
The Eight Rotors Puzzle

written by Jim Propp
for the Eighth Gathering for Gardner

(April 10, 2008 version)

Here’s a puzzle I know how to solve, but not how to build! If I tell you
all how to solve it, maybe one of you will have some clever ideas for how to
build it.

It’s one of those “How do you get this physical object from state A
to state Z (by means of moves of a specific sort)?” puzzles, but I don’t
know a good way to build the object so as to enforce the rules mechani-
cally; I’m hoping someone can think of a smart way to do this. (It would
also be possible to embody the rules in computer code; maybe one of you
will create a Java applet or a Mathematica Demonstrations program. You
can find existing Java applets that implement variants of this puzzle at
http://www.cs.uml.edu/∼jpropp/rotor-router-model/.)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

???

Figure 1: How do we get from M to G?

The puzzle is based on work that I and others have done on some-
thing we call the “rotor-router model” (see [1], available on the web at
http://arxiv.org/abs/0801.3306). Rotor-routing is a very general scheme
for removing the randomness from random systems while retaining some of
their random-like properties. I’ll say a bit more about that in the final version
of this article (the one that I hope will be published in the next Gathering for
Gardner book). That article, as befits an article written in honor of Martin,
will also contain comments from readers about the puzzle and its variants.
But for now I’ll just treat the basic puzzle itself, and only mention aspects

1



of the general theory to the extent that they can help us solve our particular
puzzle.

The prototype for the puzzle that is being distributed at the Eighth Gath-
ering for Gardner (made by Walt and Christine Hoppe, owners of Laser Per-
fect, Inc., and attached to this document) involves a simple arrangement of
eight arrows on a square board, with each arrow free to rotate about its tail.
Let’s call such an arrow a “rotor”. Four of the rotors are at the corners
of the board, and the other four are at the middles of the four sides of the
board. Each of the rotors thus has two neighboring rotors. Each corner ro-
tor is allowed to point at either of its two neighbors, so we’ll call the corner
rotors “2-way rotors”. The other four rotors (the ones at the middles of the
sides) can point to the empty space in the middle of the board in addition to
pointing to either of the two neighboring rotors, so we’ll call the non-corner
rotors “3-way rotors”. (I’ll sometimes use the words north, south, east, and
west to describe the layout; thus, the upper left corner may also be called
the northwest corner, etc.)

In this puzzle, the goal is to get from one configuration of the rotors to
another. Specifically, the goal is to get from the M (for Martin) of the left
part of Figure 1 to the G (for Gardner) of the right half of Figure 1, though
you could vary the puzzle by having a different starting configuration and/or
a different ending configuration.

Of course you aren’t allowed to just turn the rotors to point where you
want them to point (you didn’t really expect a puzzle created in honor of
Martin Gardner to be that easy, did you?). Instead, you only get to turn the
rotors by moving chips around on the board in accordance with a certain rule.
The chips can be any sort of tokens you like (poker chips, coins, pebbles, disk
magnets, whatever) as long as they’re small enough to sit on a single rotor,
and the rule is that whenever you move a chip that is sitting on a particular
rotor, you must follow the “rotor-router rule”: you rotate that rotor clockwise
to its next legal position and then route the chip in the direction that the
rotor is pointing (either to a neighboring rotor or to the hole in the middle
of the board).

Note that you can’t rotate a rotor unless there’s a chip sitting on it; that
you must rotate such a rotor clockwise to its next legal position; and that
you must then move only one chip sitting at that rotor. (This last condition
is relevant when there are several chips on a rotor.)

Figures 2 and 3 illustrate two successive legal moves. On the left side of
Figure 2(a), we see a configuration with two chips, one at the northwest 2-

2



way rotor and one at the western 3-way rotor. We decide to move the chip at
the upper left first. So we rotate the upper left rotor and then slide the chip
in the direction in which the rotor now points, obtaining the configuration
on the right side Figure 2 (which is also shown on the left side of Figure 3).
Now there are two chips occupying the western 3-way rotor. We decide to
move one of them (it doesn’t matter which, since in this puzzle chips might
as well be identical). So we rotate the rotor, and then slide the chip in the
direction in which the rotor now points, obtaining the configuration shown
on the right side of Figure 3. Note that a chip that moves to the middle of
the board is immediately removed, as it is no longer part of the action.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 2: A legal rotor-router move.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 3: Another legal rotor-router move.

(To get comfortable with using rotors, you may wish to check that if
you continue to move the remaining chip in accordance with the rotor-router
rule, the chip takes eleven steps, moving south, east, east, west, west, north,
north, east, west, south, and then finally east. Remember, when you move a
chip, you must turn the associated rotor clockwise to its next legal position;
this may be a 90 degree, 180 degree, or 270 degree turn.)

3



At any time you can add a chip to any rotor you like and move any
chip you like (as long as you follow the rotor-router rule), but you aren’t
allowed to remove a chip whenever you like; chips can only be removed as a
side-effect of rotor-routing. You must start with the rotors forming the M
configuration, with no chips on the board; and you must end with the rotors
forming the G configuration, with no chips on the board.

The first challenge is, can you do it? The second challenge is, can you
do it with as efficiently as possible? There are different ways to measure
efficiency; for this puzzle, a good way to measure efficiency is to count the
number of times you added a chip.

Already there is a natural non-trivial question that presents itself: how
do you know you can’t get into an infinite loop in which chips keeps moving
around on the board, never disappearing into the middle? It’s not hard
to show that this can’t happen. For, when a chip leaves a 2-way rotor, it
moves to a 3-way rotor; and a 3-way rotor can’t be visited more than 3 times
without routing a chip into the middle (and out of the game). So chips must
keep disappearing from the board at a steady rate.

If you’re the sort of person who likes to figure things out for yourself,
you should put the article down now and play with the puzzle for a while,
because a major spoiler is coming up in the very next sentence.

An important and surprising property of the game is that all that really
matters is how many chips you add at each rotor — NOT when you add
them, nor in what order you move the chips (when you have a choice about
which chip to move). For instance, suppose you find a way to get from one
rotor configuration C to another rotor configuration C ′ with a sequence of
moves that involves adding a single chip at the upper left, rotor-routing it
through the board until it exits, then adding a chip at the lower right, and
rotor-routing it through the board until it exits. Then I claim that if instead
you start with C and add the chip at the lower right first , router-route it
through the board until it exits, then add the chip at the upper left, and
router-route it through the board until it exits, you must obtain the same
end-state C ′. Or you could add both chips to the board at the very start,
and use a coin-toss to decide which of the two chips to rotor-route at each
step until one of them leaves the board, and then move the remaining chip
until it too has exited. No matter what you do, you’ll end up with C ′.

This is sometimes called the abelian property, but I prefer to call it the
convergence property.

You should test the convergence property now on a few examples, both

4



to convince yourself that I’m telling you the truth and to give yourself some
practice with the kinesthetics of rotor-routing. Don’t forget that you can
only move one chip at a time! If you violate this part of the rotor-router
rule, you are working on a different puzzle than the one I have in mind, and
the convergence property is not guaranteed to hold.

So, this puzzle is really asking you to come up with eight numbers, one
for each rotor, such that if you add the appropriate number of chips at each
rotor and allow the chips to rotor-route through the board, you’ll get to the
desired end-state. Once you’ve chosen how many chips you’ll add at each
rotor, no other choice you make matters.

Let’s write these eight numbers in a 3-by-3 array with a hole in the middle,
and call it a “chip configuration”. For instance, the chip configuration

1 0 0
1 0
0 0 0

corresponds to a chip at the upper left and a chip at the middle left; this is
the chip configuration that we added to the rotor configuration M in the left
half of Figure 2.

I’m going to give you a recipe for finding the chip configuration that solves
the problem of getting from rotor configuration C to rotor configuration C ′,
for any two acyclic rotor configurations C and C ′. But first I’ll need to
explain what “acyclic” means, and before I do that, I’ll give examples of
rotor configurations that aren’t acyclic.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 4: Rotor configurations with cycles.

The left part of Figure 4 shows a rotor configuration in which each rotor
points clockwise around the board, forming a cycle of length 8. The right

5



part of Figure 3 shows a rotor configuration in which two rotors point at each
other, forming a cycle of length 2. Neither of these configurations is acyclic.

On the other hand, the M and G configurations shown in Figure 1 are
acyclic: each contains no cycles, or equivalently, if you start at any rotor
and trace your eye from that rotor to the rotor it’s pointing to, and then
trace your eye to the rotor that that rotor is pointing to, and so on, your eye
will eventually be led to the middle of the board, rather than going into an
infinite loop. (Note that no rotors are turned in this mental tracing process.)

I now claim (without giving the proof) that the chip configuration

2 2 2
2 2
2 2 2

has a magical property: starting from any acyclic configuration of the rotors,
if you add two chips at every rotor and pass them through the system, you
end up with the same rotor configuration you started with. This holds true
no matter what your original acyclic configuration was.

You now have enough clues to enable you to figure out on your own how
to get from M to G, so try to puzzle this out before reading further!

The northwest rotor in the M configuration is pointing east, and we want
it to end up pointing south (the way it does in the G configuration). We can
force that rotor to point south right away if we add a chip at the northwest
corner and move that chip just once. Likewise for all the other rotors: by
adding 0, 1, or 2 chips, as appropriate, and moving each chip just once,
we can make each rotor advance by 0, 1, or 2 positions, causing the rotors
to point in the desired directions. You can check that if we add the chip
configuration

1 1 0
2 2
1 1 0

(1)

to the M configuration of the rotors, and move each chip just once, the rotors
will be in the G configuration. Of course this will leave some chips on the
board. Specifically, you get the G configuration of the rotors plus the chip
configuration

1 0 0
1 0
1 1 2

(2)

6



If you were allowed to remove chips whenever you wanted, you could just
sweep all six chips from the board and declare victory. Now of course you
can’t just remove chips from the board, but you can do something that’s
almost as good: you can add ten more chips to the board so that the end
result (when all the chips have left the board) is as if you’d just swept the
six chips from the board!

Specifically, if you add
1 2 2
1 2
1 1 0

(3)

chips at the respective sites, you’ll get the G configuration of the rotors plus
the chip configuration

2 2 2
2 2
2 2 2

(4)

which (after all chips have exited) will give you the desired state G, because
of the magical property of the all-2’s chip configuration that I mentioned
before. (There’s no mystery to how I chose (3) to ensure that (2) plus (3)
would be (4): I just let (3) be (4) minus (4).)

So, we’ve found one solution to the puzzle: Starting from M, if you add

1 1 0
2 2
1 1 0

chips (that’s (1)), move each chip once, then add

1 2 2
1 2
1 1 0

chips (that’s (3)), and then move the chips as you like until all of them have
exited, you’ll end up with G.

By the convergence property, you can put all the chips on the board at
the start and get the same outcome. That is, you can add

2 3 2
3 4
2 2 0

(5)

7



(that’s (1) plus (3)) to M and rotor-route the eighteen chips off the board,
and you’ll get G. Or, at the other extreme, you can process the chips one
at a time, so that there’s never more than a single chip on the board. You
can use just a single chip: when it leaves the board, add it back at a suitable
place. If you add the chip eighteen times, taking care that it gets added the
appropriate number of times at each rotor, you’ll end up with G.

This answers the challenge “Can you get from M to G?”, so now let’s
move on to the challenge of doing it more efficiently.

It turns out that that some chip configurations are equivalent to others,
in the sense that they have the same impact on any rotor configurations that
you add them to. For instance, I claim that adding

2 3 2
3 4
2 2 0

has the exact same effect on a rotor configuration as adding

0 4 2
4 4
2 2 0

(I’ve underlined the numbers that differ in the two chip configurations.) To
see this, notice that if you move the two chips at the upper left by rotor-
routing them each a single step, one of them moves east and the other moves
south, and the rotor ends up pointing whichever way it started out pointing.

Similarly, I claim that adding

0 4 2
4 4
2 2 0

has the exact same effect on a rotor configuration as adding

1 1 3
4 4
2 2 0

To see this, notice that if you move the three of the chips at the northern
3-way rotor by rotor-routing them each a single step, one of them moves east,

8



one of them moves west, and one of them moves south (and out of the game),
and the rotor ends up pointing whichever way it started out pointing.

We can generalize these observations with the notion of chip-firing. When
there are 2 or more chips at a corner location, we can redistribute two chips
among the two neighboring locations. When there are 3 or more chips at a
non-corner location, we can remove one from the board and redistribute two
others among the two neighboring locations. Either way, we get a new chip
configuration that has the same effect on any rotor configuration we add it
to. And, in the second case (firing chips from a non-corner location), the
number of chips in the configuration goes down by 1, which means progress:
for instance, that last configuration

1 1 3
4 4
2 2 0

is a seventeen-chip solution to the M-to-G puzzle.
If you try to improve

1 1 3
4 4
2 2 0

further by doing more rounds of chip-firing (which can clearly be done in
lots of ways), you will eventually wind up with the chip configuration that
cannot be reduced further by chip-firing. In fact, chip-firing is governed by
a convergence theorem of its own, which guarantees that if you fire until no
more firing is possible, you’ll arrive at an end state that doesn’t depend on
the choices you made along the way. In this case, that chip configuration is

1 0 1
2 2
1 2 1

So, chip-firing gives a ten-chip solution to the M-to-G puzzle.
But can we do better?
We can, using a generalization of the chip-firing operation called cluster-

firing. This is like chip-firing several locations at once, except that a location
is allowed to temporarily borrow chips from the universe as long as it pays
them back at the end of the operation, or equivalently, as long as we allow
a location to briefly have a negative number of chips, provided that it has

9



a non-negative number of chips when the operation is over. Let’s apply
cluster-firing to

1 0 1
2 2
1 2 1

(6)

by firing all the locations in the bottom row. First, we fire the southwest
location:

1 0 1
3 2

−1 3 1

Next we fire the central southern location:

1 0 1
3 2
0 0 2

Last we fire the southeast location:

1 0 1
3 3
0 1 0

(7)

Note that there are no negative numbers here, so our operation is a legal
example of cluster-firing. That is, we can cluster-fire the bottom row of (6),
and the result is (7).

Now, it’s not true that adding (7) to any rotor configuration has the
same effect as adding (6), but it is true if we restrict ourselves to acyclic
rotor configurations. Since the M and G configurations are acyclic, that
means that if you add

1 0 1
3 3
0 1 0

chips, you can turn M into G. So now we’ve got nine-chip solution.
By doing more cluster-firing, we eventually arrive at a chip configuration

in which no more cluster-firing is possible. As you might be expecting by now,
there is a convergence theorem for cluster-firing as well, and it guarantees in
this case that no matter how you cluster-fire, you’ll end up with

0 2 0
2 2
0 0 0

10



This is a six-chip solution to the M-to-G puzzle, and it is optimal.
If you’ve followed everything I’ve told you, then you should be able to

find a five-chip solution to the inverse puzzle of turning G back into M.
You’ll notice that turning an M into a G took more chips than turning

a G into an M. So some variants of the M-to-G puzzle are easier, and it’s
also true that some are harder. One question that I don’t know the answer
to, and which perhaps one or more of you will solve, is: If you let your worst
enemy choose the starting configuration and the target configuration, and
his goal is to make the puzzle as hard for you as possible (where hardness is
measured by the number of chips you’ll need to add to the board to get from
the starting configuration to the target configuration, assuming chips aren’t
re-used), how many chips can he force you to use? Clearly the answer to
this question must be at least six, since that’s how many chips the M-into-G
puzzle forces you to use.

One could also ask this question using the number of chip-moves, rather
than the number of chips, as the measure of difficulty of a puzzle.

How many such puzzles does your enemy have to choose among? It turns
out that there are exactly 192 acyclic rotor configurations. So there are
192×191 = 36, 672 non-trivial Eight Rotors puzzles (plus 192 trivial puzzles
in which the starting configuration and target configuration are one and the
same). The number 192 is also the number of “recurrent” chip configurations;
the article [1] explains what this phrase means, and explains why it is no
coincidence that the same number occurs in both contexts. Indeed, the Eight
Rotors Puzzle belongs to a special class of puzzles (including Lights Out and
Rubik’s Clock) in which an abelian group is acting behind the scenes; the
abelian group for the eight rotors puzzle has exactly 192 elements.

See http://jamespropp.org/quasirandom.html for more on rotor-routing
(including some discussion of its links to probability theory).

Comments on this article are welcome! I have a gmail account under the
name JamesPropp.

References

[1] Chip-Firing and Rotor-Routing on Directed Graphs, A. Holroyd, L. Levine,
K. Mészáros, Y. Peres, J. Propp, and D. Wilson; to appear in “In and out of
Equilibrium II”, eds. V. Sidoravicius and M.E. Vares, Birkhauser (2008).

11


