EECE 5430 formerly 16.543 Communication Theory

Course Introduction

Professor Jay Weitzen UML Electrical and Computer Engineering

What Are We Going to Cover?

- Fundamentals of Analog Modulation (5 weeks)
 - Amplitude Modulation
 - (angle Modulation) Frequency and Phase
 - Performance of Analog modulation in presence of Noise
- Fundamentals of Digital Modulation (6-7 weeks)
 - Matched Filtering, Maximum Likelihood and MAP decoding
 - Digital Modulation Formats ASK, PSK, FSK, etc
 - Advanced Modulation Techniques: QAM, GMSK, OQPSK, QPSK etc.
 - Bit Error Performance of Different Modulations
 - Transmitting digital waveforms over band limited channels
- Modern Techniques for Wireless Channels (2 weeks)
 - Techniques for operating over Fading, Multipath Channels
 - Equalization
 - Spread Spectrum
 - OFDM

What Background Do I Need to get the most out of this Course?

- Undergraduate Signals and Systems Course (UML 16.362 or Equivalent)
 - Why: because we use Fourier Transforms and Properties
- Undergraduate Probability and Random Processes (UML 16.363 or equivalent)
 - Why: Communication theory is where probability goes to work for a living

Course Materials

- Course Home Page:Use Blackboard. http://Faculty.uml.edu/jweitzen/
 - Reading assignments, HW, Solutions are posted there
 - Please check frequently, especially during winter
- Notes Each Week: Download from website
- Textbook: Communication Systems Engineering, by Proakis and Salehi

Getting the Most Out of the Course

- Level 1: Come to Class and Learn From the lectures
- Level 2: Read the Book, it provides more detail and greater mathematical Rigor
- Level 3: Do the Matlab Problems, they were developed to go along with the class materials
- Level 4: Do the homework, solutions are posted on the website

Grading Policy

 Mid Term Exam 	35%
 Final Exam 	40%
 Matlab problems 	20%
 Homework (collected on BB) 	05%

- Late Lab/Project Reports are 20% loss per week late after first ulletday
- Please try very very hard not to miss exams. ۲
- HW graded based on whether you submitted it or not •

HW Policy

- HW assigned each week, solutions posted when due, collaboration is encouraged
 - Please Submit Weekly Homework on Blackboard
 - I will check whether you did it or not
- Matlab problems assigned, collected and graded
- HW is integral to learning experience, please do it!!!!!
 - Exam questions are based on HW

Reaching Me (please do!)

- E-mail: jay_weitzen@uml.edu
 - We can meet before or after class, office hours, or by special appointment
- University Office: Ball 411
- Don't wait if you are lost!!

About Your Instructor

- Education
 - PhD. 1983 Univ of Wisconsin
 - BSEE, MSEE, 1979 U of W.
- Industrial Experience 30+ years
 - Nextwave Wireless (PCS System Performance)
 - GTE Wireless (Cellular System Planning)
 - Signatron (Military VHF and HF Systems)
 - Airvana (HDR, 3G1xEVDO, small cells, LTE)
 - Adaptive Broadband (Wireless Broadband)
 - USDOT (position location)

About Your Instructor (cont'd)

- Current Research Interests:
 - Managing large 4G/5G small cell networks
 - Performance and optimization of 3rd generation wireless networks
 - VOIP and PTT applications over 3rd generation wireless
 - Applications of Position Location and location based services

Lets Get Started!

UMASS Lowell

University of Massachusetts JMASS Lowell

> University of Missachusetts

