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Quick Review of Fading ModelsQuick Review of Fading Models

• Dispersion in Time and Frequency EffectDispersion in Time and Frequency Effect 
Channel model

• In Time look at relation between multipathIn Time, look at relation between multipath 
spread and bit duration
– Selective or Flat FadingSe ect e o at ad g
– BW of channel vs. BW of signal

• In frequency look at Doppler SpreadIn frequency look at Doppler Spread 
relative to inverse of Bit Duration
– Fast or Slow Fading

c 2007-2012 Dr. Jay Weitzen
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g
– Signaling rate vs. channel change rate



Types of Small-scale FadingSmall-scale FadingTypes of Small scale Fadingg
(Based on Multipath Tİme Delay Spread)

Flat Fading F S l ti F diFlat Fading

1.  BW Signal < BW of Channel   
2. Delay Spread < Symbol Period

Frequency Selective Fading

1. BW Signal  > Bw of Channel
2. Delay Spread > Symbol Periody p y 2. Delay Spread  Symbol Period

Small-scale Fading
(Based on Doppler Spread)

Slow FadingFast Fading

1 High Doppler Spread

Slow Fading

1. Low Doppler Spread1. High Doppler Spread
2. Coherence Time < Symbol Period
3. Channel variations faster than baseband 

signal variations

2. Coherence Time > Symbol Pe
3. Channel variations smaller tha

signal variations
c 2007-2012 Dr. Jay Weitzen
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signal variations g



Impulse Response of the Fading 
M lti th M d lMultipath Model

c 2007-2012 Dr. Jay Weitzen
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Flat FadingFlat Fading

• Occurs when symbol period of the• Occurs when symbol period of the 
transmitted signal is much larger than the 
Delay Spread of the channelDelay Spread of the channel

– Bandwidth of the applied signal is narrow. 

• Occurs when the amplitude of the receivedOccurs when the amplitude of the received
signal changes with time

• For example according to Rayleigh DistributionFor example according to Rayleigh Distribution

• May cause deep fades. 
– Increase the transmit power to combat this situation

c 2007-2012 Dr. Jay Weitzen
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Increase the transmit power to combat this situation. 



Flat FadingFlat Fading

h(t,s(t) r(t)

TS

0 TS 0  0 TS+

Occurs when:
BS << BC

and

BC: Coherence bandwidth
BS: Signal bandwidth
TS: Symbol period

TS >> 
S y p

:  Delay Spread
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Frequency Selective FadingFrequency Selective Fading

• Occurs when channel multipath delay• Occurs when channel multipath delay 
spread is greater than the symbol period. 

Symbols face time dispersion– Symbols face time dispersion
– Channel induces Intersymbol Interference 

(ISI)(ISI)
• Bandwidth of the signal s(t) is wider than 

the channel impulse responsethe channel impulse response. 

c 2007-2012 Dr. Jay Weitzen
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Frequency Selective FadingFrequency Selective Fading

h(t,s(t) r(t)

 TS

0 TS 0  0 TS+TS

Causes distortion of the received baseband signalCauses distortion of the received baseband signal

Causes Inter-Symbol Interference (ISI)

Occurs when:Occurs when:
BS > BC

and
TS < 

As a rule of thumb: TS < 

c 2007-2012 Dr. Jay Weitzen
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ISI is result of Selective FadingS s esu t o Se ect e ad g
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Fast FadingFast Fading
• Due to Doppler Spread

• Rate of change of the channel characteristics
is larger than the

Rate of change of the transmitted signal
• The channel changes during a symbol period. 
• The channel changes because of receiver motion. 
• Coherence time of the channel is smaller than the 

symbol period of the transmitter signal y p g

Occurs when: BS: Bandwidth of the signal
BS < BD

and
TS > TC

S g
BD: Doppler Spread
TS: Symbol Period
TC: Coherence Bandwidth
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Slow FadingSlow Fading
• Due to Doppler Spread

• Rate of change of the channel characteristics• Rate of change of the channel characteristics
is much smaller than the

Rate of change of the transmitted signal

Occurs when: B B d idth f th i lOccurs when:
BS >> BD

and
TS << TC

BS: Bandwidth of the signal
BD: Doppler Spread
TS: Symbol Period
TC: Coherence BandwidthC

c 2007-2012 Dr. Jay Weitzen
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Different Types of FadingDifferent Types of Fading
TS

Flat Fast

Symbol Period of

Flat Slow
Fading

Flat Fast 
Fading

Symbol Period of
Transmitting Signal 

 Frequency Selective Frequency Selective 

T
TC

Slow Fading Fast Fading

Transmitted Symbol Period
TS

S O O
c 2007-2012 Dr. Jay Weitzen
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With Respect To SYMBOL PERIOD



Different Types of FadingDifferent Types of Fading
BS

Frequency Selective
Slow Fading

Frequency Selective 
Fast Fading

Transmitted 
B b d B

Flat Fast 

Baseband
Signal Bandwidth

Flat Slow 

BC

B
BD

Fading Fading

Transmitted Baseband Signal Bandwidth
BS
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Statistical Models For Small 
Scale Fading



Three Major Effects: Attenuation, Long-term Fading 
(Shadowing), and Short-term Fading.

Fading occurs 
with distance on 

order of ¼ 
B ildi wavelengthBuildings, 

Trees, cars 
obstruct signals 
on a medium toon a medium to 

small scale: 
Shadowing

Attenuation: 
Signal g

Attenuates with 
Distance

c 2007-2012 Dr. Jay Weitzen
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Fading Is the Result of Constructive and 
D t ti  W  C bi iDestructive Wave Combining

c 2007-2012 Dr. Jay Weitzen
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Small Scale Fading in Space and TimeS a Sca e ad g Space a d e
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Space/Time Interference patternsSpace/ e te e e ce patte s
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Impulse Response of a Multipath 
Ch lChannel

Aican be deterministic or random complex Gaussian Variables
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Many Scatterers from same distance 
results in random fading at each 

distance bindistance bin
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Many Waves Combine Due to Scatteringa y a es Co b e ue to Scatte g
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Real and Imaginary Parts are Gaussian 
D  t  C t l Li it ThDue to Central Limit Theorem

c 2007-2012 Dr. Jay Weitzen
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Fading  DistributionsFading  Distributions

• Describes how the received signal amplitudeDescribes how the received signal amplitude 
changes with time. 
– Remember that the received signal is combination of multiple 

signals arriving from different directions phases and amplitudessignals arriving from different directions, phases and amplitudes. 
– With the received signal we mean the baseband signal, namely 

the envelope of the received signal (i.e. r(t)). 

• Its is a statistical characterization of the• Its  is a statistical characterization of the 
multipath fading. 

• Often used distributionsOften used distributions
– Rayleigh Fading
– Ricean Fading
– Nakagami Fading

c 2007-2012 Dr. Jay Weitzen
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– Nakagami Fading



Rayleigh and Rician 
Di t ib tiDistributions

• Rayleigh Describes the received signal envelopeRayleigh Describes the received signal envelope
distribution for channels, where all the 
components are non-LOS: p

• i.e. there is no line-of–sight (LOS) 
component. 

• Rician Describes the received signal envelope
distribution for channels where one of the 
multipath components is LOS component. 

• i.e. there is one LOS component. 

c 2007-2012 Dr. Jay Weitzen
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Rayleigh FadingRayleigh Fading

c 2007-2012 Dr. Jay Weitzen
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Rayleigh FadingRayleigh Fading

Rayleigh distribution has the probability density function (PDF) given by:
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Rayleigh distribution has the probability density function (PDF) given by:
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2 is the time average power of the received signal before envelope detection. 
 is the rms value of the received voltage signal before envelope detectiong g p

Remember: 2 power) (average rmsVP  (see end of slides 5)
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Rayleigh Fading (cont’d)Rayleigh Fading (cont d)
The probability that the envelope of the  received signal does not exceed a 
specified value of R is given by the CDF:





R R

r edrrpRrPRP 2 2
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specified value of R is given by the CDF: 


0

 2533.1
2

)(][  


mean drrrprEr

 )(
2
1 solvingby  found   177.1

20

 


r

median drrpr
median

2

2 0





rmsr

c 2007-2012 Dr. Jay Weitzen

28



Rayleigh PDF
0.7

Rayleigh PDF



0.5

0.6 mean = 1.2533
median = 1.177
variance = 0.4292
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Pdf and Cdf of Rayleigh Fadingd a d Cd o ay e g ad g

c 2007-2012 Dr. Jay Weitzen

30



The Envelope is Rayleigh Distributede e ope s ay e g st buted
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Rayleigh Fading Marginay e g ad g a g
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Rayleigh Outage Probabilityay e g Outage obab ty
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Digital Communication in Rayleigh 
F di  i  Diffi ltFading is Difficult

c 2007-2012 Dr. Jay Weitzen
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Ricean Distribution

• When there is a stationary (non-fading)

Ricean Distribution

• When there is a stationary (non-fading)  
LOS signal present, then the envelope 
distribution is Riceandistribution is Ricean.  

• The Ricean distribution degenerates to 
Rayleigh when the dominant componentRayleigh when the dominant component 
fades away.

c 2007-2012 Dr. Jay Weitzen
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Rician PDFc a
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Rician Fadingc a ad g
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Nakagami Probability Distributiona aga obab ty st but o
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Nakagami Shape FactorNakagami Shape Factor
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Nakagami Fading for stationary 
user
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Level Crossing and Fade RatesLevel Crossing and Fade Rates
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Level Crossing Rate (LCR)Level Crossing Rate (LCR)

Threshold (R)( )

LCR is defined as the expected rate at which the Rayleigh fading 
envelope, normalized to the local rms signal level, crosses a specified 
threshold level R in a positive going direction. It is given by:

where

2
2

mR efN   

secondper  crossings

rms)  tonormalized  valueenvelope (specfied

    where          

 :
  /

R

rms

N
rR
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Average Fade DurationAverage Fade Duration
Defined as the average period of time for which the received signal is
below a specified level Rbelow a specified level R. 

For Rayleigh distributed fading signal, it is given by: 
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ADF for Different DistributionsADF for Different Distributions

c 2007-2012 Dr. Jay Weitzen

44



Fading Model –
Gilbert Elliot ModelGilbert-Elliot Model

Fade Period
Signalg

Amplitude

Threshold

Time t

Good
(Non-fade)

Bad
(Fade)
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Gilbert-Elliot Model

G d B d

1/AFD

Good
(Non-fade)

Bad
(Fade)

1/ANFD

The channel is modeled as a Two-State Markov Chain. 
Each state duration is memory-less and exponentially distributed.

The rate going from Good to Bad state is: 1/AFD    (AFD: Avg Fade Duration)
The rate going from Bad to Good state is: 1/ANFD (ANFD: Avg Non-Fade 

Duration))

c 2007-2012 Dr. Jay Weitzen
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16 582 C  St d16.582 Case Study:
Channel Measurements for 

2G MMDS and applicability to 
4G LTE and WiMax



CreditsCredits

• Based on slides from Dhananjay Gore• Based on slides from, Dhananjay Gore, 
Stanford University
Conducted for Sprint Broadband 1999• Conducted for Sprint Broadband, 1999-
2000
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Goal of ProgramGoal of Program
To characterize wireless channels 
for 2G MMDS but 4G has beenfor 2G MMDS but 4G has been 
deployed in this band

BTS CPEChannel

c 2007-2012 Dr. Jay Weitzen
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What Is MMDS?What Is MMDS?

• MMDS (Microwave Multipoint distributionMMDS (Microwave Multipoint distribution 
System), is a band of frequencies at 2.5 GHz, 
allocated for fixed and mobile digital 

i ticommunication
– Originally viewed as a “wireless cable” system for 

broadcast digital servicesg
– Viewed as mostly TDD

• Business case required self installable CPE 
t d d t k li bilit dantennas and need to know reliability and 

channel characteristics

c 2007-2012 Dr. Jay Weitzen

50



Typical ScenarioTypical Scenario

BTS

Co-Channel BTS

50’-100’

Ht  8’-15’

0.1 - 4 miles

Distance to 
mobile 

scatterers

c 2007-2012 Dr. Jay Weitzen
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Scenario Dimensions
• Terrain 

– Rural, Suburban, Urban, Hilly 
• Antenna Configuration

– BTS, CPE antenna heights & spacing
– Polarization, Beam-width,

• Reuse Factor
– 1 and 31 and 3

• Sectorization
3

c 2007-2012 Dr. Jay Weitzen
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Antenna ConfigurationsAntenna Configurations
• BTS antenna heights

– 35’, 50’, 80’,120’ (35-120 ft)
• CPE antenna heights

– Under the eaves: 85” to 95”, (~7 ft)
– Patio of a Condominium: 130” (~10 ft)

Rooftop: 175” to 220” (15 20 ft)– Rooftop: 175  to  220  (15-20 ft)
• CPE antenna spacing 

0 5 5 wavelengths– 0.5 - 5 wavelengths 
• Beam-width  900 at BTS and 500 at CPE

c 2007-2012 Dr. Jay Weitzen
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Measurement Set-upMeasurement Set up

Ant 1
Ant 1 DAQ Card

NI PCI-MIO-16E-1

Dual Rx 2 x IQ

Ant 1

custom

Ant 1Dual
PA

custom

Matlab

Pre-
processing

Hi LO

Signal
Generator

Lo LO

HP 4433B

Signal
Generator

Signal
Generator

2 x HP 4433B

Signal
Generator

AD
Clock

C++

Data
Analysis

PC

Matlab

Rubidium
Clock

Divider
Circuit

HP 4433B
HP 8648C

Divider
Circuit

Rubidium
Clock

10MHz / 1PPS
10MHz / 1PPS

PC
BTS

CCI CPE
2480 MHz
4 MHz BW
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Measured Channel ParametersMeasured Channel Parameters

• Path Loss
• K-factor
• Delay Spread• Delay Spread
• Doppler Power Spectrum
• Level Crossing Rates (LCR)
• Average Duration of Fade (ADF)g ( )
• Antenna Correlation 
• C/I ratios

c 2007-2012 Dr. Jay Weitzen

55

• C/I ratios



Path-Loss MeasurementsPath Loss Measurements

• Published literature (AT&T measurements)Published literature (AT&T measurements)
• SU measurements only for 0.1-4 miles

SU measurements made in multiple Bay• SU measurements made in multiple Bay 
area locations
S &• SU measurements agree with AT&T 
measurements

SU: Stanford University

c 2007-2012 Dr. Jay Weitzen
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G2 MMDS Path Loss ModelG2 MMDS Path Loss Model

Median Path Loss:

hf PLPLsddAdBPL  )/(log10)( 010

where 
for d > d0

)/4(l20 dA

, 10 meters < hb < 80 meters




  b h

cbha

)/4(log20 010 dA  (free space path loss)

, b






b

b hbha

 is the wavelength

(mean path loss exponent)
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Path Loss Model (contd.)Path Loss Model (contd.)

• is a lognormal shadow fadings is a lognormal shadow fading 
– zero mean 

terrain dependent standard deviation

s

– terrain dependent standard deviation
• is the BTS height in metersbh

b• are constants dependent on the 
terrain category

cba  , ,

• is chosen as 100m (reference distance)
• is the distance from BTS

od
d

c 2007-2012 Dr. Jay Weitzen
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Correction TermsCorrection Terms

• Frequency correction terms• Frequency correction terms






 2000log7.5 fPLf f in MHz

• CPE height correction term (> 2 meters)

 2000

)2log(8.10 CPE
h

hPL  1 meter < hCPE < 8 meters)2g(h
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Path Loss Scatter PlotPath Loss Scatter Plot
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Mean Path Loss vs Distance Mean Path Loss vs Distance 
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K-factor MeasurementsK-factor Measurements

t)( tt di i
component (mean) fixedin power  K 

K = -10 dB K = 6 dB

component)(scatteredin varyingpower 
Typical Signal Envelope:

K  10 dB K  6 dB
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K-factor ModelK factor Model

• Erceg model for K-factor• Erceg model for K-factor
udKFFFK obhs



• Fs is a seasonal factor
– 1.0; summer (leaves)
– 2.5; winter (no leaves)

• Fh is the height factorh g
– (h/3)0.46 (h is the CPE height in meters)  

c 2007-2012 Dr. Jay Weitzen
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K-factor Model (contd.)K factor Model (contd.)

• F is the beamwidth factor• Fb is the beamwidth factor
– Fb = (b/10)-0.62; (b in degrees)

K d i ffi i t• Ko and  are regression coefficients
– Ko = 10;  = -0.5

• u is a lognormal variable 
– zero mean
– std. deviation of 8.0 dB

c 2007-2012 Dr. Jay Weitzen
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K-factor Scatter PlotK factor Scatter Plot
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K-factor and ReliabilityK factor and Reliability

• K-factors are highly variable

• To ensure 99.9% reliability, systems 
must be designed for zero K-factormust be designed for zero K-factor 
(Rayleigh fading)
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Delay Spread ModelDelay Spread Model

• Spike-Plus-Exponential Model (Erceg)Spike Plus Exponential Model (Erceg)

)()( /    


 iBAP i

A, B, o and  are experimentally 

)()(
0

/    


 ieBAP
i

i o

determined
T 

2/2/ 




• Good Model for directive antennas

oo ee
Trms  2/2/  
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Delay Spread Scatter PlotDelay Spread Scatter Plot
(Suburban)
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Doppler Power SpectrumDoppler Power Spectrum
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Level Crossing Rate (LCR)Level Crossing Rate (LCR)

LCR is the rate (in sec) at which the signal crosses ( ) g
a certain level

Level

Level Crossingsgn
al

 L
ev

el

g

Si
g
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LCR (measured)LCR (measured)
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1

LCR vs BTS antenna height for "UNDER THE EAVES" CPE
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Average Duration of Fade 
(ADF)(ADF)

ADF i th d ti (i ) f hi h th i l l lADF is the average duration (in secs) for which the signal level
stays below a certain threshold 

t t t t t

Level

t1 t2 t3 t4 t5

gn
al

 L
ev

el

ADF =  ti )/N

Si
g  i )

N: No. of fades

0 T
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ADF (measured)ADF (measured)
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10 3

ADF vs BTS antenna height for "UNDER THE EAVES" CPE
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Antenna Correlation (Spatial)Antenna Correlation (Spatial)

s1(t)

s2(t)s2(t)

|]s|]E[|sE[|-|]ssE[| 2121
]|])s[||sE[(|]|])s[||sE[(|
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CPE Antenna CorrelationCPE Antenna Correlation 
Coefficient vs Antenna Spacing
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Antenna separation (wavelengths)

• 0.75 - 1 wavelength spacing adequate for under the eaves CPE

• 10 wavelengths sufficient for BTS antenna spacing

c 2007-2012 Dr. Jay Weitzen

75

g p g



Frequency ReuseFrequency Reuse
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Measured C/I (Cell Edge)Measured C/I (Cell Edge)
Excellent Conditions
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Measured C/I (Cell Edge)Measured C/I (Cell Edge)
Poor Conditions
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CDF of C/ I at the Cell Edge 
(Reuse= 3 x 9)
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80 % coverage for cell edge
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Summaryy
• Over 200 hrs of measurement effort

M d t (P th L K f t• Measured parameters (Path Loss, K-factor 
and Delay Spread) appear to conform to 
AT&T resultsAT&T results

• Consistency in new measurements of 
Doppler antenna correlation LCR and ADFDoppler, antenna correlation, LCR and ADF

• We feel reasonably comfortable that 
measurements capture the true nature ofmeasurements capture the true nature of 
MMDS propagation

• More measurements planned
c 2007-2012 Dr. Jay Weitzen
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Diversity in Mobile Radio 
Systems



Space Time Fading: Wide Beam

c 2007-2012 Dr. Jay Weitzen

83



Space time Fading, narrow 
bbeam
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Independent PathsIndependent Paths

.4
• Space Diversity

– Multiple antenna elements separated by 
decorrelation distancedecorrelation distance.

• Polarization Diversity
– Two transmit or receive antennas with differentTwo transmit or receive antennas with different 

polarizations
• Frequency Diversity f

Bc

– Multiple narrowband channels separated by channel 
coherence bandwidth

• Time Diversity
Tc

t
c 2007-2012 Dr. Jay Weitzen
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Time Diversity
– Multiple timeslots separated by channel coherence 

time.

t



Introduction to DiversityIntroduction to Diversity

• Basic Idea
– Send same bits over independent fading 

paths
– Combine paths to mitigate fading effectsTbb

t
c 2007-2012 Dr. Jay Weitzen
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tMultiple paths unlikely to fade simultaneously



How To Maximize DiversityHow To Maximize Diversity

• Want 2 or more signals with 
approximately same average power

• Want signals to be uncorrelatedg

c 2007-2012 Dr. Jay Weitzen
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Combining TechniquesCombining Techniques

• Selection Combining• Selection Combining
– Fading path with highest gain used

• Equal Gain Combining
– All paths cophased and summed with equal p p q

weighting

M i l R ti C bi i• Maximal Ratio Combining
– All paths cophased and summed with optimal 

i hti t i i bi t t SNR
c 2007-2012 Dr. Jay Weitzen
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Maximum ratio combining 
(MRC)(MRC)

h1
*

h1


h2

 yx

h2
*
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Maximum ratio combining (cont’d)a u at o co b g (co t d)
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Selection combining (SC)Selection combining (SC)

Monitor Select

h1

Monitor
SNR

Select
branch

h2

yx
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Switched diversitySwitched diversity

• Switched diversity• Switched diversity
– Switch-and-stay combining (SSC)
– Switch-and-examine combining (SEC) ComparatorChannel

estimator
switching
threshold

h1

x

h2

x
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Calculating Probability of Error
Introduction
• Improvements related to a reduced fading level are 

Ca cu at g obab ty o o

• Improvements related to a reduced fading level are 
commonly quantified by average error rate curves.

• Th    t   i    b  • The average error rate may in some cases be 
difficult to evaluate analytically.

MotivationMotivation
• Quantify the severity of fading by using a measure 

directly related to the fading distribution
c 2007-2012 Dr. Jay Weitzen
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directly related to the fading distribution.



Diversity PerformanceDiversity Performance

M i l R ti C bi i (MRC)• Maximal Ratio Combining (MRC)
– Optimal technique (maximizes output SNR)
– Combiner SNR is the sum of the branch SNRsCombiner SNR is the sum of the branch SNRs.
– Distribution of SNR hard to obtain.
– Exhibits 10-40 dB gains in Rayleigh fading.

• Selection Combining (SC)
– Combiner SNR is the maximum of the branch SNRs.Combiner SNR is the maximum of the branch SNRs.
– Diminishing returns with # of antennas.
– CDF easy to obtain, pdf found by differentiating.
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– Can get up to about 20 dB of gain.



Multiuser diversity GainMultiuser diversity Gain
System throughput for N users > than for 1 user

1

2Spatial diversity SC
SEC

K
SEC

User 1

User 2Multiuser diversity
•Combiner = Base station
•Antennas = Individual users
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Antennas  Individual users



Multi-User Diversity (cont’d)

Introduction

u t Use e s ty (co t d)

Introduction
• Always searching for the best user results in 

a high and determinstic feedback load.a high and determinstic feedback load.
Motivation
• Utilize switched diversity algorithms reportedUtilize switched diversity algorithms reported 

in the literature as multiuser access schemes 
to reduce the average feedback load.

• The base station probes the users in a 
sequential manner, looking not for the best 

b t f t bl
c 2007-2012 Dr. Jay Weitzen
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user but for an acceptable user.



Combating Rayleigh Fading: 
S  Di itSpace Diversity

• Fortunately, Rayleigh fades are 
very short and last a small

D

very short and last a small 
percentage of the time

• Two antennas separated by 
several wavelengths will not 
generally experience fades at thegenerally experience fades at the 
same time

• “Space Diversity” can be obtained 
by using two receiving antennas 

d it hi i t t b i t t tand switching instant-by-instant to 
whichever is best

• Required separation D for good 
decorrelation is 10-20

Signal received 
by Antenna 1

Si l i d – 12-24 ft. @ 800 MHz.

– 5-10 ft. @ 1900 MHz.

Signal received 
by Antenna 2

Combined
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Space Diversity Application 
LimitationsLimitations

• Space Diversity can be applied only 
th i i d f li k

D

on the receiving end of a link.  
• Transmitting on two antennas 

would:
fail to produce diversity since– fail to produce diversity, since 
the two signals combine to 
produce only one value of 
signal level at a given point --g g p
no diversity results.

– produce objectionable nulls in 
the radiation at some angles

Signal received 
by Antenna 1

Si l i d • Therefore, space diversity is 
applied only on the “uplink”, i.e.., 
reverse path

there isn’t room for two

Signal received 
by Antenna 2

Combined
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– there isn t room for two 
sufficiently separated antennas 
on a mobile or handheld

Combined 
Signal



Polarization Diversity
Where Space Diversity Isn’t Convenientp y

• Sometimes  zoning considerations or 
aesthetics preclude using separate 
diversity receive antennasdiversity receive antennas 

• Dual-polarized antenna pairs within a 
single radome are becoming popular
– Environmental clutter scatters RF 

energy into all possible polarizations
– Differently polarized antennas receive 

signals which fade independently
In urban environments this is almost as

V+H
or
\+/ – In urban environments, this is almost as 

good as separate space diversity
• Antenna pair within one radome can be V-

H polarized, or diagonally polarizedA B A B

\+/

– Each individual array has its own 
independent feedline

– Feedlines connected to BTS diversity 
inputs in the conventional way; TX

Antenna A
Antenna B
Combined
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inputs in the conventional way; TX 
duplexing OK

Combined



The Reciprocity Principle
Does it apply to Wireless?Does it apply to Wireless?

Between two antennas, on the same 
exact frequency, path loss is the 

i b th di tisame in both directions
• But things aren’t exactly the same in 

cellular --
– transmit and receive 45 MHz. 

-148.21 db
@ 870.03 MHz

apart
– antenna: gain/frequency slope?
– different Rayleigh fades 

up/downlinkup/downlink
– often, different TX & RX antennas
– RX diversity

• Notice also the noise/interference-148.21 db Notice also the noise/interference 
environment may be substantially 
different at the two ends

• So, reciprocity holds only in a general 
sense for cellular

@ 870.03 MHz

151 86 db
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sense for cellular-151.86 db
@ 835.03 MHz



Frequency DiversityFrequency Diversity
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Frequency Hopping for DiversityFrequency Hopping for Diversity
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Frequency Hopping and C/IFrequency Hopping and C/I
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Receive Diversity 
PerformancePerformance

Diversity 
gain
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Interleaving and De-
interleaving for Fading interleaving for Fading 

Channels



Motivation for InterleaverMotivation for Interleaver

• Interleaving is a form of time diversity• Interleaving is a form of time diversity
– Usually combined with coding to provide 

protection against burst errors caused byprotection against burst errors caused by 
fading

• Viterbi Algorithm used for detection of• Viterbi Algorithm used for detection of 
convolutional codes is not effective against 
burst errors We add interleaver toburst errors. We add interleaver to 
distribute burst error. 
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Forward Error Correction for Fading Channels
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Theory of Interleaving
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Error Performance on Fading Channels
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Block Interleaver

Original Message

0 0 1 1

Writing
00110101110000111011

Original Message

0 1 0 1

ea
di

n
g

00101011001001111011

Interleaver

1 1 0 0

0 0 1 1

R
e

Burst Error

1 0 1 1
00110101001001111011

The order of original Message is 
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Block Deinterleaveroc e e ea e

0 1 1 1

Reading

00110101001001111011

Received Message

0 0 0 1

W
ri

ti
n

g Burst Error
DeInterleaver

1 1 0 0

1 0 1 1

W 01110001110010110011

0 0 1 1
Distributed Error
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Example: CD InterleavingExample: CD Interleaving
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Example: Satellite 
C i tiCommunications
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Performance with InterleavingPerformance with Interleaving
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Combating Effects of Multipath 
and Fading in Wireless Systems



What to do against ISI?What to do against ISI?

• Wideband signals:Wideband signals:
– channel delay = many symbol periods

heavy distortion of the received signal– heavy distortion of the received signal. 
• Several techniques can be applied to reduce or 

get rid of ISI in wideband signal transmissionget rid of ISI in wideband signal transmission 
– Equalization (2nd gen)

spread signal modulation (3rd gen)– spread-signal modulation (3rd gen)
– OFDM (4th gen)
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EqualizationEqualization

• The received signal is filtered in such a way thatThe received signal is filtered in such a way that 
ISI is eliminated or reduced. 
– Ideal ISI elimination is achieved when the filter is the 

inverse of the channel response. 
– Clearly, the channel must be known, or accurately 

estimated to perform effective equalizationestimated, to perform effective equalization. 
– Therefore, the equalizer needs to be trained to adapt 

itself to the time-varying channel in wireless systems. y g y
Usually this is achieved by transmitting a training 
sequence. 

E li ti f th i l lt i d
c 2007-2012 Dr. Jay Weitzen
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• Equalization of the signal results in a decrease 
of ISI at the cost of a lower signal-to-noise ratio 
(SNR)



Direct sequence spread 
tspectrum

• In DS-SS modulation, the signal is multiplied with a code that 
results in a signal with a much wider bandwidth than the originalresults in a signal with a much wider bandwidth than the original 
information-bearing signal. In a time-dispersive multipath 
channel, the spread signal replicas, which travel via different 
paths, are un-correlated if the path delays are more than onepaths, are un correlated if the path delays are more than one 
symbol period apart from each other. After decorrelation in the 
receiver, the signal replicas from different paths are combined in 
a Rake receiver, thus all received energy is effectively used. gy y

• A disadvantage of using DS-SS with high bit-rate signals is that 
to achieve a sufficiently  high processing gain,  a very large 
bandwidth is required. This is especially the case in an indoor q p y
environment, where the delay times between the paths are very 
short,  in the order of 1 ns. 
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OFDMOFDM
• Symbols of high bit rate signal are distributed over a 

large number of subcarriers. g
– Low symbol rate per carrier. 
– Individual carrier signals see flat fading (no ISI).

Promising techniq e for f t re high bit rate• Promising technique for future high bit-rate 
applications. 

• However, it suffers from a number of problems: , p
– a very linear amplifier in the transmitter is required to prevent 

signal distortion, 
– accurate synchronization in the receiver is neededaccurate synchronization in the receiver is needed, 
– in the transmitter and receiver real-time discrete Fourier 

transform (DFT) operations have to be computed.
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Improving Performance of Improving Performance of 
Wireless Channels using MIMO 

(the next generation of 
diversity)diversity)



MIMO is the Next generation of 
Di i  SDiversity Systems

• Single-input, single-output (SISO) channel
No spatial diversity

• Single-input, multiple-output (SIMO) channelg p p p
Receive diversity

• Multiple-input, single-output (MISO) channel Multiple input, single output (MISO) channel 
Transmit diversity 

• Multiple input  multiple output (MIMO) • Multiple-input, multiple-output (MIMO) 
channel
C bi d t it d i  di it
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Combined transmit and receive diversity



Introduction to the MIMO Channel
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Capacity of MIMO Channels
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Single Input- Single Output 
systems (SISO)systems (SISO)

x(t): transmitted signalx(t): transmitted signal
y(t): received signal
g(t): channel transfer function
n(t): noise (AWGN, 2)

g

y(t) = g • x(t) +
x(t)

y(t)

y(t) = g • x(t) + 
n(t)

ESignal to noise ratio : 
Capacity                   :   C =  log2(1+)

2
x2

σ
Eρ g
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Single Input- Multiple Output (SIMO
M lti l  I t Si l  O t t (MISOMultiple Input- Single Output (MISO

• Principle of diversity systems (transmitter/Principle of diversity systems (transmitter/ 
receiver)

• +: Higher average signal to noise ratio
Robustness

• - : Process of diminishing return
Benefit reduces in the presence of 

correlation
Maximal ratio combining• Maximal ratio combining

• Equal gain combining
• Selection combining
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• Selection combining



Transmit Diversity
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Transmit Diversity with Feedback
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TX diversity with frequency weighting
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TX Diversity with antenna hopping

c 2007-2012 Dr. Jay Weitzen

131



TX Diversity with channel coding
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Transmit diversity via delay diversity
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Transmit Diversity Options
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MIMO Wireless Communications: Combining TX and 
RX Di itRX Diversity

• Transmission over Multiple Input Multiple Output (MIMO) 
radio channelsradio channels

Ad t I d S Di it d Ch l• Advantages: Improved Space Diversity and Channel 
Capacity

• Disadvantages: More complex, more radio stations and

c 2007-2012 Dr. Jay Weitzen 135

Disadvantages: More complex, more radio stations and 
required channel estimation



MIMO Model MIMO Model 

TNTMMNTN WXHY  
T: Time index

W: Noise

• Matrix Representation
W: Noise
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Multiple Input- Multiple Output 
systems (MIMO)systems (MIMO)

1 1
H11

H
Nx1Mx1NxMNx1

nxy HHN1

H
M N

H1M

• Average gain

HNM

  HH 1H
22  E

2t t lP

• Average gain   HH


 ,H  ijE
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2
2 


 totalP
• Average signal to noise ratio



Shannon capacity















 














 

H2
2

T
2

H
2
x

2 Mσ
Pdetlog

σ
EdetlogC HHIHHI g















 

  
H

2 M
ρdetlog

Mσσ

HHI

K= rank(H): what is its range of values?

  M

Parameters that affect the system capacity
• Signal to noise ratio 
• Distribution of eigenvalues (u) of H
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Interpretation I: 
The parallel channels approachThe parallel channels approach

• “Proof” of capacity formula

• Singular value decomposition of H: H = 
S·U·VH

• S, V: unitary matrices (VHV=I, SSH =I)
U : = diag(uk), uk singular values of Hk k

• V/ S: input/output eigenvectors of H
• Any input along vi will be multiplied by ui

and will appear as an output along si
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Vector analysis of the signals

1. The input vector x gets projected onto the 
v ’svi s

2. Each projection gets multiplied by a 
diff t idifferent gain ui.

3. Each appears along a different si.uu1

u2

<x,v1> · v1 <x,v1> u1 s1

2
<x,v2> · v2 <x,v2> u2 s2
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uK
<x,vK> · vK

<x,vK> uK sK



Capacity = sum of capacities

• The channel has been decomposed into 
K parallel subchannelsK parallel subchannels

• Total capacity = sum of the subchannel 
iticapacities

• All transmitters send the same power:
Ex=Ek

  
KK

ρ1logCC K E

  222
EuvxEu

 



1i

k2
1i

k ρ1logCC 








 

1i

2
22 1logC k
k uE


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Interpretation II: p
The directional approach

Sing lar al e decomposition of H H• Singular value decomposition of H: H = 
S·U·VH

• Eigenvectors correspond to spatial directions• Eigenvectors correspond to spatial directions 
(beamforming)

1 1 (si)1

M N
(si)N
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Example of directional 
interpretationinterpretation
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End of Module 7End of Module 7


