triangle, the trees
of a large random grove line up uniformly.
Despite their superficial differences, groves and random domino tilings of Aztec

diamonds are linked in a way other than by their asymptotic behavior. Recall that
groves are encoded in terms of a Laurent polynomial given by the cube recurrence.
There is a more general form of the cube recurrence:

fi,j,kfi−1,j−1,k−1 = αfi−1,j,kfi,j−1,k−1 + βfi,j−1,kfi−1,j,k−1 + γfi,j,k−1fi−1,j−1,k

where α, β, γ are constants. If α = β = γ = 1 we have the original form of the
cube recurrence from whence come groves. If α = β = 1 and γ = 0, we have (after
re-indexing), the octahedron recurrence:

fi,j,k+1fi,j,k−1 = fi−1,j,kfi+1,j,k + fi,j−1,kfi,j+1,k,

with which we may encode tilings of Aztec diamonds. How the cube recurrence
and the octahedren recurrence affect asymptotic behavior will be seen later.

1.1. Groves on standard initial conditions. The standard initial conditions
of order n specify a vertex set I(n) = C(n) ∪ B(n) where C(n) = {(i, j, k) ∈
Z3| − n − 1 ≤ i + j + k ≤ −n + 1, i, j, k ≤ 0} and B(n) = {(i, j, k) ∈ Z3|i +
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j + k < −n − 1, i, j, k ≤ 0 and i, j, or k = 0}. We draw its projection as shown
in Figure ?? for the case n = 4. One way to generate all groves of order n is
to set fi,j,k := xi,j,k for all (i, j, k) ∈ I(n), and compute f0,0,0. Each term in
the resulting Laurent polynomial defines a grove as follows. Let G(n) be the the
graph on the vertex set I(n) where vertex (i, j, k) has as its neighbors the vertices
I(n) ∩ {(i± 1, j ± 1, k), (i± 1, j, k ± 1), (i, j ± 1, k ± 1)}.

(-2,0,0)

(-1,0,0)

(-1,-1,0)(0,-2,0)

(0,-1,0)

(0,-1,-1) (-1,0,-1)
(-1,-1,-1)

(0,0,-1)

(0,0,-2)

Figure 2. The standard initial conditions of order 1

The terms in f0,0,0 are Laurent monomials of the form

m(g) =
∏

(i,j,k)∈I(n)

x
deg(i,j,k)−2
i,j,k .

Then the grove defined by m(g) is the unique graph where each vertex (i, j, k) in
I(n) has degree deg(i, j, k). For example, f0,0,0 on I(1) is

x−1,−1,0x0,0,−1

x−1,−1,−1
+
x−1,0,−1x0,−1,0

x−1,−1,−1
+
x0,−1,−1x−1,0,0

x−1,−1,−1
,

and the respective groves are shown in Figure 3.

Figure 3. The three groves of order 1.

For a more interesting example, one term of the polynomial f0,0,0 on I(4) is

x−3,0,−2x−2,−1,−1x−1,−3,0x0,−2,−2

x−3,−1,−2x−2,−3,−1x−1,−2,−2
;

its corresponding grove, g, is shown in Figure 4. The grove has interesting connec-
tivity properties; in fact they are the determining characteristics of groves. Every
vertex on the boundary of C(n) (where cubes have been pushed down) is con-
nected to another vertex on the boundary of C(n) if and only if those vertices are
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equidistant to the nearest corner of the grove. Groves are acyclic - every connected
component of a grove is a tree.

Figure 4. A grove g of order 4, superimposed on I(4)

Notice that there are two types of edges: long edges and short edges. It is shown
in [1] that every vertex in B(n) (the boring set) has degree 2 and only uses its short
edges. As a result, there are only finitely many long edges, and these determine the
grove. This observation leads to a more convenient way of looking at groves.

1.2. Simplified groves. We begin by constructing a modified form of the cube
recurrence. Let ai,j , bk,j , ci,k be long edge variables. The variable ai,j is the label
for the edge between vertices (i, j − 1, k + 1) and (i− 1, j, k + 1), bk,j for the edge
between (i − 1, j, k + 1) and (i, j, k), and ci,k for the edge between (i, j, k) and
(i, j − 1, k + 1). We rewrite the cube recurrence as follows:

fi,j,kfi−1,j−1,k−1 = bi,kci,jfi−1,j,kfi,j−1,k−1 + ci,jaj,kfi,j−1,kfi−1,j,k−1

+aj,kbi,kfi,j,k−1fi−1,j−1,k

As we said, the long edges determine the grove, so rather than setting fi,j,k := xi,j,k
for (i, j, k) ∈ I(n), we set fi,j,k := 1 for (i, j, k) ∈ I(n). Then f0,0,0 is simply a
polynomial in the edge variables a, b, c. Each term describes a unique grove, and
we still produce every grove. This form of the cube recurrence is called the edge
variables version. We can draw a simpler picture of our groves by ignoring all short
edges and all of the vertices incident with them. In other words, specify a subset
of the standard initial conditions of order n, called the simplified initial conditions:
I ′(n) = {(i, j, k) ∈ Z3|i + j + k = −n, i, j, k ≤ 0} ⊂ I(n). We now represent our
groves as graphs on this vertex set a triangular lattice shown in Figure 5. Also
in Figure 5 we see the same grove from Figure 4, but with only the long edges
included. In terms of edge variables, this grove is given by

a0,0a0,1a0,2a1,0a1,1a2,1b0,0b0,1c0,0c0,1c1,0c2,0.
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Figure 5. I ′(4), the simplified initial conditions of order 4, and a
simplified grove.

Another modification of the cube recurrence that we shall like to use is the
edge-and-face variables version. In the original version of the cube recurrence, the
variables xi,j,k such that i+ j+ k = −n+1 were vertex variables. In the simplified
picture, we call them the face variables of order n. Rather than setting fi,j,k := 1
for all (i, j, k) in I(n), we give the face variables their formal weights. That is, we
set fi,j,k := 1 for (i, j, k) ∈ {(i, j, k) ∈ Z3| − n − 1 ≤ i + j + k ≤ n, i, j, k ≤ 0}
and fi,j,k := xi,j,k for (i, j, k) ∈ {(i, j, k) ∈ Z3|i + j + k = −n + 1, i, j, k ≤ 0}.
Generating f0,0,0 using these initial conditions, we get a Laurent polynomial in the
edge and face variables. The vertices of the simplified initial conditions can be seen
as forming n(n + 1)/2 downward-pointing equilateral triangles, each with top-left
vertex (i, j−1, k+1), top-right vertex (i−1, j, k+1), and bottom vertex (i, j, k). The
face variables then correspond to each of these downward-pointing triangles. The
triangle with (i, j, k) as its bottom vertex has face variable xi,j,k+1. The exponent
of the face variable is −1, 0, 1, corresponding to whether the downward-pointing
triangle has, respectively, two, one, or zero edges present (recall that groves are
acyclic). Of course, the face variables don’t tell us anything new about a particular
grove, but they will be useful later in deriving probabilities of edges being present
in random groves.
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1.3. Grove shuffling and frozen regions. We have given one definition for what
a grove is, and how they may be generated. The methods and notation introduced in
the previous section will be very helpful for later proofs. However, there is another
tool we will like to use; an algorithm called grove shuffling (or cube-popping – see
[1]). Grove shuffling not only gives a purely combinatorial definition of a grove,
but also a method for generating groves of order n uniformly at random. For proof
that grove shuffling does indeed give rise to the same objects as the terms of the
Laurent polynomials given by the cube recurrence, see Carrol and Speyer [1]. Here
we will only include a description of the algorithm and proof that the generation
of groves of order n is uniform.

x x'

a

bc
a'

b' c'

Figure 6. Grove shuffling.

Grove shuffling can be thought of as a local move on the downward-pointing
triangles according to whether they have zero, one, or two edges present. See Fig-
ure 6. Let x be a generic downward-pointing triangle with possible edges a, b, c as
shown, and let x′ be a generic upward-pointing triangle with possible edges a′, b′, c′
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as shown. There are three configurations of x with two edges: ab, ac, bc. Grove
shuffling takes each of these triangles and replaces them with an upward-pointing
triangle x′ having none of its possible edges present (x and x′ are concentric).
There are three configurations of x with exactly one edge: a, b, c. Each of these is
replaced by the upward-pointing triangle x′ with only the parallel edge: a′, b′, c′,
respectively present. Lastly, there is one configuration of x with none of its pos-
sible edges present. This triangle is replaced with the upward-pointing triangle x′

containing any two of its three possible edges: a′b′, a′c′, b′c′, chosen randomly with
probability 1/3. After we have turned every downward-pointing triangle into an
upward-pointing triangle, we add three new vertices to the corners of the grove so
that we may shuffle again.
There is a unique grove of order 1: it has one downward-pointing triangle with

zero edges. It is a basic fact that there are 3b
k2

4 c groves of order k. With this
information we can prove a theorem about the uniformity of grove shuffling.

Theorem 1. Beginning with the unique grove of order one, any given grove of order

k will be generated after k− 1 iterations of grove shuffling with probability 1/3b k2

4 c.

That is, grove shuffling can be used to generate groves uniformly at random.

Proof. Clearly the statement holds for k=2. Suppose that the claim holds for some
k ≥ 1. We would like to know the probability of an arbitrary grove of order k + 1
being generated. Fix such a grove and call it G(k + 1). Only a certain subset of
the groves of order k can be shuffled to become G(k+1). Call this set the shuffling
pre-image of G(k + 1), denoted S−1(G(k + 1)). Let G(k) ∈ S−1(G(k + 1)). Let a
be the number of downward-pointing triangles in G(k) with zero edges, let b be the
number with exactly one edge, and c be the number of downward-pointing triangles
with two edges.
The order of S−1(G(k + 1)) is 3c. Each pre-image is gotten by making different

choices of the the two edges appearing in each of the c downward-pointing triangles
of G(k). So since we have supposed the probability of generating a particular grove
of order k to be uniform, the probability is

3c

3b
k2

4 c

that after k shuffles we produce a grove in S−1(G(k + 1)).
Let S(G(k)) = S(S−1(G(k+ 1))) be the set of groves of order k+ 1 that can be

obtained by shuffling a grove in S−1(G(k + 1)). The order of S(G(k)) is 3a. This
is because in each of the pre-images there are a downward-pointing triangles with
no edges present, and every such triangle can be shuffled to any of three upward-
pointing triangles. Furthermore, the only edges where the groves of S−1(G(k+1))
differ will be annihilated upon shuffling. So there is a 1/3a chance that one of the
pre-images of G(k+1) will actually shuffle into G(k+1). Therefore the probability
that k + 1 iterations of grove shuffling yields G(k + 1) is

1

3b
k2

4 c
· 1

3a−c
.

Now we claim that a − c = b k+1
2 c. If so, then the probability computed above is

equal to
1

3b
(k+1)2

4 c
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as desired.
Let us make some basic observations from [1] or by easy induction. First, a +

b + c = k(k + 1)/2; the total number of downward-pointing triangles in any grove

of order k. Secondly, b+2c = b k2

2 c; the total number of edges in any grove of order
k. Then a− c = k(k + 1)/2− b k2

2 c = bk+1
2 c, and the theorem is proved. ¤

We now give a definition that will allow us to describe the phenomenon that we
hope to make precise in section 2. It may not be obvious, but when a downward-
pointing triangle with one edge is shuffled, the edge in the corresponding upward-
pointing triangle has the same name. That is, edges are indexed relative to the
corners perpendicular to them. Horizontal edges are indexed relative to the bottom
corner, and the diagonal edges are indexed relative to the top-right and top-left
corners. In this way we can think of grove-shuffling as more akin to domino shuffling
[7]. Rather than replacing edges with parallel edges, we “slide” edges toward the
corners along perpendicular lines. When a downward-pointing triangle has two
edges, we remove both of those edges because they “annihilate” each other. When
a downward-pointing triangle has no edges, we create two new ones randomly.

Figure 7. Frozen regions of a random grove of order 12

With this viewpoint, we define an edge to be frozen if cannot be annihilated
under any further iterations of grove shuffling. Equivalently, an edge (horizontal
without loss of generality) is frozen if and only if all of the below[MAKE ’BELOW’
PRECISE IN TERMS OF COORDINATES] it are frozen. In figure() all the high-
lighted edges are frozen. We conclude this section by examining a picture of a large
random grove generated by grove shuffling. In Figure 8, we see that outside of a
certain region, all of the edges are parallel. Moreover, the boundary between the
less uniform interior and the frozen regions in the corners seems to approximate
a circle. Proving that this boundary approaches a circle in the limit is the main
goal of this paper. We will speculate on variance of the boundary shape as well as
interior statistics in section().
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Figure 8. A grove on standard initial conditions of order 100

2. The arctic circle theorem

For any n, we can scale the initial conditions so that they resemble an equilateral
triangle with sides of length

√
2. We will show that outside of the circle inscribed in

this triangle, there is homogeneity of the edges in an appropriately scaled random
grove of order n, with probability approaching 1 as n → ∞. Specifically, we will
examine the limiting probability of finding a particular type of edge in a given
location outside of the inscribed circle.

2.1. Edge probabilities. Let pn(i, j) = p(i, j, k), k = −n − i − j − 1, be the
probability that an(i, j) = a(i, j, k), the horizontal edge on triangle xi,j,k+1, is
present in a random grove of order n. Define En(i, j) = E(i, j, k + 1) to be the
expectation of the exponent of the face variable xi,j,k.

2 We will prove the following
formula for finding the edge probability pn(i, j).

Theorem 2. pn(i, j) = pn−1(i, j)+
2
3En−1(i, j). Inductively, pn(i, j) =

2

3

n−1
∑

l=1

El(i, j).

Proof. We will first derive a relation between pn(i, j) and pn−1(i, j). Define qn(k, i),
rn(k, j), k = −n− i− j− 1, to be the respective probabilities of the diagonal edges
bn(k, i) and cn(k, j) being present in triangle xi,j,k+1; see figure ().

2If k > 0 then define E(i, j, k) = 0.
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In order to simplify notation, we let [MAKE THIS A TABLE]

p = pn−1(i, j) q = qn−1(k, i) r = rn−1(k, j)
a = an−1(i, j) b = bn−1(k, i) c = cn−1(k, j)
P = pn(i, j) Q = qn(k, i) R = rn(k, j)
A = an(i, j) B = bn(k, i) C = cn(k, j)

Let pr(∗), where ∗ is a subset of {a, b, c}, be the probability that a random grove
contains that set of edges and not its compliment. Define Pr(∗) similarly. Some
observations that come directly from grove shuffling: [MAKE THIS A TABLE]

• pr(ab) = pr(ac) = pr(bc)
• pr(abc) = 0
• pr(∅) + pr(a) + pr(b) + pr(c) + pr(ab) + pr(ac) + pr(bc) = 1
• p = pr(a) + pr(ab) + pr(ac)
• q = pr(b) + pr(ab) + pr(bc)
• r = pr(c) + pr(ac) + pr(bc)
• Pr(A) = pr(a)
• Pr(B) = pr(b)
• Pr(C) = pr(c)
• Pr(AB) = Pr(AC) = Pr(BC) = 1/3pr(∅)

We will now deduce P = pn(i, j).

P = Pr(A) + Pr(AB) + Pr(AC)

= pr(a) + 2/3pr(∅)
= pr(a) + 2/3(1− pr(a)− pr(b)− pr(c)− pr(ab)− pr(ac)− pr(bc))

= pr(a) + 2/3(1− p− q − r + pr(ab) + pr(ac) + pr(bc))

= pr(a) + 2/3(pr(ab) + pr(ac) + pr(bc)) + 2/3(1− p− q − r)

= pr(a) + pr(ab) + pr(ac) + 2/3(1− p− q − r)

= p+ 2/3(1− p− q − r)

Let x = xi,j,k+1 be the face variable of the downward-pointing triangle in ques-
tion. Notice that

En(i, j) = E(x)

= 1 · pr(∅) + 0 · (pr(a) + pr(b) + pr(c))− 1 · (pr(ab) + pr(ac) + pr(bc))

= 1− pr(a)− pr(b)− pr(c)− 2pr(ab)− 2pr(ac)− 2pr(bc)
= 1− p− q − r

Therefore, P = p+ 2/3E(x). In the coordinate system, we have

pn(i, j) = pn−1(i, j) + 2/3En−1(i, j) =
2

3

n−1
∑

l=1

El(i, j)

and the theorem is proved. ¤

2.2. A generating function. We now know that to compute the probability of a
particular edge being present in a random grove, it will be enough to compute the
expectations El(i, j). In this section we derive a generating function for computing
these numbers. We will also derive the generating function for the horizontal edge
probabilities.
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Let F (x, y, z) =
∑

i,j,k≥0

E(−i,−j,−k)xiyjzk be the generating function for the

expectations. We can write E(−i,−j,−k+1) = En(−i,−j), for n = i+ j+k when
convenient. First consider the uniformly weighted version of the cube recurrence:

fi,j,kfi−1,j−1,k−1 =
1

3
(fi−1,j,kfi,j−1,k−1 + fi,j−1,kfi−1,j,k−1 + fi,j,k−1fi−1,j−1,k)

Using this recurrence to calculate fi,j,k we will get each monomial weighted uni-
formly, so that if we set all the initial conditions equal to 1, fi,j,k = 1. If we want
the expectation of the exponent of the face variable x = xi0,j0,k0

, we need only
calculate the derivative of f0,0,0 with respect to this variable, then set all variables
equal to one. In other words,

E(i0, j0, k0) =
∂

∂x
f0,0,0|xi,j,k=1

Furthermore, we can calculate the intermediate expectations for (i′, j′, k′) ∈ I(n′)
with n′ < n by

E(i′, j′, k′) =
∂

∂x
fi′,j′,k′ |xi,j,k=1

(the proof of this only requires a re-labeling of vertices). With this in mind, let us
differentiate the weighted cube recurrence with respect to x:

f ′i,j,kfi−1,j−1,k−1 + fi,j,kf
′
i−1,j−1,k−1 =

1

3

(

f ′i−1,j,kfi,j−1,k−1 + fi−1,j,kf
′
i,j−1,k−1

)

+

1

3

(

f ′i,j−1,kfi−1,j,k−1 + fi,j−1,kf
′
i−1,j,k−1

)

+

1

3

(

f ′i,j,k−1fi−1,j−1,k + fi,j,k−1f
′
i−1,j−1,k

)

Now by setting xi,j,k = 1 for all (i, j, k), we get a linear recurrence for the expecta-
tions in question:

E(i, j, k) + E(i− 1, j − 1, k − 1) =
1

3
(E(i− 1, j, k) + E(i, j − 1, k − 1)) +
1

3
(E(i, j − 1, k) + E(i− 1, j, k − 1)) +
1

3
(E(i, j, k − 1) + E(i− 1, j − 1, k))

By making E(i, j, k) the coefficient of x−iy−jz−k, we can form the rational gen-
erating function in the variables x, y, z:

F (x, y, z) =
∑

i,j,k≥0

E(−i,−j,−k)xiyjzk

=
1

1 + xyz − 1
3 (x+ y + z + xy + xz + yz)

Now using the fact that p(i, j, k) = p(i, j, k + 1) + 2/3E(i, j, k), we can derive

the formula for G(x, y, z) =
∑

i,j,k≥0

p(−i,−j,−k)xiyjzk. If we define p(0, 0, 1) = 0,
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we have

G(x, y, z) =
∑

i,j,k≥0

(p(−i,−j,−k + 1) + 2/3E(i, j, k))xiyjzk

=
∑

i,j,k≥0

p(−i,−j,−k + 1)xiyjzk + 2
3
F (x, y, z)

= zG(x, y, z) +
2

3
F (x, y, z)

=
2F (x, y, z)

3(1− z)

Now we have two rational functions with which to calculate edge probabilities.

2.3. Asymptotic analysis. With our generating functions in hand, we can prove
our main theorem. First let us embed a triangle in three-space by T := {(x, y, z) ∈
R3|x, y, z ≤ 0, x + y + z = −1}. This is the triangle that we will scale I(n) to fit.
A point (x, y, z) ∈ T is outside of the inscribed circle (what will show is the arctic
circle) if and only if the angle between the vector (x, y, z) and vector (−1,−1,−1)
is greater than cos−1(

√

2/3).
Notice that for any point (x, y, z) outside of the inscribed circle, we can safely

increase two of the coordinates without wandering inside the circle, but increasing
the third coordinate moves us closer to the circle. Call any coordinate with the
property that it can be increased without moving into the arctic circle a small
coordinate.

Theorem 3 (Weak Arctic Circle). Let (x0, y0, z0) be a point in T outside of the
inscribed circle for which z0 is a small coordinate. Let (in, jn, kn), in + jn + kn =
−n− 1, be a sequence with nonpositive integer entries such that

lim
n→∞

1

n+ 1
(in, jn, kn) = (x0, y0, z0)

Then lim
n→∞

p(in, jn, kn) = pn(in, jn) = 0.

In other words, the theorem states that in the upper two regions of T outside
of the arctic circle, the probability of finding a horizontal edge goes to zero as the
order of a (scaled) random grove goes to infinity. By symmetry, we have that only
horizontal edges will be found in the lower region outside of the arctic circle, and
only the respective diagonal edges in the upper-left and upper-right regions outside
the circle.
The following lemma is the heart of the proof.

Lemma 1. Fix a point (x0, y0, z0) in T outside of the inscribed circle. Then there
are constants A,B,C such that

p(−i,−j,−k) = O(e−(Ai+Bj+Ck))

and Ax0 +By0 + Cz0 < 0.

Let us suppose the lemma is true and present the proof of the theorem.
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Proof of Theorem 3. By the lemma, p(in, jn, kn) = O(eAin+Bjn+Ckn), so we will
have that p(in, jn, kn)→ 0 if Ain +Bjn + Ckn → −∞. But

lim
n→∞

Ain +Bjn + Ckn = lim
n→∞

(n+ 1)

(

A
in

n+ 1
+B

jn
n+ 1

+ C
kn

n+ 1

)

= lim
n→∞

(n+ 1)(Ax0 +By0 + Cz0)

And since the lemma gives that Ax0 + By0 + Cz0 < 0, p(in, jn, kn) → 0 as n →
∞. ¤

To facilitate the proof of the lemma, we will use the following claim.

Claim 1. Let f(x, y, z) be an analytic function. Let r, s, t be positive real numbers
such that f(x, y, z) 6= 0 for |x| ≤ r, |y| ≤ s, |z| ≤ t. If

G(x, y, z) =
1

f(x, y, z)
=
∑

ai,j,kx
iyjzk,

then ai,j,k = O(r−is−jt−k).

Proof of Claim. We have

ai,j,k =
1

i!j!k!

∂

∂xi
∂

∂yj
∂

∂zk
F (x, y, z)|(0,0,0)

=
1

(2πi)3

∫

γ

∫

γ′

∫

γ′′

F (x, y, z)

xi+1yj+1zk+1
dxdydz

(γ = {|z| = t}, γ′ = {|y| = s}, γ′′ = {|x| = r})

≤ M

(2πi)3

∫

γ

∫

γ′

∫

γ′′

1

xi+1yj+1zk+1
dxdydz

(Since F (x, y, z) is bounded on the compact set γ × γ ′ × γ′′.)

= M
1

ri+1sj+1tk+1

In other words, ai,j,k = O(r−is−jt−k) and the claim is proved. ¤

Proof of Lemma. We now apply the claim to the edge probability generating func-
tion:

G(x, y, z) =
∑

i,j,k≥0

p(−i,−j,−k)xiyjzk

=
1

3
2 (1− z)(1 + xyz − 1

3 (x+ y + z + xy + xz + yz))

=
1

f(x, y, z)

We need to show that we can choose real numbers A,B,C so that

• Ax0 +By0 + Cz0 < 0
• f(x, y, z) 6= 0 for any (x, y, z) ∈ {(x, y, z) ∈ C

3 : |x| ≤ eA, |y| ≤ eB , |z| ≤
eC}

Let K be the set of all triples (A,B,C) satisfying the first criterion, and let L
be the set of all triples (A,B,C) satisfying the second. We need to show that if
(x0, y0, z0) lies outside of the circle inscribed in the triangle T , then K and L have
a nonempty intersection.
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If |x|, |y|, |z| are less than one, then f is nonzero. So if A,B,C are all less than
zero, then (A,B,C) ∈ L. Unfortunately, since x0, y0, z0 are all less than or equal
to zero, Ax0 + By0 + Cz0 cannot be negative. Somehow we must determine how
far we can stretch A,B,C while keeping f from vanishing. Because of the factor
(1− z) we will keep C < 0, and hope to push A or B greater than zero. We hope
to boil the problem down to a geometry exercise; that is, we will realize the sets K
and L as geometric objects.
Think of (x0, y0, z0) as a vector and let N be the normal plane to (x0, y0, z0)

passing through the origin. Then the set K is just the half space on the opposite
side of N . Describing the geometry of L is not as simple.
By forcing C < 0, we’ve avoided the zeros of f in the factor (1 − z), so our

main concern is with the zeros of g = f/(1− z). Rewrite g(x, y, z) as g(eA, eB , eC),
and consider the Taylor expansion of g near (A,B,C) = (0, 0, 0). Here, we get
g = AB + AC + BC+ higher powers of A,B,C. Then near (0, 0, 0), the set L
looks like the region inside the cone Co given by AB + AC + BC = 0 containing
(−1,−1,−1) and with C < 0.
If the angle between (x0, y0, z0) and (−1,−1,−1) is small, then K is far from L

as it is described above. As (x0, y0, z0) moves farther from (−1,−1,−1), the normal
plane N tilts closer to intersecting the half-cone containing L. We must determine
when it has tilted far enough that K and L might intersect.
Let θ be the angle between a vector (A,B,C) and (−1,−1,−1). If (A,B,C) is

on the cone Co, then we have the identity

(A+B + C)2 = A2 +B2 + C2.

Therefore,

(cos θ)2 =
〈(A,B,C), (−1,−1,−1)〉2
‖(A,B,C)‖2‖(−1,−1,−1)‖2

=
(−A−B − C)2

3(A2 +B2 + C2)

=
1

3

So we need to determine when the angle between the normal plane and (−1,−1,−1)
is less than cos−1(1/

√
3). If θ is the angle between (x0, y0, z0) and (−1,−1,−1),

then this condition means that θ > π
2 − cos−1(1/

√
3) = cos−1(

√

2/3). All the
vectors in the triangular region T with this property lie outside of the inscribed
circle. Hence, the lemma is proved. ¤

3. Further speculation on statistics of groves

We hope to apply more sophisticated asymptotic methods to determine statistics
for the region inside the arctic circle, the so called ’temperate region’ where behavior
is no longer uniform, but is not perfectly random either.
Another future examination is to apply the methods of growth models and statis-

tical mechanics to groves. In terms of its effect on the frozen region, grove shuffling
seems to be nearly isomorphic to some well-known growth models, most likely a
randomly-growing Young diagram.
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Both these methods were applied the study of asymptotic behavior of random
tilings of Aztec diamonds, and we hope that similar techniques will yield similar
results for groves, as they are in a sense cousins of Aztec diamond tilings.
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