|_ecture 9b Convolutional
Coding/Decoding and Trellis
Code modulation



Convolutional Coder Basics

Convolutional Encoder with Constraint
Length K and Rate 1/n
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Coder State Diagram

Encoder is Characterized by State Diagram
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Encoder Trellis

Encoder Trellis Diagram
Shows all Possible Transitions at Each Time Unit
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Convolutional Encoding Example

INPUT DATA SEQUENCE= 1 1 0 1 1

OUTPUT CODE SEQUENCE 11 01 01 00 01

INPUT  REGISTER  STATEY  STATEL,,  BRANCH WORD
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Coder Tree

CODEWORD
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Tree Representation
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Viterbi Decoding

For Simplicity assume Binary Sym.Channel
Encoder has Constraint length 3, Rate 2
A trellis represents the decoder

Trelistransitions are labeled with branch
metrics (hamming distance between branch
code word and recaived codeword

If two paths merge the path with larger
metric is eliminated



If Two Paths Merge, One of Them Can be Eliminated

y PATH METRIC = 4
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Decoder Trdllis

Viterhi Decoding Example

INPUT DATA SEQUENCE m: 1 1 0 1 1

TRANSMITTED CODEWORD |J: 11 » o1 01 00 ot

RECEIVED COD.EWORD zZ: 11 o1 ot 10 o1
t=0 . t=1 t=2 t=3 t=4
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Selection of Survivor Paths

PATH:
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Selection of Survivor Paths (cont'd)

Ole

11e

METRIC COMPARISONS AT t = 3

ONE PATH ENTERING EACH
STATE CAN BE ELIMINATED

SURVIVORS AT t = 3

DECODER DECIDES THAT TRANSITION
FROM t = 0TO t = 1, WAS PRODUCED
BY DATA BIT "1"

PATH
METRIC



Selection of Suwivdr Paths (cont'd)
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AGAIN, ONE OF TWO PATHS ENTERING
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Selection of Survivor Paths (concluded)
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Free Distance
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Viteri Decoder Performance Rate 1/2 vs Rate 1/3 K =7 Hard vs Soft

BIT ERRQOR PROBABILITY
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Free Distance and Coding Gain

¢ TREE EUCLIDEAN DISTANCE, d,, IS THE MINIMUM DISTANCE, IN EUCLIDEAN UNITS,
BETWLEN A SELECTED CODE SEQUENCE AND EACH OF THE POSSIBLE ERROR-EVENT PATHS

® A LOWER BOUND ON ERROR-EVENT PROBABILITY IS GIVEN BY

Pe 2 Q(d/20)

WHICH 1S ASYMPTOTICALLY EXACT AT HIGH SNR

® TIE ASYMPIOTIC CODING GAIN IS THLRCFORE DLFINCD AS

ref

® [OR IIGH SNR AND A GIVEN ERROR PROBABILITY, TNHIS YIELDS THE SAME RESULT AS

6 - (EH/NO)codcd - (EB/NO)uncodéé

WHLRE Eg/Ny IS EXPRESSED IN DECIBELS
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Hard and Soft Decoding Decisions

plz| 52) ‘ p(zlsl)
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000 001 010 011 100 llOl 110 111 8-l£VEL SOFT DECISION
0 l 1 2-LEVEL HARD DECISION
I3

® EVENTUALLY, ALL DATA DECISIONS MUST BE
HARD DECISIONS (binary)

® SOFT DECISIONS CONTAIN CONFIDENCE MEASURES
REGARDING THE BINARY DECISIONS

® CONVOLUTIONAL DECODING USING SOFT DECISIONS,
WITH 3 bits OF QUANTIZATION, PERFORMS APPROXIMATELY
2 dB BETTER THAN HARD DECISIONS ) 8



e CONSIDER A RATE 1/2 BINARY CODE, SUCH THAT EACH INPUT BIT YIELDS A PAIR OF
CODE SYMBOLS

HARD DECISION (2-level quanlization)

01 1"

e WE CAN REPRESENT EACH PAIR OF RECEIVED CODE
SYMBOLS AS ONE OF THE CORNERS OF A SQUARE

00 10

SOFT DECISION (8-level quantization)

01 1

’ e WE CAN REPRESENT EACH PAIR OF RECEIVED CODE
SYMBOLS AS ONE POINT OUT OF THE SET OF ALLOWABLE
DISCRETE POINTS IN THE PLANE

00 10



No relationship between Hamming and
Euclidean Distance

8-PSK Example © 8-PSK Using Gray Coding
Euclidean
010 | Hamming \ 011
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0.765 0.765 0.765 0.765
N1
100 3 000 110 000
1 3 Unit Radius
0.765 2 1 0.765 0.765 0.765
" 101 ores 0.765 111 100

110



Channel Models

BINARY SYMMETRIC CHANNEL
(HARD DECISION CHANNEL)

1-p

RCVD SIGNALS

ONE OF TWO DISCRETE
XMTD SIGNALS SYMBOLS RATHER

p THAN A CONTINUOUS
1-p AMPLITUDE SIGNAL

® HAMMING DISTANCE IS APPROPRIATE METRIC TO DESCRIBE
THE DISTANCE BETWEEN U AND Z

® U IS CHOSEN TO MINIMIZE HAMMING DISTANCE



Euclidean Distance

o ASSUME 8-LEVEL QUANTIZATION, 0 TO 7 (allowing only
posilive integers)

0.7 1.7
e IF A PAIR OF CODED BITS, 1 1, ARE TRANSMITTED, THEN
2.4 THE TWO RECEIVED CODE SYMBOLS ARE 7.7 (in the
/J“ absence of noise)
0.0 70 e THE EUCLIDEAN DISTANCE OF THE RECEIVED SYMBOLS

FROM THE 0,0 SYMBOLS IS 7./2

e {F THE TWO RECEIVED CODE SYMBOLS ARE 5,4, THEN
THE EUCLIDEAN DISTANCE FROM THE 0,0 SYMBOLS

IS /a1



A PROCEDURE FOR SOFT DecrsioN DEcopING oF M-ARY SIGNALS

SOFT DECISION DECODING OF BINARY SIGNALS USING A EUCLIDEAN METRIC IS WELL KNOWN
HOW CAN SOFT DECISION DECODING OF M-ARY SIGNALS BE ACCOMPLISHED?

THE MATCHED FILTER OUTPUT AMPLITUDES, A;j, WHERE i = 0, ..., M-1, ARE FIRST
NORMALIZED, SO THAT

FOR A BINARY CODE, EACH RECEIVED SYMBO. MUST BE CONVERTED TO k BITS, WHERE k = logpM,
BEFORE DECODING

THE SYMBOL-TO-BIT CONVERSION YIELDS SOFT DECISION SYMBOLS bj WHERE i = 0, .. . k-1

AT EACH DETECTION INTERVAL A SEQUENCE OF k-DIGIT SOFT DECISION SYMBOLS ARE SENT
TO THE DECODER



|ntroduction to TCM



What ISsTCM?

* TCM schemes achieve coding gains without using additional
bandwidth

The technigue employs non-binary modulation in conjunction
with afinite state encoder

*The encoder dictates the selection of modulation waveforms
for generating a sequence of coded waveforms

*At the receiver the noisy signals are detected/decoded by a soft
decision maximum-likelihood decoder

*TCM is another technigue in the evolution of coding methods
that contributes toward the fulfillment of shannon;s coding gain
prediction



*Today TCM can be used to privde a coding of 3 dB with
relative ease

*6 dB coding gain can be provided with additional
complexity



Evolution of TCM

* First Proposed by Ungerboeck and Csajka
INn 1976 (IBM Research in Swiss)

* A moredetailed publication in 1982
received the information theory best paper
award

e In 1984 TCM with 4 dB coding gain was

adopted by the CCITT for use in high speed
voice band modem



Structured Sequence Coding

e Channel coding can be partitioned into two
study areas. Structured sequence coding
(parity bit design) and Waveform coding

« \Waveform coding attempts to find better
waveforms which provide improved
distance properties

» \Waveform coding can include redundant
waveforms asin the case of TCM



Reasons for Disappointing results of
conventional coding methods when the
channel is band-limited

With hard-decision decoding, irreversible errors can be made by the
demodulator prior to decoding

With soft decision decoding (using Euclidean distance), the following
problem becomes apparent

For a code, the optimized for hamming distance, the mapping of code
symbols into non-binary modulation waveforms doe not guarantee a
good Euclidean distance structure

Generally one cannot find a monotonic relationsnip between hamming
and Euclidean distances

Squared Euclidean and hamming distances are equivalent only in the
case of binary modulation or 4 phase modulation



FOR BANDLIMITED CHANNELS,
THE CONVENTIONAL CODING METHODS ARE DISAPPOINTING

CONSIDER UNCODED 4-PSK WITH Pg = 1072

FOR 8-PSK WITI TIE SAME SNR, P, > 1072
BECAUSE OF THE DECREASED DISTANCE BETWEEN
THE B-PSK SIGNAL VLCTORS

A RATE 2/3 BINARY CONVOLUTIONAL CODL NI]Hr
CONSTRAINT LENGHI 7, CAN REDUCE Py To 107

THUS. AFTER USING A FAIRLY COMPLEX (64 STATE) VITERBI DECODER,
Py ONLY BREAKS EVEN WITH UNCODED 4-PSK



Coding gain when bandwdith
expansion is allowed

e WIEN COMPARED TO UNCODED BPSK AT A BIT ERROR PROBABILITY ﬁr‘lﬂfs;
'SUCH CODES OFFER THE FOLLOWING CODING GAINS

CODE _RATE 1IARD_VS_SOFT [_DECISIONS CODING GAIN_(dB)
1/2 HARD 3
1/3 HARD 3.5
1/2 SOFT 5
73 SOFT 5.5

e TIHE RATE 1/2 CODE REQUIRES AN INCIEASE OF BANDWIDTH BY A FACTOR OF 2
OVER UNCODED TRANSMISSION



Theory of TCM

~ SIGNAL-SET EXPANSION PROVIDES REDUNDANCY FOR CODING

~ MOST OF THE ACIIEVABLE CODING GAIN CAN BE OBTAINED BY EXPANDING TIE SIGNAL
SET BY A FACIOR OF 2 OVER THAT USED FOR UNCODED MODULATION, THUS THE SIGNAL
SET SIZE M = 2*1 rOR 1L TRANSMISSION OF & BLTS PER MODULATION INTERVAL

" CODING AND SIGNAL-MAPPING FUNCTIONS ARE DCSIGNCD JOINILY SO AS TO MAXIMIZL
THE FREE CUGLIDEAN DISTANCE

 THES ALLOWS FOR THE CONSTRUCTION OF ﬂODULATION CODES SUCH THAT THE FREE
DISTANCE SIGNIFICANILY EXCLIDS THE MINIMUM DISTANCE BEIWLEN UNCODLD
MODULATION SIGNALS (AT TIE SAME INFORMATION RATE, BANDWIDIH, AND SIGNAL POWLR)

© JCM EXTENDS THE PRINCIPLES OF CONVOLUTIONAL CODING FROM TIE DOHAIN OF BINARY
BASEBAND SIGNALS 10 TIIE DOMAIN OF NONBINARY MODULATION WAVEFORMS



Theory of TCM

o CHOOSE A SIGNALING ALPHABET, LARGER THAN THE BASIC DATA ALPHABET BY USING -
MULTILEVEL SIGNALING

e FOR EXAMPLE:

UNCODED 4-ary PAM UNCODED 4-ary PSK UNCODED 16:ary QAM
— 4{- ~ ° ] ° °®
/ N
/ \ o e | e o
-——e *~———o T '
\ / o ol e o
1
~Yl-
] ® ® (]
RATE 2/3 CODED 8-ary PAM RATE 2/3 CODED 8-ary PSK RATE 4/5 CODED -32-ary 0AM
e @
- *‘ ~ ¢ & o0 o
o o o] & o o
® o o & O o
o o je o o
o1 ©

e ALPHABET SIZE IS INCREASED T0 PROVIDE THE REDUNDANCY NEEDED FOR CODING
NEITHER BANDWIDTH NOR AVERAGE POWER IS INCREASED

e THE CODED POINTS ARE CLOSER TO EACH OTHER THAN THE UNCODED POINTS.
HOWEVER dpp,iy OF A TRELLIS CODE IS GOVERNED BY DEPENDENCIES INTRODUCED BY
THE CONVOLUTIONAL ENCODER, RATHER THAN THE DISTANCE BETWEEN POINTS IN THE
SIGNAL SPACE



Set Partitioning Rules for 8-PSK

 All signals should occur with equal frequency and
with afair amount of regularity and symmetry

o Transtions originating from the same state are
assigned signals either from subset BO or B1

e Transitionsjoining in the same state are assigned
signals either from subset BO or B1

o Parallel transitions receive signals either from
subset CO or C1 or C2 or C3



Partitioning (cont’ d)

* Rule 1 follows our intuition that good codes
should have aregular structure

e Rules 2,3,4 guarantee that bit sequences are
assigned to waveforms so that the free distance
will exceed the free distance of the uncoded 4
PSK reference modulation by at least 3 dB

e Pardlel transitions refer to the branch words
resulting from the transmission of uncoded bits

along with coded bits.



TCM Code Construction

First asuitable trellis structure is selected. This can be
done without any particular encoder in mind

If k bits are to be encode per modulation interval then there
must be 2™k possible transitions from each state to a
SUCCeSSor state

More than one transition (Parallel transitions) may occur
between pairs of states

Next from an extended set of 2*k+1 modulation signals,
assignments of signalsto trellis transitions will be made so
as to maximize the free Euclidean distance



Modulation Signal Sets

SIGNAL SPACE:

>

() UNCODED 4-PSK

" \d, = 2 sin (n18)
= 0.765
0

SIGNAL NUMBER

(b) RATE 2/3 CODED 8-PSK



/ SIGNAL NUMBER

Figure 5. One-state trellis diagram for uncoded 4-pPSK,



2 sin (7/8) = 0.765

t dz:z

Figure 4. Ungerboeck partitioning of B-PSK signal set.

N



4-TCM Encoder

m]' m} e @ —— Ul FIRST CODEDB‘T

=~ U, SECOND CODED BIT

mz.md' ter O

-=— u3 THIRD CODED BIT
EACI1 ODD NUMBERED INPUT BIT REMAINS UNCODED

EACH EVEN NUMBERED INPUT BIT IS ENCODED BY THE
RATE 1/2 ENCODER



TCM Trdllis

o Rate % Trellis Diagram

STATE STATE
AT L, o AT
00
® FOR EACH STATE, THE'2 EMERGING
UPPER BRANCHES CORRESPOND TO
" my m, BEING 00 AND 10
10 ® THE 2 LOWER BRANCIIES ARE DUE
T0 my m, BEING 01 AND 11
ol

UNCODED BIT POSITION

11




4 State Trelliswith parallel Paths

Four-State Trellis (with Parallel Paths)
for Coded 8-PSK

SIATE
1
26
L
1
co
1
37 is

ENROR-EVENT PATH 2, 1, 2;
RV I =\'2 40585 42 =27
ERNOR-EVENT PATH 4 (the paralle] ransiion):

d=d, =2

© THUS. TOR THIS EXAMPLE, THE FREE EUCLIDEAN DISTANCE 15 2
2
(03} 4
© ASYMPTOTIC GAIN = 10 10g,, T B L LY logy, —) = 3d8
H

{drer) UNCOOED 4 psK



8 state trellis with partitioning

Eight-State Trellig Diagram for Coded 8-psk

SIATE
0426
1537 7.
4062 .
5173 .
2604 .
J715 .
6240 .
7351 .
ASYMPIOTIC CODING GAIN = 1 1, ﬁ_‘;ﬁ_&dj@l% —— (LSE) s
(d,) \

UNCODED 4 pSk
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16 QAM Partitioning

Ungerboeck Partitioning of 16-QAM Signals,
Where E [lailz,

A0 = 16-0AM
oo I__.._a,,=2/ 10 = 0.632
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16-QAM Trellis




Asymptotic coding gain [dB)

+3.0

8
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Trellis complexity per 2-D signal (2*"7/K)
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